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Abstract: With the increasing water scarcity and the demand for sustainable agriculture, precise
estimation of crop evapotranspiration (ET) is crucial for effective irrigation management, crop yield
assessment, and equitable water distribution, particularly in semi-arid regions. In this study, a large
aperture scintillometer (LAS) was used to validate the remote sensing-based ET model SETMI (Spatial
Evapotranspiration Modeling Interface) in an irrigated maize-wheat cropping system in a semi-arid
region at the ICAR-Indian Agricultural Research Institute, New Delhi. Results obtained by the SETMI
model depicted modeled surface energy fluxes compared well with LAS field data, showing a very
high R2 (0.83–0.95) and NRMSE (8–29%). The SETMI model performed better in the case of the
maize crop than the wheat crop in field experiments. Further, the SETMI model was employed at the
regional level using high-resolution Sentinel-2 to estimate the regional water productivity of wheat
crops over a semi-arid region in India. The estimated regional, seasonal wheat actual ET mainly
ranged between 101 mm and 325 mm. The regional wheat water productivity varied from 0.9 kg m−3

to 2.20 kg m−3. Our research reveals that the SETMI model can give reliable estimates of regional
wheat water productivity by examining its spatial and temporal fluctuations and facilitating the
creation of regional benchmark values.

Keywords: evapotranspiration; large aperture scintillometer; maize; SETMI; semi-arid; water
productivity; wheat

1. Introduction

The arid and semi-arid regions occupy approximately one-third of the planet’s surface,
where water supplies are generally limited, and it is challenging to meet industrial, agricul-
tural, and ecological water demands. Most of these regions face water resource pressures
driven by water consumption from irrigated agriculture [1]. Climate change exacerbates
water scarcity issues in semi-arid areas [2]. Hence, there is an immediate requirement to
manage water resources for sustainable crop production. Estimating crop evapotranspi-
ration is one of the ways to manage water resources due to its essential role in irrigation
scheduling and crop water productivity estimation. Field-scale ET measurement systems
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include lysimeters, Bowen ratios, eddy covariance systems, surface renewal systems, and
classical soil water balancing [3,4]. Though these methods are more accurate, they are
costly, provide field-specific measurements only, and must be extrapolated or interpolated
with limited accuracy [5]. Large aperture scintillometry (LAS) is a recent field measurement
technique to estimate crop evapotranspiration (ET) by estimating areal-averaged sensible
heat fluxes over spatial distances nearly equivalent to those observed by satellites [6,7].
LAS-based ET measurements can validate satellite-based ET estimates over larger regions.
The estimate of ET using remote sensing technologies has also received growing interest in
research [8,9].

Thus, remote sensing images are progressively being employed to assess evapotran-
spiration (ET) across various spatial and temporal extents. Over the past twenty years,
numerous models have been developed to estimate evapotranspiration using remotely
acquired data [10–12]. A few of these models include SEBAL (Surface Energy Balance Al-
gorithm for Land) [13,14], SEBS (Surface Energy Balance System) [15], METRIC (Mapping
EvapoTranspiration at high Resolution with Internalized Calibration) [16], and SSEBop
(Operational Simplified Surface Energy Balance) models [17,18]. These models can be
categorized into one-source models and two-source models. One-source surface energy
balance-based ET models simulate bulk ET from the land surface primarily using remotely
sensed land surface temperature (LST) and vegetation index (VI) [14,15,19]. However, the
two-source model describes physical processes and simulates spatial explicit evaporation
(E) and transpiration (T) individually [19,20], which proves to be better for comprehending
agricultural processes. SETMI (Spatially ET Mapping Interface) is a recent hybrid ET model
that is a combination of the model of Norman et al. [19] two-source energy balance (TSEB)
ET model with a water balance (WB) model using reflectance-based crop coefficients (Kcbrf).

Crop ET is important to assess disparity in agricultural production among various
regions in terms of both land productivity and water productivity [21]. Crop water pro-
ductivity is an important step toward connecting water management to larger stated goals
such as water security, food security, and economic growth. Although boosting crop water
productivity can help solve the water and food crises, it is more challenging to accom-
plish crop water productivity gains at the farm level, partly because standard values are
lacking, and farmers are not led by any methods [22]. Much information is linked with
agricultural productivity, but more information and recommendations on WP (kg m−3)
must be provided. Traditional approaches rarely give reliable estimates of spatial ET, often
confined to small regions and mainly focusing on vulnerable and vital areas. This indicates
the significance of regional-scale research, which would aid in many key water manage-
ment and agricultural policy decisions at this level. Notably, water is likely to be a more
constraining limitation for Indian agriculture [23]. So, it is time to shift the paradigm from
increasing agricultural production per unit of land to improving agricultural productiv-
ity per water unit. Estimates of yield (Y) and ET based on remote sensing enable us to
construct populations of WP data from which yield and water productivity gaps may be
computed [24].

The objective of this study includes using the SETMI model for estimating crop
evapotranspiration (ET) for a maize-wheat cropping system in a semi-arid irrigated area
and its validation with LAS estimates, estimating regional wheat crop yield in selected
three semi-arid zones and their regional wheat water productivity in the northwestern
region of India. This study reveals high-performing and low-performing WP clusters in
India’s northwest area. Furthermore, individuals and organizations may utilize the data
to designate strategic areas, establish development objectives, and rationalize funding or
policies to increase crop water productivity.

2. Materials and Methods
2.1. Study Area

A field experiment was carried out in the ICAR-Indian Agricultural Research Institute
Farm, New Delhi (28◦38′23′′ N and 77◦09′27′′ E), for two years (2015–2016 over cropping



Water 2024, 16, 422 3 of 26

seasons in rainy (kharif ) and winter (rabi); winter season 2016–2017 and the rainy season
2017–2018 (Figure 1). Maize (corn) was selected as the kharif season crop, and wheat as the
rabi crop for the field experiment to estimate crop ET. The region’s climate is semi-arid and
subtropical, with chilly winters and hot-dry summers, and the area has sandy loam soil.
The average annual rainfall in the New Delhi area is 769.3 mm, with more than 75 percent
received between June and September (southwest monsoon) and only 63.5 mm received
during winter (western disturbances).
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Figure 1. The study area is in New Delhi, India, and the LAS path footprint is overlaid on the satellite
image of the ICAR-IARI research farm.

Furthermore, to calculate wheat crop water productivity, three regions in the north-
western parts of India were selected (Jhajjar, Gurugram, and Rohtak districts of Haryana
state) (Figure 2). According to the Koppen classification, the climate of the Jhajjar district
is tropical steppe, semi-arid, and hot, with extreme air dryness except during monsoon
months, intensely hot summers, and cold winters [25]. Similarly, Rohtak district falls
under the sub-humid and semi-arid/arid zones, and it experiences extremely hot and
dry summers and chilly winters [26]. Moreover, Gurugram district’s climate is tropical
steppe, semi-arid, and hot, and it is primarily distinguished by arid air (except during the
monsoon season), extremely hot summers, and cold winters [27]. The southwest monsoon
provides the most rainfall (>75%) from July to September. However, western disturbances
also contribute a small amount of precipitation during the winter season in these three
regions. These regions primarily receive annual rainfall between 550 and 700 mm. The soils
of the study region range in texture from coarse loamy to fine loamy. These districts were
selected because they use various irrigation techniques, including rainfed, groundwater,
and canal irrigation. Due to the region’s low and irregular rainfall, water scarcity in canals,
high evaporative demands, sandy soils with little water holding capacity, medium to poor
groundwater quality, and fluctuating groundwater levels, water management in the study
area is complicated.
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2.2. Micrometeorology Sensors and Measurements

An automatic weather station (AWS) at the agrometeorology observatory (Class-A)
having sensors of net radiometer, anemometer (two levels), temperature and humidity
probes (two heights), and soil heat flux plate at 10 cm depth was added along the LAS
path length in IARI, New Delhi farm. AWS measured daily weather information such
as ground heat flux (G), net radiation (Rn), minimum and maximum temperature, wind
speed and direction, relative humidity, global radiation, etc. Meteorological parameters
were recorded by sensors (Table 1) in AWS regularly at 5-min intervals in synchronization
with LAS sensible heat fluxes (H) measurements. As Rn and G were recorded at 5-min
intervals using a net radiometer and ground heat flux plate, respectively, the 5-min fluxes
of LE (Wm−2) were calculated by merging LAS with AWS measurements in the EVATION
software (V2R5).

