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Abstract: In the field of open-pit geological risk management, landslide failure time prediction is
one of the important topics. Based on the analysis of displacement monitoring data, the inverse
velocity method (INV) has become an effective method to solve this issue. To improve the reliability
of landslide prediction, four filters were used to test the velocity time series, and the effect of landslide
failure time prediction was compared and analyzed. The results show that the sliding process of
landslide can be divided into three stages based on the INV: the initial attenuation stage (regressive
stage), the second attenuation stage (progressive stage), and the linear reduction stage (autoregressive
stage). The accuracy of the INV is closely related to the measured noise of the monitoring equipment
and the natural noise of the environment, which will affect the identification of different deformation
stages. Compared with the raw data and the exponential smoothing filter (ESF) models, the fitting
effect of the short-term smoothing filter (SSF) and long-term smoothing filter (LSF) in the linear
autoregressive stage is better. A stratified prediction method combining SSF and LSF is proposed.
The prediction method is divided into two levels, and the application of this method is given.

Keywords: failure time of landslide; open-pit coal mine; inverse velocity; early warning; field monitoring

1. Introduction

Rockfalls and ground surface deformation, which are notoriously known due to their
strong abruptness, intermittent occurrence, and destructive harm, are among the most
critical issues both during mining and for many years after the cessation of mining [1,2].
In open-pit mining (also known as open-cut or open-cast mining), geomorphic processes
possibly result in slope failures with alterations that entail potential sources of risk to
personnel, apparatus, and infrastructures, in addition to dislocating mining scenarios and
multiplying production expenditures [3–5]. Nevertheless, production work at a high rate
could be hindered by major slope failure or the over-conservative nature of the ultimate
design [6–8]. The mitigation of slope failure is a crucial topic of particular concern in
open-pit mines, where production works must proceed with economic benefit yield, and
simultaneously the safety of the personnel and the integrity of the mining equipment must
be guaranteed [9].

Discerning ongoing processes of rock slope deformation that may lead to instability
covers essential miscellaneous aspects of engineering geology and geomechanics [10–12].
The management of and substantial information on slope failure-associated risks are inte-
gral to having an adequate understanding of the lithostructural predisposition, the driving
forces, and the different mechanisms and environmental conditions in the monitored
area [13–15]. Irrespective of spatial and temporal terms, displacement and its derivatives
(velocity and acceleration) are widely considered to be the most reliable alert indicators that
can provide an early warning of potential movements [16]. Systematic efforts have gone
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into implementation for early-warning precautions of a near-real-time slope monitoring net-
work by utilizing the correlation among these kinematic parameters. The rationale for the
majority failure forecast method (FFM) [17] is based on the observation that slopes undergo
velocity increases asymptotically towards failure (“tertiary” or “accelerating” creep) [18].
Albeit clearly, FFM is on the temporal prediction of landslides and imminent collapse,
which can be defined as time-of-failure (TOF) [19]. This leads to the necessity of integrating
TOF analysis and alert indicators with a real-time assessment tool. Such a precursory tool
was first suggested by Saito [20], incorporating discovering the inversely proportional
relationship between time to slope failure and existing strain rate within the tertiary creep
phase, and later improved by Fukuzono [21], who introduced a phenomenological method
that takes into account the inverse of the velocity against time, the so-call inverse velocity
(INV) method, leading to effective forecast results before the ultimate failure. Voight [22,23]
went on to present successful applications of this method and extended the results to other
types of natural phenomena or failure mechanisms, e.g., volcanic eruptions. Astonishingly,
although the INV method was developed based on laboratory tests more than 30 years
ago, it does not appear to have achieved implementation and verification for real-time
slope failure prediction in the mining industry or mining-related technical literature until
2001 [24]. Since the early 21st century, in order to develop approaches to evaluate the failure
time (tf) of landslides, published examples (from the investigation of some large open-pit
slope failures) of successful implementation are proposed to predict impending failure
based on the results of the conventional application of INV methods [25–28].