Table 1. Sensors were used during the field experiment for 2015–2016, 2016 (rabi), and 2017 (Kharif ).

S. No. Observation/Measurement Parameter Measured Sensor Used Model Type

1. Surface energy flux Sensible heat flux (H) Large-aperture scintillometer Kipp & Zonen: MKII,
Delft, Netherland

2. Radiation Net radiation (Rn)
Incoming global radiation

Net radiometer
Pyranometer

Kipp & Zonen: NR-LITE/CNR4,
Delft, Netherland

Kipp & Zonen:CMP3,
Delft, Netherland

3.
Two levels of meteorological

parameters (2 m and 4 m
above ground)

Wind speed and direction
Relative Humidity

Air temperature

Anemometer and wind vane
Humidity probe

Temperature probe

R M Young: 05103-L
Campbell Scientific: CS 215, UT,

Logan, UT, USA
Campbell Scientific: CS 215,

Logan, UT, USA

4. Biophysical measurements Leaf Area Index Plant canopy analyzer LI-COR: LAI 2000, Lincoln, NE

5. Soil measurements Soil moisture
Ground Heat Flux (10 cm depth)

Time domain reflectometer
Soil Heat Flux Plate

Spectrum Tech: Fieldscout 300,
Aurora, IL, USA

Hukseflux: HFP015C,
Delft, Netherland

6. Data recording Data logging and storage Datalogger Campbell Scientific: CR-1000,
Logan, UT, USA

2.3. Energy Fluxes: Observation/Estimation

A large aperture scintillometer (LAS) (Make: Kipp & Zonen LAS MkII) was installed
at the ICAR-IARI research farm in December 2013 at 4.5 m above ground in the northeast
and southwest directions, covering a path length of 990 m. It has a transmitter and receiver,
with a 10 cm aperture, and a built-in data recorder in the receiver, monitoring the sensible
heat flux (H) every five minutes throughout the path length. Continuous measurements
of energy fluxes from combining LAS and AWS were analyzed at 5-min intervals and
averaged hourly to depict the daily behavior of Rn, H, LE, and G. The estimation of surface
energy flux was dominated by the central portion of the LAS path length.

2.4. Field Observation and Measurements

During the crop growing season, field measurements (along the 990 m path length of
the LAS) of soil moisture, leaf area index (LAI), plant height, and crop phenological stages
were taken fortnightly. Field Scout TDR 350 (Spectrum Technologies, Aurora, IL, USA) has
been used to measure the top 12 cm of soil surface moisture on a volume basis. The plant
canopy analyzer (LAI-2000) instrument LICOR (Lincoln, NE, USA) was used to estimate
the crop LAI non-destructively in the field. After removing outliers, the average crop field
LAI for a given day was calculated by averaging several LAI readings from that field.
The phenological stages of the crops (maize (Kharif ) and wheat (rabi)) were observed, and
their dates were noted. On the observation day, six plants at random from a plot were
selected to measure the height of the plants using a metric scale, and the average plant
height for that plot was calculated from the six values for both maize and wheat crops.
Over 70 readings along the LAS path length were taken in two experimental years (crop
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and soil) to obtain a site-representative value for the biophysical parameters. A weighted
average was computed to obtain a single figure based on the area a crop type occupies.

2.5. Spatial Evapotranspiration Modeling Interface (SETMI) Model

The Spatial Evapotranspiration Modeling Interface (SETMI) [28,29] is a hybrid model
that combines the Two-Source Energy Balance (TSEB) model [19] and the soil water balance
(WB) model (which employs spectral reflectance-dependent crop coefficients). The SETMI
is embedded in ESRI’s (Redlands, CA, USA) geographic information system (GIS) software,
ArcGIS 10.4. It has three main phases: (1) preparation of a database; (2) model calculation
and data analysis; and (3) system tools and outputs. Each stage comprises several steps
supported by the tools and functions of ArcGIS (10.4.1) and ERDAS IMAGINE software
2014. The complete methodology to estimate crop ET by the SETMI model is illustrated in
Figure 3.
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The two-source energy balance model estimates the fluxes by partitioning the total
energy received at the Earth’s surface into its respective components of net radiation
and sensible, latent, and soil heat flux using surface energy balance. It computes soil
and vegetation’s surface energy balance components separately, requiring the input of
radiometric surface temperature observations in the model. However, TSEB necessitates
thermal infrared imagery, which limits its application to image collection dates (e.g., satellite
overpass). Our study used only the TSEB model embedded in SETMI to derive the actual
crop ET since the soil water balance model could not be calibrated effectively. The model
parameters were calibrated locally, which are mentioned in Table 2.
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Table 2. Values of parameters used in the SETMI Model for maize and wheat crops.

S. No. Parameters Values

1. αleaf VIS (leaf absorptivity in the visible range) 0.49–0.85
2. αleaf NI (leaf absorptivity in the NIR range) 0.15–0.30
3. αleaf TI (leaf absorptivity in the TIR range) 0.60–0.95
4. αleaf Dead VIS (absorptivity of dead leaves in the visible range) 0.30–0.49
5. αleaf Dead NIR (absorptivity of dead leaves in the near-infrared range) 0.10–0.13
6. αleaf Dead TIR (absorptivity of dead leaves in the thermal infrared range) 0.80–0.95
7. Fg (fraction of green leaves) 0.15–0.60
8. Hc min (minimum canopy height) (m) 0.1
9. Hc max (maximum canopy height) (m) 1.2–2.5
10. S (leaf size width) (m) 0.05–0.20
11. Wc (canopy width) (m) 0.22–0.90
12. LAI (leaf area index) 0.1–4.5
13. Refl soil VIS (soil reflectivity in the visible range) 0.25
14. Refl soil NIR (soil reflectivity in the NIR range) 0.15–0.25
15. ε soil TIR (soil emissivity in the TIR range) 0.95–0.99
16. Ag (ratio of soil heat flux to canopy net radiation) 0.3–0.4
17. D (ratio of crop height and canopy width) 1–3

Note: α—absorptivity of green leaves in the visible range, used in the net radiation model of Campbell and
Norman, S—used within the TSEB to calculate the extinction coefficient.

The difference between soil/plant and atmospheric conditions is accounted for by
TSEB (two-source energy balance). Additionally, it also accommodates off-nadir thermal
sensor view angles. In addition to providing details on stress and soil/plant fluxes, the
difference between net radiation and the sum of the sensible and ground heat fluxes yields
the latent heat flux, which is presented as equations below:

TRAD (θ) ∽ fc(θ) × Tc + 1 − fc(θ) × Ts

LE = Rn − (H + G)

where TRAD is the radiative temperature recorded by the thermal sensor at view angle θ,
Tc is canopy temperature, Ts is soil temperature, and fc is canopy fraction covering the
ground, which acts as a weighting function between Tc and Ts. Table 3 lists the vegetation
absorptivity utilized in the net radiation (Rn) model calculations.

Table 3. Net radiation parameters used in the TSEB model (SETMI) for maize and wheat crops [30].

Surface Type Absorptivity Emissivity
Visible Near Infrared

Green vegetation 0.85 0.20 0.98
Senesced vegetation 0.49 0.13 0.95

Soil 0.15 0.25 0.93

Instantaneous latent heat flux (LE) computed using the TSEB is then scaled to a daily
actual ET value following Chavez et al. [31] using the instantaneous and daily reference ET
ratio according to the equation:

ETd = LEi ×
(

3600
λ

)
× (

ETo, d
ETo, i

)

where ETd represents daily actual evapotranspiration (mm/day); ETr represents reference
evapotranspiration (mm); LE represents latent heat flux (W m−2); λ denotes latent heat of
evaporation (W m−2) [30]. The subscripts d and i stand for daily and instantaneous values,
respectively. A more detailed description of the SETMI model can be found in the work
of [31,32].
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2.6. Validation of the SETMI Model with a Large Aperture Scintillometer (LAS)
2.6.1. Model Input Parameters

(a) Remote sensing imagery

The remote sensing imageries were obtained from the Landsat 8 operational land
imager (OLI) and Landsat 8 thermal infrared sensor (https://earthexplorer.usgs.gov/
(accessed on 3 January 2024)). The ortho-rectified Level 1T images of Landsat 8 were pre-
processed for atmospheric and radiometric corrections. The Level 1T product’s coefficients
were used to undertake radiometric calibration. Web applications [33] were used to perform
atmospheric corrections of thermal infrared imagery using surface emissivity values. Local
ground data from the site’s weather station and atmospheric profiles that were interpolated
to the location were employed for this purpose. Computing the vegetation cover fraction is
required for atmospheric corrections [34]. Based on previous local Landsat 8 images, we
utilized a minimum NDVI of 0.2 and a maximum value of 0.9 to compute this. ERDAS
IMAGINE 2014 and ArcGIS 10.4.1 software were used to pre-process the images.

A list of the cloud-free Landsat 8 images used as input in the SETMI model is provided
in Table 4. A challenge in this study was the infrequency of cloud-free satellite images
due to clouds, especially in the rainy season, and fog in the winter. The ICAR-IARI
experimental field was in a Landsat 8 image overlap zone. Even though this doubled the
frequency of satellite overpasses, the non-availability of cloud-free images reduced the
overall frequency of pictures used. The SETMI interface was used to input land cover
information, which is needed for the computation of ET for each satellite pass date by
the TSEB. This input consists of surface temperature (Landsat 8 band 10), meteorological
data for the research area, and Landsat 8 bands 3, 4, and 5 (converted to reflectance and
atmospherically corrected).

Table 4. List of cloud-free Landsat 8 images used in the SETMI model.

S. No. 2015–2016 (Rainy/kharif ) 2015–2016 (Winter/rabi) 2017–2018 (Rainy/kharif ) 2016–2017 (Winter/rabi)

1. 30 August 2015 11 November 2015 25 June 2017 15 December 2016
2. 8 September 2015 4 December 2015 4 September 2017 22 December 2016
3. 24 September 2015 30 January 2016 13 September 2017 24 February 2017
4. 1 October 2015 2 March 2016 20 September 2017 5 March 2017
5. 10 October 2015 9 March 2016 29 September 2017 12 March 2017
6. 17 October 2015 6 October 2017 21 March 2017
7. 26 October 2015 15 October 2017 28 March 2017
8. 22 October 2017 6 April 2017

(b) Ground input parameters

The air temperature, incident solar radiation, wind speed, and vapor pressure were
computed in real time by the SETMI model. Scaling estimated instantaneous LE to daily ET
values required the addition of immediate and daily total ETr [31]. For this reason, we used
point weather data. Using the ASCE Standardized Reference ET equation for a tall reference
crop [35] and REF-ET software (version 4.1.4.22.2016), the ETr was computed at an hourly
time step. Thus, using ground weather data, we calculated reference evapotranspiration
(ETr) for the day of the satellite’s passage, which was then multiplied by the mean Kc
(crop coefficients) in the study area using the Reference Evapotranspiration Calculator
(RefET [35]). The SETMI calculations were performed on a 1-m scale for both the maize
and wheat crops. The plot values of the SETMI ET were calculated by averaging the small
pixels within each plot; as the vegetation-index-based peak predicted crop height started to
decline, a crop height at the peak value was kept for a specific pixel. Despite the intention
to retain the peak value, the leaf area index still needed to be maintained at its highest
level in September. To improve consistency between years, the peak leaf area index for
the season for a given pixel was utilized in post-processing after August in the case of the
maize crop.

https://earthexplorer.usgs.gov/
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(c) Weather input parameters

The autonomous weather station established at Agromet Observatory ICAR-IARI
provided the 5-min interval, hourly, and daily readings that the SETMI model required.

2.6.2. Evaluation of Model-Estimated Parameters

The model validation primarily compared modeled ET and surface energy fluxes
with measured ET and energy fluxes from a large aperture scintillometer (LAS) at our
ICAR-IARI, New Delhi, research field. The estimated spatial surface energy fluxes from the
SETMI were combined and compared to ground-based LAS-observed fluxes. The predicted
and measured instantaneous LE (W m−2) were compared after being extrapolated to equal
daily ET (mm day−1). The reference ET fraction (ETrF) approach, which was introduced
and used by Chavez et al. [31], was used to extrapolate the instantaneous ET. ETrF, which
is assumed to remain constant throughout the day, is the ratio between the instantaneous
values of SETMI ET or LAS ET and ground-based measured ETr. To extrapolate to the daily
SETMI ET, the relevant ETrF is multiplied by the daily ETr. Additionally, LAS estimated
H (W m−2), net radiation obtained from a pyranometer, and soil heat flux received from
soil heat plates attached to the automatic weather station were used to validate the SETMI
estimated sensible heat flux H (W m−2), net radiation, and ground heat flux (W m−2).
The root mean square error (RMSE), coefficient of determination (R2), mean bias error
(MBE), and normalized root mean square error (NRMSE) were used to evaluate the model
performance statistics. An R2 value close to unity shows that model estimation has a low
error variance. A lower NRMSE value closer to zero is desirable to imply that the model can
predict with lower error and vice versa [32]. Similarly, a low MBE value indicates a lower
model prediction error, while a negative MBE indicates that the model is underestimated,
while a positive mean is overestimated.

2.7. Estimation of Regional and Seasonal ET of the Wheat Crop for the Winter Season (Rabi)
2018–2019

When daily ET is unavailable due to the temporal resolution of satellites and gaps
in image acquisition due to cloud cover over the area of interest, the computation of
seasonal/annual ET based on remote sensing is complicated. Numerous methods exist to
extrapolate instantaneous ET to daily ET [31], but there are limited options for extrapolating
daily ET to seasonal or annual ET. One way of estimating seasonal ET is to use the linear
method to compute monthly and seasonal ET based on the calculated daily ET on the
days of satellite acquisition. Therefore, we estimated seasonal ET over the three study area
districts using the methodology described below. Landsat 8 OLI images were acquired and
atmospherically corrected for the research area using a technique similar to that explained
earlier. The weather stations in the research area provided the ground weather data.
Reference ET estimation was calculated using REF-ET software, as explained earlier. These
parameters were used as input in the validated SETMI model, which was then run over all
three districts of the studied area to obtain daily ET (mm/day).

2.7.1. Estimation of ETrF between Days of Satellite Image Acquisitions

We used the accumulated alfalfa-referenced ET (ETr) and the ETrF for the image date
to calculate the seasonal actual ET. Hourly and daily ETr were computed with the help
of hourly meteorological data obtained from the automatic weather station installed in
the study region. The REF-ET software was used to calculate hourly ETr using the hourly
meteorological data, which was further summed over 24 h to obtain the daily ETr values.
Thus, the reference ET fraction (ETrF) was calculated based on ETins and alfalfa-referenced
ET (ETr, mm h−1) from the weather data as follows:

ETrF = ETins/ETr
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Finally, the daily ET (ET24, mm day−1) at each pixel within the image was calculated
using the equation:

ET24 = ETrF × ETr24

ETr24 is the alfalfa-referenced daily ET (mm day−1) based on summed-up hourly ETr.