Several studies of the INV method have been carried out to define rules and procedures
to estimate the time of landslides in open-pit mines, including Rose and Hungr [24],
Mufundirwa et al. [29], Dick et al. [19], Carlà et al. [30,31], Zhou et al. [32], and Chen
and Jiang [33]. By presenting three large rockfall events of open-pit mines (1, 2, and
18 million m3) in Northeastern Nevada, Rose and Hungr [24] demonstrated the accuracy
and efficacy of this method. The result of the largest event was even forecasted 3 months
before the impending failure. Dick et al. [19] further discussed the application of the INV
method in open-pit mines by using new systematic multi-pixel and machine-learning
models to complement the scarcity of conventional geodetic monitoring programs for near-
real-time deformation measurements. Carlà et al. [9] took an anonymous copper open-pit
mine into account and defined the appropriate strategy for the setup of alarms, which were
deduced from the presented nine cases of slope instability and the relationship between the
reciprocal displacement rate and duration time in the accelerating stage before the slope
failure. To address the reliability of the prediction method and simultaneously provide
guidelines for the proficient usage of this method, Zhou et al. [32] developed the modified
INV method when analyzing the five landslides of Fushun West Pit slope failure. Similarly,
Chen and Jiang [33] supposed that the selection of thresholds is usually over-conservative,
considering the low-risk tolerance, and therefore introduced a dimensionless inverse
velocity method (DINV) to provide a general solution framework that was used to assess
the slope failure risk and avoid false alarms. The main characteristic of the inverse velocity
method is its simplicity of use which has provided a useful tool for the interpretation of
instrument data to anticipate eventual slope failure. These developments notwithstanding,
the practical usefulness of the INV method for early warning in open-pit mines may be fairly
constrained because of the following major drawbacks. In general, the INV method was
formulated from fixed and human-controlled laboratory conditions, which are extremely
unlikely to suffice in engineering slopes and field conditions. Furthermore, limitations
connected to previous point-wise monitoring analysis of the INV method in open-pit mines
are significant, often resulting in undersampled or poorly collected data. Additionally,
the surface mining environment produces manifold noise patterns (e.g., mining extraction
action, transportation equipment destabilization, human activities, measurement errors,
etc.), which are considered to be a defect for early-warning purposes. Finally, the prediction
performance of the INV method under different displacement scales does not appear to have
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been analyzed to date. All these mentioned gaps can decisively hinder the interpretation of
the inverse velocity plot and affect the precision and dependability of tf prediction.

In this context, it is essential to propose the application of a conventional inverse
modeling tool, based on the moving average transfer function, for eliminating as many as
possible disturbing effects related to the prediction of displacements and compensating
for other defects. To manifest the feasibility and punctuality of the FINV (filter inverse
velocity) method for time-of-failure analyses in a mining environment, the back analysis
of a large slope failure that occurred in August 2016 at Fushun, an open-pit coal mine in
northeast China, is examined in detail. On this basis, we examined velocity time series
using four filters and analyzed the validity of landslide damage time predictions.

2. Materials and Methods
2.1. Study Area

The Fushun West open-pit mine is located in the western part of the Fushun coal-
field, at the northern foot of Qiantai Mountain on the southern bank of the Hun River.
The geographical coordinates of the mine range from approximately 41◦38′0′′ N to
42◦14′0′′ N and 123◦39′12′′ E to 124◦28′0′′ E, as shown in Figure 1a. The open pit has a
length of approximately 6.6 km, a width of around 2.2 km, and a total area of about
14.52 km2. The mining depth reaches 400 m. However, the Fushun West open-pit
mine faces serious landslide hazards due to factors including open-pit mining, under-
ground excavation, faults, and weak layers. Specifically, the mine has experienced over
900 collapse events attributable to landslides. More than 50% of these incidents oc-
curred from June to September when rainfall is relatively concentrated. These landslide
events have resulted in a total damaged area of 635,000 m2 and have given rise to a
series of safety and geological environmental issues concerning open-pit mining.

On the evening of 25 July 2016, the Fushun area was struck by a rainfall event with
a return period of 50 years, resulting in nearly 200 mm of precipitation. At 5:00 a.m. the
following day, a partial landslide occurred on the northern slope of the Fushun West
open-pit mine, as shown in Figure 1b. The elevation of the landslide’s rear edge was
approximately +75 m, while the shear location at the front edge was around −25 m. The
landslide spanned a north–south width of approximately 300 m, with a height difference of
110 m, and with an east–west width of approximately 500 m. The total area affected by the
landslide was approximately 150,000 m2. The landslide caused the burial of the bottom
sections 12 and 14 of the mainline, with the sliding tongue extending. This resulted in the
complete interruption of the internal electrical railway lines in the eastern section of the
mine, as well as the disruption of the western slope’s transportation roads, including the
Xingping Road and the car transport highway. These disruptions had a significant impact
on the internal drainage of the eastern open pit and the upper soil removal in the western
area of the mine, severely impeding normal production in the mining area.
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Figure 1. Location of the study area and geomorphology of the open-pit mine: (a) Location map of
the Fushun West open-pit mine; (b) aerial view of landslide form.

2.2. Geological Setting

By studying the exploration data of the initial mining area, along with a large volume
of geological exploration information and conducting geological surveys, the rock masses
of the slopes in the Fushun West open-pit mine have been classified into various lithologies,
including granite gneiss, basalt, coal, oil shale, tuff, green mudstone, and miscellaneous fill
soil. The exposed strata, from the oldest to the youngest, mainly consist of Precambrian
granite gneiss, Paleogene Paleocene Lao Hutai Formation, Lizigou Formation, Eocene
Guchengzi Formation, Jijuntun Formation, and West Open-Pit Formation. Quaternary
artificial deposits also exist in the area. A comprehensive stratigraphic column is shown in
Figure 2, and a profile of the landslide area is presented in Figure 3.
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Figure 3. Section view of the landslide area.

2.3. Data Description

GPS (Global Positioning System, hereafter called “GPS”) is a huge satellite-based
system with global coverage for radio navigation and positioning. GPS technology has
been developed rapidly in the application fields of navigation, positioning, precision



Water 2024, 16, 430 6 of 22

measurement, etc. In particular, the GPS real-time monitoring system has been widely
used in the field of real-time monitoring of landslide deformation in open-pit mines for its
real-time nature, and has achieved better results.

In order to reduce the threat of landslide disasters in open-pit mines to national
property and people’s lives, the Fushun West open-pit mine introduced a GPS real-time
monitoring system, whose framework is shown in Figure 4. The system realizes the
24 h uninterrupted monitoring of geological disaster bodies and the remote automatic
transmission of landslide displacement monitoring data, providing effective technical
guarantees for the early warning of disaster bodies and the activation of emergency plans.
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Figure 4. GPS monitoring system framework for the Fushun West open-pit mine.

The system monitoring point deployment and GPS monitoring data are presented in
detail below. A total of 11 monitoring profiles were established in different directions on
the northern end slope of the Fushun West open-pit mine, Namely, E200, E300, E400, E500,
E600, E700, E800, E900, E1000, E1100, and E1200. The engineering geological plan of the
landslide is illustrated in Figure 5. As of June 2015, a total of 12 GPS monitoring points were
deployed along the monitoring profile, as shown in Figure 5b. Its monitoring technology
is mainly based on the main radar sensor transmitting microwaves, using differential
aperture radar remote prism monitoring technology. The radar nominal precision is
0.1 mm, the frequency signal is 1575.42 Hz, and the wavelength is about 30~50 cm. These
monitoring points were named GN1, GN2, GN3, GN, GN5, GN6, GN7, GN8, GN9, GN10,
GN11, and GN12. For this study, data were selected from the period of 14 March 2016 to
31 August 2016.

Let the three-dimensional coordinate information of the landslide monitoring point
at a certain time point acquired by remote prism synthetic aperture radar monitoring be
(x, y, z). The 3D coordinate value corresponding to the initial moment t0 is (x0, y0, z0), the
3D coordinate value corresponding to any moment tn is (xn, yn, zn), and the cumulative
displacement (∆x, ∆y, ∆z) component of the monitoring point within the moment from t0
to tt is: 

∆x = xn − x0
∆y = yn − y0
∆z = zn − y0

(1)
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The change in total displacement ∆s at the monitoring point is:

∆s =
√

∆x2 + ∆y2 + ∆z2 (2)

The cumulative displacement of the landslide is divided into cumulative horizontal dis-
placement and cumulative vertical displacement, where cumulative vertical displacement
is the cumulative displacement component in the z-direction and cumulative horizontal
displacement ∆h is:

∆h =
√

∆x2 + ∆y2 (3)

The direction of landslide sliding is indicated by the displacement azimuth, which is α:

α = arctan(∆x/∆y) (4)

From the above definition, when α is positive, the displacement direction of the moni-
toring point is upward; when α is negative, the displacement direction of the monitoring
point is downward. From the above derivation process, it can be seen that the size as
well as the direction of the deformation of the landslide body is jointly determined by
the magnitude of the x, y, and z directions. The deformation at any monitoring point
on a landslide can be expressed in terms of the displacement components in the three
directions of the monitoring point, or by horizontal displacement, vertical displacement,
and displacement azimuth.
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2.4. The Basal INV Method

The failure mechanism of slopes is defined as a complete paroxysmal collapse of rock
and soil material. By analyzing a multitude of triaxial compression laboratory tests and in
situ monitoring research, researchers have discovered that the deformation process of most
landslides complies to the progressive characteristics [34–36] and three-stage law [37–40], as
shown in Figure 6a. The whole process, from the initial deformation to the eventual failure,
representatively comprises three stages: decelerating (green proportion), steady-state
deformation (blue proportion), and acceleration deformation (pink proportion). Although
the described methods have occasionally been successfully applied to a variety of cases such
as man-made walls [30,41], rock and soil specimens [42–44], volcanic eruptions [45,46], or
tunnels [45,47], these methods are primarily applied to unstable slopes. Hence, landslides
are regarded as the principal research objects.
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Figure 6. Conventional three-stage interpretation of creep behavior. (a) Three-stage deformation
process of the progressive landslide (modified after Saito, [20]); (b) kinematic evolution of a landslide
(modified after Intrieri et al. [16]); (c) graphical approach for determining the time of failure in
the tertiary creep stage (Intrieri et al. [16]); and (d) schematic diagram of INV (modified after
Fukuzono, [21]).