2.7.2. Estimation of Monthly and Seasonal Evapotranspiration

ETa is best computed daily and added to the total crop-growing periods. Due to the
absence of daily high-resolution images, this is not feasible. Thus, our research employed
a linear method to compute monthly ET using model-estimated daily ET values. The
representative ETrF was multiplied by the corresponding Etr value to compute the daily
ET for a particular day. The monthly ET was calculated by adding the daily computed
ET values, and the seasonal value was computed by summing the monthly ET (Figure 4).
Thus, linear EtrF interpolations between the acquisition dates of the processed images were
performed to estimate the seasonal ET. These values were then multiplied by the daily
ETr. Thus, monthly and seasonal ET were calculated by linearly interpolating the ETrF
values for the intervals between two consecutive images. It is crucial to obtain a reasonable
estimation of the daily ET because it is utilized to compute the seasonal ET on the days of
the satellite overpass. Also, it is necessary to consider that errors caused by overestimating
and underestimating daily ET are rectified while computing seasonal ET. In the linear
interpolation, the slope of the line at the image dates is discontinuous. The previously
outlined method is applicable if satellite images are regularly available and model estimates
can identify the ET variation pattern.
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2.8. Estimation of Regional Wheat Yield for the Winter Season (Rabi) 2018–2019
Estimation of Net Primary Productivity (NPP) of Wheat Crop

From the perspective of carbon trapping and allocation to yield qualities, photosyn-
thesis relates to insolation and productivity. Net primary productivity (NPP) is the most
significant of the various measures of primary production in terms of carbon. For this
experiment, to estimate the NPP of wheat during the winter/rabi season of 2018–2019, a
top-down method was used to simulate the NPP of three districts (Rohtak, Jhajjar, and
Gurugram). The procedure used environmental downregulations caused by soil moisture
and air temperature coupled with a production efficiency modeling (PEM) methodology.
The entire process of estimating the predicted yield is well depicted in Figure 5.
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(a) NPP model (Production Efficiency Modeling Approach)

In the LUE (light use efficiency) approach [36], NPP is the product of absorbed pho-
tosynthetically active radiation (APAR) absorbed by the vegetation canopy and light use
efficiency (LUE):

NPP = APAR × LUE

where NPP is the net primary productivity (g dry mass (DM) m−2 time−1), APAR stands
for absorbed photosynthetically active radiation (MJ m−2 time−1), and LUE is light use
efficiency (g MJ−1). Here, the APAR used is a product of incident PAR and a fraction of
absorbed PAR (FAPAR), which is quantifiable from remote sensing. FAPAR generally has a
strong linear relationship with the NDVI.

(b) Down-regulation of maximum LUE

LUE varies spatially across different vegetation types and temporally within the
individual plant or biome types due to variable temperature and moisture conditions. An
assumption made for constant LUE in NPP estimation needs to be revised. Therefore,
maximum LUE is downregulated during times of moisture and temperature stress. The
LUE, thus, was calculated with the help of the following equation [37]:

LUE = ε* Ts* Ws
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where ε* stands for the maximum light use efficiency of the wheat crop taken as 2.8 g/MJ,
and Ts and Ws stand for temperature and water stress scalars, respectively.

(c) Satellite data pre-processing

This study employed data from the Sentinel-2 multi-spectral imager (MSI) with 20 m
spatial resolution and the Landsat 8 operational land imager (OLI) with 30 m spatial resolu-
tion for the three districts (Table 5). For these three districts, Sentinal-2A MSI and Landsat
8 OLI satellite data were obtained during the wheat crop’s growth season (2018–2019)
(Tables 6 and 7, respectively). The images were utilized to run a SNAP toolbox to esti-
mate the biophysical parameters of the selected districts. With only a 10-min transit time
difference, the Landsat 8 OLI and Sentinel-2 MSI images used in this investigation had
illumination and solar zenith angles quite close. Additionally, both sensors have similar
viewing angles close to the nadir and have the exact same radiometric resolution (12 bits).
Sentinel-2A images for the three districts were downloaded from the Copernicus website
(https://scihub.copernicus.eu/ (accessed on 24 December 2019)). All ten bands at 30 m
resolution were created by resampling the four bands at 10 m to 30 m spatial resolution.
In the current study, nine spectral bands (blue (B2), green (B3), red (B4), red edge 1 (B5),
red edge 2 (B6), VNIR (B7), NIR (B8a), SWIR 1 (B11), and SWIR 2 (B12)) were used in
combinations for FPAR and LSWI retrieval.

Table 5. Operational satellites with medium to high spatial resolution used for the NPP estimation
for the wheat crop (2018–2019).

S. No. Satellite Sensor Time Resolution Image Size Product Spatial Resolution

1. Landstat-8 OLI (operational land imager)
TIRS (thermal infrared sensor) 16 days 185 km × 180 km L1TP 30 m and 100 m

2. Sentinel-2A MSI (multispectral
instrument) 15 days 290 km × 290 km L1C 20 m (resampled at 30 m)

Table 6. Sentinel-2A images date for Rohtak, Jhajjar, and Gurugram during the winter (Rabi) season
(2018–2019).

S. No. Rohtak and Jhajjar Gurugram

1. 26 November 2018 26 November 2018
2. 29 January 2019 5 December 2018
3. 18 March 2019 21 December 2018
4. 3 April 2019 29 January 2019
5. 19 April 2019 23 February 2019
6. 11 March 2019
7. 18 March 2019
8. 3 April 2019

Table 7. Landsat 8 OLI images were used for estimating wheat ET and WP for three districts of
Haryana (Rohtak, Jhajjar, and Gurugram).

S. No. Rohtak and Jhajjar Gurugram

1. 23 November 2018 16 November 2018
2. 9 December 2018 23 November 2018
3. 25 December 2018 2 December 2018
4. 10 January 2019 9 December 2018
5. 27 February 2019 18 December 2018
6. 31 March 2019 25 December 2018
7. 10 January 2019
8. 19 January 2019
9. 4 February 2019

10. 20 February 2019
11. 27 February 2019
12. 8 March 2019
13. 24 March 2019
14. 31 March 2019
15. 25 April 2019

https://scihub.copernicus.eu/


Water 2024, 16, 422 12 of 26

The biophysical processor of the Sentinel-2 Toolbox software (5.6.0) computes Level-
2B biophysical products like LAI FAPAR using atmospherically corrected MSI images as
input. In this study, top-of-canopy reflectance images from Sentinel-2 MSI were utilized to
derive FAPAR using the biophysical processor. The amount of photosynthetically absorbed
radiation (PAR) absorbed by green leaves is known as the fraction of photosynthetically
absorbed radiation, or FAPAR. Depending on the source of the incoming radiation, it is
a weighted sum of the direct FAPAR and diffuse FAPAR. For each biophysical variable,
the processor automatically uses a neural network calibrated and trained over a database
simulated by the PROSAIL-5 model. The reflectance in eight spectral bands (B3, B4, B5, B6,
B7, B8a, B11, and B12) as well as the cosines of the sun zenith angle, viewing zenith angle,
and relative azimuth angle are used in the input layer of neural networks. The output
layer provides the linear transfer function, while the tangent sigmoid transfer functions are
contained in the hidden layer. The biophysical product was extracted from the reflectance
data in a highly effective manner with the help of this trained neural network [38].

(d) Estimation of Tscalar (Ts) using MODIS LST (Land surface temperature) Images

MODIS onboard Terra and Aqua satellites offer observations in 36 spectral bands
encompassing the visible (459–479 nm, 545–565 nm, 620–670 nm), NIR (841–875 nm,
1230–1250 nm), SWIR (1628–1652 nm, 2105–2155 nm), and TIR bands at a spatial reso-
lution ranging from 250 m to 1 km. A diverse range of observations made by MODIS
provides ample opportunity to gather data on temperature stress scalars. In a grid of
1200 × 1220 km, the MOD11A1 V6 product offers daily land surface temperature (LST) and
emissivity readings. The MOD11 L2 swath product yields the temperature value. Several
satellite data and products are now available through cloud computing resources such as
Google Earth Engine (GEE) [39]. As one of the few platforms that readily provides access
to freely available long-term data and products, GEE facilitates regional and global studies
of spatiotemporal variations of land surface temperature. Thus, using the Google Earth
Engine code, the MODIS LST images were retrieved (Table 8). The MODIS-derived LST
images from the Google Earth Engine were used to compute Tscalar in the ENVI software.
Temperature stress parameterizations were made through cardinal temperature-based
indices (Tscalar), using MODIS MVC surface reflectance at 500 m (MOD09A1) in 841–876 nm
and 1628–1652 nm.

Tscalar =

((
Tmax − T

Tmax − Topt

)
×

(
T − Tmin

Topt − Tmin

))
ˆ
(

Topt − Tmin
Tmax − Topt

)
where the value of Tscalar ranges between 0 and 1; Tmax stands for the maximum cardinal
temperature (28 ◦C) for wheat growth; Topt is the optimum cardinal temperature (18 ◦C)
for wheat growth; Tmin is the minimum cardinal temperature (5 ◦C) for wheat growth;
and T is the land surface temperature (LST) calculated from the MODIS image.