Fukuzono [21] further elaborated the classic three-stage creep theorem by propounding
a simpler diagrammatic method (Figure 6b), which could be the most used and simple
approach to provide a reasonable estimate of failure time. This method is valid for the
tertiary stage. It is noteworthy that the method detects an OOA (onset of acceleration)
point, which approximately distinguishes the secondary stage and the tertiary stage. The
curve (Figure 6a) is separated into two segments by a demarcation point in the tertiary
stage during the acceleration evolution process. (I) After an initial acceleration, Figure 6b
displays a dotted line that is approximately parallel to the time axis with the landslide
reaching equilibrium state; (II). Meanwhile, Figure 6b likewise displays a line whose value
is towards ∞ (i.e., v−1 → 0) as the velocity asymptotically increases.
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Several authors successively supplied suggestions and guidelines for proficient us-
age based on a mathematical generalization of Fukuzono’s solution. Representatively,
Voight [22,23] encompassed the prediction of failure behavior and proposed the following
equation (Equation (5)).

d2Ω/d2t2 = A(dΩ/dt)α (5)

where Ω is the displacement, dΩ/dt and represents the “velocity” and “acceleration” of Ω,
respectively. A and α are two empirical constants that denote characteristics of slope failure;
recent investigations revealed that A and α are not independent of each other, varying
with several factors comprising kinematic motion patterns [48], versatile types of materia,
and macro or micro scales [49]. Consequently, Fukuzono proposed the following equation
(Equation (6)) for predicting the failure time by combining the aforementioned equation
(Equation (5)) with time:

Λ ≡ v−1 = [A(α − 1)(t f − t)](α−1)−1
(6)

where tf is the time of failure. This method consists in depicting a tangent line to the curve
at an arbitrary point Λ 1 that tallies to moment t1. The tangent passes across the horizontal
axis at moment tc1 (tc1,0). Afterward, the point P1 is plotted vertically above Λ1, on a line
that passes through Λ1 and parallel to the Y axis. The segments of t1Λ1 and t1tc1 have
an equal displacement from the perspective of geometric shapes. The abovementioned
procedure is repeated for another random point Λ2. Then, the time of failure tf can be
obtained as the abscissa of the intercept of a straight line that passes through P1 and P2
(Figure 6c).

The major drawback of Equation (5) is represented by the necessity of determin-
ing two constants A and α. According to closely controlled laboratory conditions and
studies by several authors [50,51], α commonly spans over three orders of magnitude.
For α = 2, 1 < α < 2, and α > 2, the curve of inverse-velocity has a linear, concave, or convex
shape (Figure 6d), respectively. For this condition, Segalini et al. [52], who considered
26 emblematic pre-failure landslide cases, proposed that A inclines to take on extremely
low or high values as α deviates from 2. While α appears as intermediate fluctuation, this
attribute can be sufficient to sensibly influence prediction results.

To solve this issue, the value of α with the assumption that it is equal to 2 can be
generally applied to evaluating the time of failure. In terms of guaranteeing production
schedules and staff safety, the assumption of α = 2 is often integrated with the mining
industry environment because of its demanding promotion of visual feedback. Thus,
Equation (6) is simplified into the following equation (Equation (7)):

v−1 = A(t f − t) (7)

As a result, the failure time tf is presumably provided for the point of abscissa of the
extrapolated linear inverse velocity trend with the time axis.

2.5. The Moving Average Filtering INV Method Architecture

As formerly stated, the most powerful aspect of the INV method is probably its
simplicity, and it is a useful resource in different instances, bypassing the intrinsic restriction
for knowing the slope size, state of activity, and types of material. In addition, the tool
resource also provides great convenience under many other aspects (e.g., risk assessment
and management), if users can count on agile and suitable methods of appraising the
state of the monitored circumstance and establish the probability of impending disastrous
accidents, a task which is not always achievable because of hardly compensating restrictions
as a consequence of measurement errors and random instrumental noise. Correspondingly,
we verify two of the utmost prevalent and foolproof smoothing algorithms, i.e., finite
impulse response models (also called moving average filter models). Three types of filter
models are described below.
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1. Short-term simple box filter (SSBF). As each new velocity datum sampling occurs,
users can extract the unweighted mean of the antecedent data points through SSBF algo-
rithm processing. This ensures that the alterations of v in the mean are coordinated with
the alterations in the data (v) rather than being shifted in time. An example of a v simple
equally weighted running mean is the mean over the latest k entries of a data set involving
t entries. Let those velocity data points be v1, v2, . . ., vt. The mean over the latest k velocity
data points is represented as SSBFk (vt) and calculated as follows:

vt =
1
m (vt−k+1 + vt−k+2 · · · vt)

= 1
m

t
∑

i=t−k+1
vi

(8)

when the new velocity datum (SSBFk, next, v′t) is collected with the invariable sampling
width m, the scope from t – k + 2 to t + 1 is considered. A new value vt+1 comes into the
sum and the earliest value vt+1 drops out. This simplifies the computations by proceeding
with the antecedent mean SSBFk, antecedent: (vt)

v′t = 1/k(
t+1
∑

i=t−k+2
vi)

= 1/k(vt−k+2 + vt−k+3 + · · · vt + vt+1︸ ︷︷ ︸
t+1
∑

i=t−k+2
vi

+ vt−k+1 − vt−k+1︸ ︷︷ ︸
=0

)

= 1/k(vt−k+1 + vt−k+2 + · · · vt︸ ︷︷ ︸
=v′t

)− vt−k+1
k + vt+1

k

= vt +
1
k (pt+1 − pt−k+1)

(9)

where the moving average cycle (k) of the SSBF model was set to 2 days (k = 2).
2. Long-term simple box filter (LSBF), where the moving average cycle (k) was selected

to be 6 days (k = 6).
3. Exponentially weighted moving average (EWMA). Whereas in the short-term

simple box filter (SSBF) and long-term simple box filter (LSBF), the past signal processing
is weighted equally, the EWMA model is used to assign exponentially decreasing weights
over time. The EWMA for a series can be calculated as follows:

vt =

{
v0 t = 0

ξvt + (1 − ξ)vt−1 t > 1

}
(10)

where coefficient ξ represents the scale of recursion, a constant smoothing factor between 0
and 1. The smaller ξ is, the stronger the real-time performance of the moving average (vt)
is. On the contrary, the larger ξ is, the stronger the ability to absorb instantaneous burst
value is, and the better the stability of the prediction model is. Hence, the smoothing factor
with the assumption that ξ = 0.5 can be generally used to express and balance the recursion
and attenuation properties of the prediction model.

Because the measurement instrument can be easily controlled by the geologist, the
time interval between adjoining measurements can be given over a constant time interval.
The pattern of filtering as in Equation (8) is equivalent to the easy mathematical statement
utilized by Osansan and Stacey [52].

dΩi/dti = (Ωi − Ωi−n)/(ti − ti−n) (11)

In Equation (11), we set 1/Ω equal to 1/Ωi (1/Ωi is the reciprocal of displacement rate
at ti) and t equal to ti (t0 is the most recent instant).

The SSBF and LSBF models are customizable because they can be calculated for
different numbers of time cycles (also called the order of the moving average). The biggest
distinction of the SSBF and LSBF models is over setting the length of time cycles (k).
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Significantly, there is no regularly precise guideline or standard definition to set up the
boundary between short-term and long-term cycles. It is noted that the selection of a
suitable time cycle (k) value is due to the following two major elements: (i) monitoring
data accuracy/quality; and (ii) data sampling frequency. To observe what the trend-cycle
estimate looks like under different orders of moving average, we plot it (Figure 7) along
with a group of monitoring data from an anonymous open-pit mine. It should be noted that
the trend cycle (in red) is smoother than the original data after processing several moving
averages (n < m < p < q) and captures the main movement of the time series without any
of the minor fluctuations.
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slide monitoring programs, are representative of state-of-the-art radar monitoring tech-
nology (e.g., GPS [53,54], ground-based radar [31,55], total stations [56], and laser scan-
ning [57]), and commonly require researchers to carry out smoothing over the bulk of 
measurements. Contrariwise, the low-frequency rates of data acquisition will produce low 
acquisition rates and will hide much of the background noise, resulting in the inability to 
trace short-term movements and delaying the identification of eventual trend changes; in 
such instances, smoothing should be performed over relatively lower measurements, 
compared to data obtained at high acquisition rates. Short-term averages respond quickly 
to changes in the price of the underlying security, while long-term averages are slower to 
react. The order of the moving average determines the smoothness of the trend-cycle 

Figure 7. Different orders of moving average applied to displacement rates in an anonymous open-pit
mine of the instability before the failure. n, m, p, and q represent the four order values of successive
increments (i.e., n < m < p < q). (a) Displacement rate at successive incremental order values of n;
(b) Displacement rate at successive incremental order values of m; (c) Displacement rate at successive
incremental order values of p; (d) Displacement rate at successive incremental order values of q.