Table 8. List of MODIS-derived LST images in the Google Earth Engine for calculation of Tscalar

in ENVI.

S. No. Rohtak and Jhajjar Gurugram

1. 26 November 2018 26 November 2018
2. 29 January 2019 5 December 2018
3. 18 March 2019 21 December 2018
4. 3 April 2019 29 January 2019
5. 19 April 2019 23 February 2019
6. 11 March 2019
7. 18 March 2019
8. 3 April 2019
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On some days, satellite images were unavailable, and the missing values were interpo-
lated on those days using the equation given below:

Ti = Tscalar1 +

(
Tscalar2 − Tscalar1

T2 − T1

)
× (T − Tscalar1)

where Ti stands for an interpolated value of the missing images for the date between the
initial day and final day; Tscalar1 stands for the Tscalar value on the starting date (initial day);
and Tscalar2 stands for the Tscalar value of the last date (final day).

(e) Estimation of Water Scalar (Ws)

In our study, we used the land surface wetness index (LSWI), which is based on a
straightforward approach, to estimate the seasonal dynamics of the water stress scalar
(Ws) [37]. The land surface wetness index (LSWI) is a linear combination of SWIR and NIR
bands. Water stress parameterization was performed through the land surface wetness
index (LSWI) computed in the SNAP toolbox using Sentinel-2 images (Band 8 (NIR) and
Band 11 (SWIR)) using the equation stated below:

LSWI = (ρNIR − ρSWIR)/(ρNIR + ρSWIR)

where ρNIR stands for reflectance at 800 nm and ρSWIR for reflectance at 1600 nm.
Thus, by using all the values of LSWI, the maximum LSWI value (LSWImax) was

identified from each pixel of the images by coding a program in ENVI software. These
LSWI values were further used to obtain water scalar values for all three districts (Rohtak,
Jhajjar, and Gurugram), which were calculated in ENVI using the following equation:

Ws = (1 + LSWI)/(1 + LSWImax)

where LSWImax stands for maximum LSWI within the wheat growing season for individ-
ual pixels.

(f) Estimation of APAR (Absorbed Photosynthetically Active Radiation)

Fraction APAR (FAPAR) was obtained with the help of the SNAP toolbox by processing
Sentinel-2A images. The SNAP toolbox is embedded with a global neural net model for
deriving FAPAR and LAI from TOC band reflectance values. The NASA Power website
obtained global incident radiation for the study area [40]. The following equation was used
for calculating APAR:

APAR = FAPAR × Rs × 0.48 × T

where FAPAR is the Fraction of Absorbed PAR, Rs is Global Incident Radiation and T is the
land surface temperature (LST).

The conversion of APAR into NPP for each time step-1 was established with a tempo-
rally variant light use efficiency obtained by reducing ε* by water and temperature stress
scalars for each date. Thus, after parameterizations of temperature and water stress, the
resampling of imageries to 30 m for Tscalar (Ts) and Wscalar (Ws) images was performed
in ENVI. Incident PAR was approximately 48% of incident global solar radiation. The net
primary productivity (NPP) was estimated using the equation given below:

PP = ϵmax ∑n
i (APAR × Ts × Ws)

where ϵmax stands for maximum radiation use efficiency (RUE). We have used 2.8 as the
full RUE for wheat in the study area [41]. For all the estimations, the sowing date for
wheat was 15 November 2018. The wheat crop’s harvest index (HI) (0.35) was then used to
estimate the final predicted yield using the equation below.

Grainield = HI × ∑Harvesting
Sowing NPP
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By categorizing the multispectral images using a supervised maximum likelihood clas-
sifier and employing ground truth training sites, the wheat pixel mask was created indepen-
dently for OLI and MSI images. All pixels except wheat were masked out in further image
analysis, and wheat pixel masks were developed from Landsat 8 and Sentinel-2 imagery.

(g) Evaluation of the Estimated Regional Yield

The methodology has been assessed by comparing the estimated grain yield and the
average yield reported during the last five years from the Department of Agriculture and
Cooperation (DAC), Ministry of Agriculture and Farmer’s Welfare, India. The grain yields
have been compared for all three districts at the district level.

2.9. Estimation of Crop Water Productivity (WP) for Winter/Rabi Season 2018–2019

By calculating crop biomass and yield using the harvest index (HI) concept, this study
employs crop productivity (kg/m2) as the numerator and crop consumptive water use
(actual seasonal evapotranspiration) as the denominator, both of which were derived from
satellite data with ground information input. Thus, after estimating yield and seasonal
ET for the three districts, water productivity was calculated in ENVI software for these
districts using the following equation:

WP = (Crop productivity)/(Water use)

where WP is water productivity (kg/m3), Crop productivity (kg/m2 or ton/ha), and Water
use is seasonal actual ET (mm, m3/m2, or m3/ha).

The advantages of this method are that the remote sensing method avoids complex
land surface processes and biophysical parameter estimations. It does not demand field
calibration before new applications and is conveniently transferable. If census production
data falls within an appropriate limit, the accuracy looks decent.

3. Results
3.1. Performance of the SETMI Model in the Field Experiment

The performance of the SETMI model was evaluated for sensible heat flux, latent heat
flux, and net radiation in maize and wheat crops.

(a) Maize

The SETMI estimated H from the remote sensing images ranged from 96.56 to 205.60 Wm−2,
while the scintillometer-measured H went from 96.82 to 217.15 Wm−2. SETMI modeled in-
stantaneous fluxes versus the LAS-measured fluxes for maize crops for years 2015–2016 and
2017–2018 (rainy/kharif ), indicating good agreement. Results showed a RMSE of 23.92 Wm−2

and 8.66 Wm−2, a negative MBE of −8.3 Wm−2 and −5.32 Wm−2, and an NRMSE of 16%
and 13% (which indicated a slight underestimation) (Figure 6a) for both rainy/kharif season
experimental years (2015–2016 and 2017–2018), respectively. The coefficient of determination
(R2) of 0.82 indicated less error variance. The H prediction by SETMI was slightly better than the
prediction of ET.

In the case of latent heat flux (LE), the SETMI-estimated LE showed good agreement
(Figure 6b) with the LAS-estimated LE. Results showed NRMSE values of 14.76% and
14.2%, RMSE values of 33.66 Wm−2 and 43.16 Wm−2, and MBE of −19.21 and −29.9, which
indicates that the model slightly underestimated the LE and R2 of 0.87 and 0.91 for both
experimental years (2015–2016 and 2017–2018), respectively.

Further, ET estimated from the SETMI model and LAS were compared. SETMI
predicted ET showed R2 of 0.98 and 0.89, MBE of 0.40 and 0.48 (i.e., overestimation by
model), and NRMSE of 0.244 mm/day (i.e., the error is 24.4%) and 21.6%, thus indicating
reasonably good model performance (Figure 6c).