In Carlà et al. [30], the high-frequency rates of data acquisition, in the area of landslide
monitoring programs, are representative of state-of-the-art radar monitoring technology
(e.g., GPS [53,54], ground-based radar [31,55], total stations [56], and laser scanning [57]),
and commonly require researchers to carry out smoothing over the bulk of measurements.
Contrariwise, the low-frequency rates of data acquisition will produce low acquisition rates
and will hide much of the background noise, resulting in the inability to trace short-term
movements and delaying the identification of eventual trend changes; in such instances,
smoothing should be performed over relatively lower measurements, compared to data
obtained at high acquisition rates. Short-term averages respond quickly to changes in the
price of the underlying security, while long-term averages are slower to react. The order
of the moving average determines the smoothness of the trend-cycle estimate. In general,
a large order means a smoother curve. The role played by the features of data sampling
frequency and quality for the selection of suitable time cycles (k) is notable.

3. Results
3.1. Slope Displacement Velocity, Acceleration, and Cumulative Displacement Analysis

We collated the monitoring data with the period of 28 June 2016 to 31 August 2016, and
plotted the velocity–acceleration–cumulative displacement curve of slope displacement,
as shown in Figure 8. We divided the curve into three phases according to the trend of
the velocity curve, i.e., the initial phase, the second phase, and the third phase. The phase
splitting time points of the three phases of the different monitoring sites are not the same.



Water 2024, 16, 430 12 of 22

The splitting time point of the first phase and the second phase is in the time interval from
12 July to 24 July, and the splitting time point jumps more, within 12 days, whereas the
splitting time point of the second stage and the third stage is in the time interval from 9
August to 13 August, and the splitting time point jumps less; see the summary in Table 1
for details.
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Table 1. Results of correlation analysis between vegetation and climate indicators.

Monitoring Point
The Initial Stage The Second Stage The Third Stage

Start End Start End Start End

GN1-E200-200

28 June

15 July 16 July 11 August 12 August

31 August

GN2-E300-184 12 July 13 July 10 August 11 August
GN3-E400-200 22 July 23 July 10 August 11 August
GN4-E400-188 21 July 22 July 10 August 11 August
GN5-E500-280 22 July 23 July 10 August 11 August
GN6-E500-200 24 July 25 July 10 August 11 August
GN7-E600-200 22 July 23 July 10 August 11 August
GN8-E700-200 18 July 19 July 10 August 11 August
GN9-E800-232 22 July 23 July 9 August 10 August

GN10-E900-220 22 July 23 July 12 August 13 August
GN11-E1000-200 16 July 17 July 11 August 12 August
GN12-E1200-200 14 July 15 July 11 August 12 August

As shown by the red curve in Figure 8, in the whole period, the overall velocity curve
showed a downward trend and then an upward trend. In the first stage, the overall velocity
curve showed a downward trend, but the downward trend was relatively gentle; in the
second stage, the overall velocity curve showed a downward concave upward trend. In
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the third stage, the overall speed curve showed a trend of sharp rise and then a slow rise,
and finally reached the highest point on 31 August. The time interval of the sharp rise of
the curve in this stage was roughly distributed from 11 August to 15 August. In terms of
numerical values, the velocity data of the monitoring points in the whole stage reached the
highest point on 31 August, and the minimum velocity was measured by the monitoring
point GN9 on 25 July, with a value of 17.00 cm/d. The maximum velocity, which was
83.50 cm/d, was measured by the monitoring point GN5 on 31 August. The velocity value
span of GN4 was the smallest, ranging from 19.90 to 27.90 cm/d. The velocity value span
of GN5 at the monitoring point was the largest, ranging from 27.00 to 83.50 cm/d.

As shown by the blue curve in Figure 8, in the first two stages, the acceleration curve
fluctuates above and below 0, and the fluctuation range is the smallest in the whole stage.
In the second stage, the acceleration curve is above 0 as a whole and shows an upward
trend of fluctuation. The fluctuation range of the acceleration curve in the third stage is
the largest in the whole stage, and the overall trend of fluctuation is decreasing. In terms
of numerical value, the acceleration data of monitoring points in the whole stage reached
the highest point on 14 August. The minimum absolute value of acceleration, which was
−0.13 cm/d2, was measured by the monitoring point GN11 on 13 July. The maximum
acceleration, which was 4.30 cm/d2, was measured by the monitoring point GN5 on
14 August. The acceleration value span of GN10 is the smallest, ranging from −0.2 to
0.65 cm/d2. The acceleration value of GN5 at the monitoring point has the largest span,
ranging from −0.2 to 4.30 cm/d2.

As shown by the green curve in Figure 8, in the whole period, the cumulative dis-
placement curve presents a linear upward trend. In the first stage, the cumulative dis-
placement curve presents an upward convex trend. In the second stage, the cumulative
displacement curve presents a linear upward trend. In the third stage, the cumulative dis-
placement curve presents a linear downward concave upward trend. In terms of numerical
value, the cumulative displacement data of monitoring points in the whole stage reached
the highest point on 31 August. The minimum cumulative displacement, which was
105.19 cm, was measured by the monitoring point GN12 on 28 June. The maximum cumu-
lative displacement was measured by the monitoring point GN5. On 31 August, the value
was 234.99 cm. The cumulative displacement value span of GN9 is the smallest, ranging
from 147.20 to 159.92 cm. The cumulative displacement value span of GN5 is the largest,
ranging from 209.27 to 234.99 cm.

3.2. Analysis of Slope Displacement Inverse Velocity and Cumulative Displacement

According to the displacement–reverse velocity curve and the accumulated displace-
ment curve drawn at 12 monitoring points, as shown in Figure 9 the trend of the reverse
velocity curve mainly experienced three stages: slow acceleration, upward convex deceler-
ation, and upward concave deceleration in the whole period. In the first stage, the reverse
velocity curve showed an overall upward trend, but the upward trend was gentle. In the
second stage, the inverse velocity curve presents an upward convex deceleration trend. The
inverse velocity curve of the third stage showed an upward concave deceleration trend and
finally reached its lowest point on 31 August. The time interval of the sharp downward
trend of the curve at this stage was roughly distributed from 11 August to 15 August. In
terms of numerical value, the inverse velocity data of monitoring points in the whole stage
fell to the lowest point on 31 August. The minimum inverse velocity, which was 0.012,
was measured by the monitoring point GN5 on 31 August. The maximum inverse velocity
was measured by the monitoring point GN9 on 31 July, with a value of 0.059. The inverse
velocity value span of GN4 is the smallest, ranging from 0.036 to 0.050. The inverse velocity
value of GN8 has the largest span, ranging from 0.021 to 0.049.
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3.3. Source Velocity Data Model Analysis

The 12 monitoring points were transformed by the multiplicative inverse representa-
tion of velocity data under the time series model (as shown in Figure 10).

As shown in Figure 10, from 28 June 2016, the monitoring data acquisition starting
point, the stage of large fluctuation ended on 31 August, and the period from 22 July to
31 August was the initial decay stage under the velocity multiplicative inverse repre-
sentation. The curve trend of the 12 monitoring points is mainly presented as constant
velocity attenuation–convex attenuation–concave attenuation–constant velocity attenua-
tion. In terms of smoothness, this model is worse than other models. At the same time,
since 11 August, the slope has completed the initial attenuation stage of large scale and
also entered the next attenuation stage of relatively stable amplitude. At this stage, the
amplitude of oscillation decreases compared with the initial attenuation stage. It is worth
noting that under the representation mode of the multiplicative inverse meta-model
of source velocity data, the curve shows obvious linear expression characteristics since
15 August. Linear and nonlinear fitting (as shown in Figure 10) was carried out for data
under the multiplicative inverse meta-model of source velocity data. The landslide time
predicted by 12 monitoring points is about 1–5 days earlier than the actual landslide time.
Under the nonlinear fitting condition, the landslide time predicted by the 12 monitoring
points under the model is about 1–3 days earlier than the actual landslide time, and the
landslide time predicted by the GN1 and GN9 monitoring points under the model lags
behind the actual landslide time by 2 days and 1 day, respectively. In terms of fitting effect
and prediction effect, nonlinear fitting has better performance than linear fitting, and the
overall prediction effect shows that the actual landslide time can be predicted in advance.
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3.4. SMA Model Analysis

After the source velocity data were transformed by the multiplicative inverse repre-
sentation of SMA model velocity data under the time series model (as shown in Figure 11),
the stage of large oscillation amplitude ended on 31 August, and the period from 22 July to
31 August was the initial attenuation stage of SMA model. From the perspective of curve
shape, the SMA model has an obvious tendency to eliminate the ladder shape of the curve
based on the source velocity data model. Through the linear and nonlinear fitting of the
data under the source velocity data SMA model, it can be obtained that under the linear
fitting condition, the landslide time predicted by 12 monitoring points is about 1–5 days
earlier than the actual landslide time. Under the nonlinear fitting condition, the landslide
time predicted by the 12 monitoring points under the model is about 1–4 days earlier than
the actual landslide time, and the landslide time predicted by the GN1 monitoring point
is 2 days behind the actual landslide time. In terms of fitting effect and prediction effect,
nonlinear fitting is better than linear fitting. The prediction effect of the SMA model is
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1–2 days earlier than that of the multiplicative inverse model, but the overall prediction
effect is worse than that of the multiplicative inverse model. The overall prediction effect is
that the actual landslide time is predicted in advance.
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3.5. LMA Model Analysis