Ground observation of net radiation was compared with net radiation obtained from
the SETMI model. The model estimated Rn (Figure 6d) within an error of 13.9% relative to
measured Rn using net radiometers. This was comparable to other published studies [42,43],
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where Rn was predicted to have an associated error of about 10%. With an RMSE value of
38.10 Wm−2 and 31.32 Wm−2 and an NRMSE of 9% and 19% for both experimental years
(2015–2016 and 2017–2018), respectively, in the model, the predicted Rn was calculated,
which shows excellent correspondence of the model with scintillometer measurements.
Considering the percentages of the RMSE to the corresponding measurement means, the
results indicate that the SETMI performed adequately well for maize, within the typical
measurement errors of scintillometer systems.
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(b) Wheat

The SETMI estimated sensible heat flux (H) (Figure 7a) showed good correspondence
with measured H by scintillometer, with a value of NRMSE of 29% and 22%, RMSE value as
26.45 Wm−2 and 24.05 Wm−2, R2 as 0.95 and 0.86, and MBE as −25.82 and −5.78 (indicating
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underestimation by the SETMI model) for the years 2015–2016 and 2016–2017, respectively.
For LE, NRMSE was observed to be 8% and 23%, RMSE as 12.57 Wm−2 and 61.74 Wm−2,
MBE as 6.78 Wm−2 and −56.59 Wm−2 and R2 as 0.92 and 0.95 for the experimental years
2015–2016 and 2016–2017, respectively (Figure 7b). In the case of ET (mm/day) (Figure 7c),
R2 was observed as 0.98 and 0.86, NRMSE as 28%, RMSE as 0.29 mm/day and 0.52 mm/day,
and MBE as 0.26 and 0.41 (the positive MBE values show the model slightly overestimated
ET) in both experimental years 2015–2016 and 2016–2017, respectively. The result indicated
that SETMI estimated net radiation (Rn) agreed with in-situ measured Rn (Figure 7d), with
the NRMSE value being 14% and 12%, the RMSE as 37.56 Wm−2 and 46.17 Wm−2, and
the MBE as 24.22 and −30.13. The R2 values are 0.90 and 0.83, representing less variance
in error.
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3.2. Estimation of Regional Wheat Water Productivity
3.2.1. Regional Actual Evapotranspiration Using the SETMI Model

Actual seasonal ET for the wheat crop was calculated for three districts (Rohtak,
Jhajjar, and Gurugram) of Haryana (northwestern region of India) in the year 2018–2019
(November 2018 to April 2019). It revealed significant spatial variation in these districts
(Figure 8). The estimated seasonal actual ET ranged from 101 mm to 325 mm for the
wheat in the study area. The overall spatial patterns in seasonal ETa distribution in the
winter (rabi) season show a strikingly uneven distribution of water use by wheat among
the districts. Most areas in Rohtak and Jhajjar showed lower actual ET (101–130 mm), while
areas in Gurugram fdistrict showed relatively greater actual ET (221–295 mm). Many areas
in yellow (mainly in the northern areas of the district) showed high ET in the range of
311 to 325 mm, which may be due to sufficient irrigation, leading to excellent wheat growth
conditions. The non-cropped areas, mostly settled areas of cities, are depicted in red. In
areas with lower seasonal ETa, the wheat might have experienced water stress during
the season.
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Figure 8. Seasonal actual ET map (November–April 2018–2019) of (a) Rohtak, (b) Jhajjar, and
(c) Gurugram districts by applying the SETMI model for the wheat crop grown in the winter/rabi
season (2018–2019).

The southwestern part of the Jhajjar district depicts above-average ET, indicating
wheat growth flourished in this area.

3.2.2. Regional Wheat Yield Estimation for Winter/Rabi Season (2018–2019)

Accurate wheat yield mapping in different parts of the study regions is very critical
because of its importance for spatially computing crop water productivity. The district-wise
estimated grain yield ranged from 2 t ha−1 to 6 t ha−1 (Figure 9). In most areas in Jhajjar, the
yield ranged from 4 t ha−1 to 6 t ha−1, with a small proportion of the wheat field distributed
across the district exhibiting a yield range of 2 t ha−1 to 4 t ha−1. Like Jhajjar, Rohtak yields
ranged from 4 t ha−1 to 6 t ha−1. The non-cropped areas are depicted in white. In the case
of Gurugram, the higher wheat yield area is mainly concentrated in the western, southern,
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and south-eastern regions, with green shade dominating all these regions. Thus, it was
observed that the Jhajjar district showed the maximum yield, followed by Rohtak, and the
least yield (t/ha) was observed in the case of Gurugram. Yields agreed with the past years’
yield statistics of DAC, Ministry of Agriculture and Farmers Welfare, India, for Rohtak,
Jhajjar, and Gurugram districts. The area under wheat cultivation was highest in Jhajjar,
followed by Rohtak, and the least under wheat cultivation was in Gurugram. The wheat
yields also followed a similar pattern to the cultivated wheat area.
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(indicated by black boundary lines) of Rohtak, Jhajjar, and Gurugram for 2018–2019.

3.2.3. Regional Wheat Water Productivity for the Winter/Rabi Season (2018–2019)

After calculating the spatial yield and seasonal actual ET for the three study districts,
maps of wheat water productivity for the districts were generated (Figure 10a–c). In the
case of Rohtak, cyan color (2.1 kg m−3–2.3 kg m−3) dominated more than 50% of the pixels,
followed by light green color (1.8 kg m−3–2 kg m−3). Few clusters in the northwestern
region of the district show a prevalence of red and yellow colors. This region indicated
low WP (0.9 kg m−3–1.5 kg m−3). The non-cropped areas are represented by black color.
Continuous fields of high WP were perceived in the northeast of the district. Regions of very
low WP (0–0.9 kg m−3) denoted in red indicate the presence of feeble crop growth, disease,
soil salinity, or water bodies. In the case of Jhajjar, the prominence of cyan-colored pixels
(>80%) can be seen throughout the region. This reflects that water productivity in these
areas remained between 2.0 kg m−3 and 2.25 kg m−3. This was followed by yellow and
light green pixels, especially in southern regions, indicating that wheat water productivity
was between 1.5 kg m−3 and 2.0 kg m−3. Looking at the spatial distribution of wheat water
productivity in Jhajjar district, it can be said that there is more uniformity in distribution
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than in Rohtak district. Non-cropped areas were represented by black, and pixels near
these black areas showed the lowest water productivity, denoted by red (0–0.9 kg m−3).
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Figure 10. Spatial distribution of water productivity (kg mm−3) of the wheat crop in the Rabi season
of the year 2018–2019 for (a) Rohtak, (b) Jhajjar, and (c) Gurugram districts.

In the case of Gurugram, the spatial distribution of wheat water productivity showed
the slightest variation among the three districts, with a range restricted to yellow (1.5 kg m−3–
1.8 kg m−3), light green (1.8 kg m−3–2.0 kg m−3) and cyan color (2.01 kg m−3–2.25 kg m−3).
Therefore, an average WP with high variability was observed for the wheat crop. Due
to scanty rainfall patterns, wheat depends on groundwater; hence, it is mainly produced
under irrigated conditions. Also, among all three districts, the least water productivity
was observed in the case of Gurugram (2018–2019), with more areas having WP ranging
between 1.5 kg m−3 and 2.0 kg m−3. In contrast, Jhajjar and Rohtak showed a near-similar
spatial distribution of water productivity.

4. Discussion

Developing nations with agriculture-based economies and fast-growing populations
require quick and reliable estimations of ET to aid with irrigation scheduling and improve
agricultural water yield. From our study, it can be inferred from the results that SETMI
overestimated daily ET (mm/day) (as evident from MBE) in maize crops in the rainy/kharif
season of both experimental years (2015–2016 and 2017–2018). This slight overestimation
might be due to differences in maize crop condition at various stages due to differences
in crop sowing dates and harvesting times, leading to different types of patches in the
field (non-uniformity in the field over a larger path length). It included patches where a
crop had already been harvested, residues were somewhere, small patches were where
still-standing mature crops were, and patches where bare soil existed. Various factors
might cause a low ET area in the field. Crop coefficient patterns may aid in identifying
sites with early senescence or slowed growth. Low ET might be caused by crop health
issues or water stress. Identifying these locations may improve management methods,
including purposely applying more irrigation in low ET zones. Similarly, the SETMI model
overestimated Rn in both experimental years (2015–2016 and 2017–2018) for maize crops.
In the case of LE and H, a slight underestimation was observed by the SETMI model in
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both rainy/kharif seasons of the maize crop, which may be attributed to heterogeneity
developed due to different dates of irrigation, which led to additional surface wetness and
biomass development along the scintillometer pathlength. This resulted in inconsistent
surface conditions with those captured by remote sensing pixels. This could, therefore,
explain to some extent the differences in the remote sensing-based H and the LAS observed.
H. Barker et al. [30], in their work for irrigation management using the SETMI model,
observed that the model seems to predict Rn effectively for all image dates but tends to
underestimate H and overestimate G and LE usually. However, in their cotton investigation,
Neale et al. [44] showed more significant agreement for all fluxes, with an underestimation
of H of considerably less significance; they observed good agreement with LE.