After the source velocity data were transformed by the multiplicative inverse repre-
sentation of the velocity data of the LMA model under the time series model (as shown
in Figure 12), the stage of large oscillation amplitude ended on 31 August, and the period
from 22 July to 31 August was the initial attenuation stage of the LMA model. From the
perspective of curve shape, the LMA model further smoothed the curve shape based on the
source velocity data model. The linear and nonlinear fitting of source velocity data under
the LMA model showed that the fitting accuracy of the LMA model was the highest. Under
the linear and nonlinear fitting conditions, the landslide time predicted by the model of
12 monitoring points is about 1–4 days earlier than the actual landslide time, and the land-
slide time predicted by the GN5 monitoring point is 1 day behind the actual landslide time.
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In terms of fitting effect and prediction effect, nonlinear fitting has a better performance
than linear fitting. The landslide prediction time under the LMA model is 1–2 days shorter
than that of the multiplication inverse model. The overall prediction effect is better than
that of the multiplication inverse model, and the actual landslide time can be predicted
in advance.
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3.6. ESF Model Analysis

After the smooth velocity data were transformed by the multiplication inverse repre-
sentation of the source velocity data under the time series model (as shown in Figure 13),
the stage of large oscillation amplitude ended on 31 August. The period from 22 July to 31
August was the initial attenuation stage of the ESF model. In terms of curve morphology,
the smoothness of ESF is better than that of the multiplicative inverse model but worse
than the SMA model and LMA model. Under the linear fitting condition, the landslide
time predicted by 12 monitoring points under the model is about 1–5 days earlier than the
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actual landslide time; under the nonlinear fitting condition, the landslide time predicted by
12 monitoring points under the model is about 1–3 days earlier than the actual landslide
time. The predicted landslide time of the GN1, GN2, and GN9 monitoring points is 2 days,
2 days, and 1 day behind the actual landslide time, respectively. In terms of fitting effect
and prediction effect, the nonlinear fitting has a better performance than the linear fitting.
The landslide prediction time under the LMA model is 1–2 days longer than that under
the multiplication inverse model. The overall prediction effect is worse than that of the
multiplication inverse model, and the actual landslide time can be predicted in advance.
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4. Discussion

The bubble chart between the actual landslide and the predicted landslide time is
drawn in Figure 14. It can be seen from the figure that all four models can effectively
predict the landslide in advance. Under the condition of linear fitting, the interval between
the prediction time and the landslide time is guaranteed to be within 5 days. Under the
nonlinear fitting condition, the interval between the prediction time and landslide time is
guaranteed to be within 4 days, whereas the monitoring data of GN1, GN9, GN10, GN11,
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and GN12 shorten the interval between the prediction time and landslide time to within
2 days. In terms of fitting accuracy, the multiplicative inverse meta-model (model 1) is
the lowest among the four models, followed by the ESF model (model 4); the SMA model
(model 2) is better, and the LMA (model 3) model is the best. In terms of prediction accuracy,
from the perspective of bubble size and distribution, ESF is the lowest among the four
models, followed by the SMA model; the multiplicative inverse meta-model is better, and
the LMA model is the best.
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5. Conclusions

In this paper, based on the inverse velocity (INV) method of displacement monitoring
data analysis, we examined the velocity time series by using four filters and compara-
tively analyzed the effect of landslide damage time prediction to improve the reliability of
landslide prediction. The main conclusions of this study include the following points:

(1) A landslide event comprises a rather complicated process. The results show that the
sliding process of a landslide can be divided into three stages based on the INV: the
initial attenuation stage (regressive stage), the second attenuation stage (progressive
stage), and the linear reduction stage (autoregressive stage).

(2) Compared with the raw data and the exponential smoothing filter (ESF) models, the
fitting effect of short-term smoothing filter (SSF) and long-term smoothing filter (LSF)
in the linear autoregressive stage is better.

(3) In terms of fitting accuracy, among the four models proposed in this study, the fitting
accuracy of the multiplicative inverse model is the lowest, followed by the ESF model;
the SMA model is better, and the LMA model is the best. In terms of prediction
accuracy, ESF is the lowest among the four models, followed by the SMA model; the
multiplicative inverse model is better, and the LMA model is the best.
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