For wheat crops, SETMI underestimated sensible heat flux (H) in the winter/rabi
season in both experimental years (2015–2016 and 2016–2017). However, ET and LE were
overestimated by the SETMI model, as shown in the reported values. In their research,
Geli et al. [45] demonstrated applying the hybrid ET model to rainfed wheat, a common
crop in Mediterranean settings. The flux model corresponded with the experiment’s
observed fluxes and ET values. The six satellite images yielded RMSE = 0.33 mm day−1 in
ET and 32 Wm−2 in LE. The net radiation was overestimated in 2015–16 but underestimated
in 2016–2017. So, no clear pattern was detectable in the case of net radiation estimation
by the SETMI model. The model needs to be further studied and researched to be used
and applied in local areas of Indian regions. Bispo et al. [46], in their study, found that the
modeled energy balance components had a significant connection to the ground data from
EC, with ET showing an R2 of 0.94 and a Pearson correlation coefficient (r) of 0.88. In Brazil,
the average collected ETa was 1025 mm, yielding ETa rates of 2.9 mm per day across two
seasons in tropical climates to improve irrigation management in the sugarcane crop. They
concluded that the SETMI hybrid model generated appropriate estimated daily ETa values
through the TSEB model during the evaluated growing periods, affirming the model’s
potential application in tropical environments in Brazil. The model generally overestimated
Rn and ET values but underestimated instantaneous LE and H fluxes. Typically, for all
the parameters across the seasons, a very high R2 (0.83–0.95) and average error ranging
between 8% and 29% in model estimation indicate a reasonably good performance of the
model and the physics behind the SETMI model.

The sources of yield, ET, and WP differences can be identified by investigating the in-
ternal (genetic) and external (environmental) elements that influence crop output. Seasonal
ET estimations of selected regions using the SETMI model showed decent results. The
overall spatial variations in seasonal Eta (winter/rabi, 2018–19) demonstrate a remarkably
unequal water distribution in the Rohtak district. Many of the areas had actual ET ranging
from 101 to 130 mm. The northern part of the district exhibited high ET in the 311 to 325 mm
range, which might result from favorable growing conditions and, consequently, abundant
crop growth. The bulk of actual evapotranspiration was seen to be in the upper and lower
categories, as yellow and orange colors were predominant; however, 281–295 mm (green)
Eta was also discovered in a few areas. These area pixels are primarily concentrated in
the district’s eastern, southern, and north-western regions. For wheat crop cultivation,
the optimal irrigation requirement is 60 mm of water at five critical crop growth stages
(generally, the irrigation requirement of wheat is 300 mm to 350 mm over the season). So, it
is expected that the seasonal Eta for the wheat season should be much lower than 300 mm.
The spatial distribution indicated that, despite providing irrigation, crops suffered water
stress during the winter/rabi season 2018–2019 in areas that showed ETa below 220 mm.
Though the district has a dense canal network, the network is exceptionally substantial in
the center and south of the district. However, the district suffers from water logging and
soil salinity issues in the canal regions, which might have affected crop growth. Water and
salt stress are known to lower the ETa in the field. Being difficult under field conditions, ET
measurement is thus uncommon in the Rohtak, Jhajjar, and Gurugram districts.

Generally, seasonal ETa distribution patterns showed a remarkable inconsistency in
water distribution in wheat-growing areas. Most district regions are green (281–295 mm),
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indicating above-average ETa levels. Furthermore, several places displayed pink shades,
indicating ET in the optimum range (221–280 mm). Several regions had an orange hue,
showing areas of lower ET. So, these areas experienced water stress or poor crop growth,
possibly due to soil salinity, disease, or other issues. Water consumption (actual ET)
is variable, and high ET is not always associated with high yield or WP. Better water
management procedures are required to prevent needless ET, such as evaporation from
saline regions. The southern section of the Jhajjar district showed above-average ET,
indicating that wheat crops thrived well in this location. The yellow ETa class on the maps
reflects exceptionally high ETa regions (311–325 mm), suggesting either the over-application
of irrigation water or robust crop growth.

Furthermore, the spatial map of Gurugram exhibited less spatial variability for ETa.
The district is characterized by ETa in predominantly green-class cropped areas, with ET
ranging from 281 mm to 295 mm. High actual ETa areas (311–325 mm) of yellow color
class are barely identifiable in the Gurugram district, unlike Jhajjar and Rohtak, which
indicated less variability in the spatial distribution of actual ET. Because of the water
on the ground surface, basin irrigation has high evaporation rates. Chukkalla et al. [47]
presented a summary of ET savings techniques. Furrow and border irrigation saturate
the soil sporadically, causing soil evaporation during soaking episodes and a ponded
surface towards the field’s tail end. Thus, the type of irrigation also influences the actual
ET estimates. Our study used the districts’ basin irrigation to model ET estimates, which
may only be accurate for some locations. Using Landsat 8 images and the SEBAL model
to forecast radiative fluxes and daily ET distribution, Silva et al. [48] and Beg et al. [49]
identified comparable patterns. Thus, even within the homogenous wheat crop state, ET
rates exhibited an extensive range of variance. Doorenbos and Kassam [50] stated that the
ET for wheat ranged from 450 to 650 mm. Bastiaanssen et al. [51] calculated a mean ET
of 360 mm with a standard variation of 15 mm across wheat regions in the Sirsa district
(Nov.–Apr. 2002) using the SEBAL model. Wheat yields depend more on irrigation volume
than precipitation, river flows, or soil moisture content. This reveals why wheat yields in
the Indian states of Haryana and Punjab are so high since considerable irrigation is used in
these areas, accompanied by significant groundwater overexploitation. Wheat yield and
WP follow the ET trend more closely.

During the yield mapping of wheat crops in Jhajjar, wheat crops covered most of
the region, unlike Gurugram. The area under wheat cultivation was highest in the case
of Jhajjar, followed by Rohtak, and the most minor area under wheat cultivation was in
Gurugram. Most of the pixels showed higher yield values compared to Gurugram. This
indicates that better crop management practices were followed in Jhajjar. In Rohtak, wheat
yields mainly varied from 4 t ha−1 to 6 t ha−1, like in Jhajjar. Gurugram’s wheat crop was
primarily concentrated in the western, southern, and southeastern sections, and it showed
the least crop productivity [52]. Wheat crops respond well to appropriate irrigation but
cannot sustain excessive watering. On the other hand, water stress may harm crop yield
during the crop’s ‘critical growth period’. Furthermore, climate change is causing excessive
heat and water shortages, resulting in increased soil moisture stress and evapotranspiration,
increasing the requirement for irrigation throughout the summer and winter/rabi seasons.
The WP appears to vary within the irrigation system and significantly between fields. This
suggests that, in addition to climatology and regional soil characteristics and hydrological
constraints, farm management factors such as irrigation amount and timing, fertilization,
weeding, seed variety selection, crop rotation, and so on serve a significant role in the WP
attained. Lobell et al. [53] concluded that management variables were more relevant than
soil type and climatic changes in Yaqui Valley wheat yield spatial variability. Overall, the
Jhajjar region had the highest yield due to the higher area under cultivation. Wheat yields
were assessed in 24 farmer plots in the Sirsa district of Haryana state during the 2001–2002
winter/rabi season by Van Dam et al. [54]. The average measured yield was 4.6 t ha−1

(σ~1.3), but SEBAL estimated yields were somewhat lower at 4.0 t ha−1 (σ~0.8). But this
low estimate could be due to the coarser resolution of the satellite used, unlike in our study,
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where we used Sentinel-2A with better resolution, which could better identify small and
individual fields.

Water productivity (WP) was computed for the three districts after yield and seasonal
actual ET were obtained. In the case of Rohtak, regions of very low WP (0–9 kg m−3)
denoted by red color indicate the presence of either feeble crop growth or disease or soil
salinity or the presence of water bodies or poor soil health or poor crop management
practices. This low WP patch clues into the status of other underperforming sections that
comprise an essential part of the district. In the district of Jhajjar, the presence of cyan-
colored pixels (>80%) can be detected across the areas, with water productivity in these
locations varying between 2.0 kg m−3 and 2.25 kg m−3 range followed by yellow and light
green pixels (1.5 kg m−3 to 2.0 kg m−3), particularly in the south. However, greater homo-
geneity was observed in the Rohtak district. Water productivity variations may be linked
to various reasons, including water deficit, soil salinity, crop density, field leveling, weeds,
water logging, and soil moisture. In Gurugram, the spatial distribution of wheat water pro-
ductivity exhibited the least variance among the three districts. Wheat is mainly produced
as an irrigated crop due to the scanty rainfall scenario prevailing in the winter/rabi season
and thus is dependent on canal irrigation and groundwater. The current national average
water productivity of wheat was estimated to be 1.06 kg m−3 [55], 0.8–1.0 kg m−3 [56],
and ranging between 0.62 and 1.1 kg m−3 in northwestern India, depending on nitrogen
application and wheat variety grown [57]. Among all the three districts, the least water
productivity was observed in the case of Gurugram (winter/rabi 2018–2019), with more
areas having WP ranging between 1.5 kg m−3 and 2.0 kg m−3. Hussain et al. [58] calculated
a WP value of 1.36 kg m−3 for wheat in Haryana. Singh et al. [59] reported that in the Sirsa
district of Haryana, the average WP at the selected farms was 1.39 kg m−3 for wheat and
displayed average values for the meteorological and growing circumstances in northwest
India. Sharma et al. [23] reported an average water productivity of 1.57 kg m−3 for wheat
in Haryana. Our study found much scope for improving WP’s full potential in all three
districts. It should be considered that the findings discovered in the literature are not only
related to methodological variances, scale of measurements, weather variables, and year
of measurement but also vary, resulting in a complication of comparison. Also, the WP
values are influenced by both yield and ET. The WP values increase as the yield increases,
so the main issue would be to enhance yield. While yield increases often take years, another
method for improving WP simultaneously would be to lower ET by increasing the efficacy
of water application or optimizing other agronomic practices. The availability of heavily
subsidized water, power, and fertilizers results in ineffective water usage, highlighting the
requirement to shift away from input subsidies and toward direct benefit distribution to
farmers, depending on the field area. Increased water prices must be synchronized with
better and more timely water supply so that surface irrigation’s operation and maintenance
costs are entirely repaid. Other methods of improving water productivity involve enhanc-
ing the irrigation efficiency of both canal and groundwater irrigation by including precision
irrigation technologies such as micro-irrigation. Also, locations with low yields (<3 t ha−1)
show more significant variations in WP values, suggesting larger variability in water usage
despite equal yields.

Certain limitations to estimating regional water productivity include the availability
of quality ground data and frequent satellite imagery of the region. Census statistics are
obtained using a labor-intensive approach, leading to inaccuracies and skewed values.
Many steps, such as sensor calibration and atmospheric/topographic correction, are re-
quired to transform remote sensing data to ground values, during which errors may remain.
Crop growth is inextricably connected to land, crops, and water management techniques,
so there is plenty of room for improvement. Under these conditions, it is essential to
persuade farmers to implement cutting-edge solutions, like laser field leveling and bed
furrow irrigation systems, which might save significant water. Better management and
intelligent fertilizer application to the wheat crop, which accounts for around 35.2% of
total wheat crop spending, might be economically beneficial and improve crop growth
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and, thus, WP [57]. A more significant challenge in using the SETMI model for practical
applications is the availability of cloud-free satellite images, especially during rainy/kharif
season in India. The availability of better-resolution thermal images from future satellite
missions, like TRISHNA (Thermal infraRed Imaging Satellite for High-resolution Natu-
ral Resource Assessment), will provide additional opportunities to develop better local
water management applications using surface energy balance models. As a result, future
research will concentrate on model parameterization and using aerial and satellite images
from other sensors to enhance image frequency. Also, results from the implementation
of a large aperture scintillometer (LAS) may improve our understanding of how spatial
model estimates of fluxes compare, or at the very least provide hints of the related level of
variability, and it encourages future implementations of scintillometers to validate spatial
estimates of surface energy balance models. A fundamental aim that has yet to be fulfilled
is transforming remotely sensed images into quantitative water consumption knowledge
at scales significant to water management organizations. This study is one such step in
that direction.

5. Conclusions

A research study was conducted to estimate crop evapotranspiration using a large
aperture scintillometer (LAS) and the Spatially ET Mapping Interface (SETMI) model in
a semi-arid region of India for irrigated wheat and maize crops. This validated SETMI
model was then used to estimate regional wheat water productivity using Landsat 8 and
Sentinel-2A imageries of the northwestern semi-arid region of India. For different fluxes
across the seasons by SETMI, a very high R2 (0.83 to 0.95) and NRMSE ranging between 8%
and 29% for LAS measurements indicate a reasonably good performance of the model and
the physics embedded in the SETMI model. Overall, the SETMI model performed better in
the case of the maize crop (rainy/kharif ) than in the case of the wheat crop (winter/rabi).
Crop fields may be identified and contrasted owing to the precise prediction of yield
and ET values with enough spatial resolution to represent crop-field heterogeneity. The
seasonal actual ET mainly ranged between 101 mm and 325 mm in all three districts. Wheat
water productivity varied greatly, ranging from 0.9 kg m−3 to 2.20 kg m−3 in the three
districts with low levels of water productivity. This provides an excellent opportunity
for effective water usage and increased output in these areas. Jhajjar, which had a high
crop productivity value, also had a high level of WP. However, with micro-irrigation, such
as sprinkler irrigation in these districts, there is more potential for saving limited water
resources and thereby sustainably enhancing productivity and profitability in low crop and
water productivity areas. Since Indian agriculture is susceptible to droughts, the frequency
and severity of which are expected to rise with climate change, there is a responsibility to
make the most significant use of the country’s limited water resources.
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49. Beg, A.A.; Al-Sulttani, A.H.; Ochtyra, A.; Jarocińska, A.; Marcinkowska, A. Estimation of evapotranspiration using SEBAL
algorithm and Landsat-8 data—A case study: Tatra mountains region. J. Geol. Resour. Eng. 2016, 6, 257–270.

50. Doorenbos, J.; Kassam, A.H. Yield response to water. Irrig. Drain. Pap. 1979, 33, 257.
51. Bastiaanssen, W.G.; Ali, S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin,

Pakistan. Agric. Ecosyst. Environ. 2003, 94, 321–340. [CrossRef]
52. Ram, K. Levels of agricultural productivity in Haryana state 2012–2015. Int. J. Interdiscip. Res. Arts Humanit. 2017, 2, 228–232.
53. Lobell, D.B.; Hicke, J.A.; Asner, G.P.; Field, C.B.; Tucker, C.J.; Los, S.O. Satellite estimates of productivity and light use efficiency

in United States agriculture, 1982–1998. Glob. Chang. Biol. 2002, 8, 722–735. [CrossRef]
54. VanDam, J.C.; Singh, R.; Bessembinder, J.J.; Leffelaar, P.A.; Bastiaanssen, W.G.; Jhorar, R.K.; Kroes, J.G.; Droogers, P. Assessing

options to increase water productivity in irrigated river basins using remote sensing and modelling tools. Water Resour. Dev. 2006,
22, 115–133. [CrossRef]

55. Zwart, S.J.; Leclert, L.M. A remote sensing-based irrigation performance assessment: A case study of the Office du Niger in Mali.
Irrig. Sci. 2010, 28, 371–385. [CrossRef]

56. Meena, R.P.; Sharma, R.K.; Chhokar, R.S.; Chander, S.; Tripathi, S.C.; Kumar, R.; Sharma, I. Improving water use efficiency of
rice-wheat cropping system by adopting micro-irrigation systems. Int. J. Bio-Resour. Stress Manag. 2015, 6, 341–345. [CrossRef]

57. Pradhan, S.; Sehgal, V.K.; Sahoo, R.N.; Bandyopadhyay, K.K.; Singh, R. Yield, water, radiation, and nitrogen use efficiencies of
wheat (Triticum aestivum) as influenced by nitrogen levels in a semi-arid environment. Indian J. Agron. 2014, 59, 69–77. [CrossRef]

https://doi.org/10.1016/j.agwat.2022.107838
https://doi.org/10.1016/j.agwat.2018.02.022
https://doi.org/10.1007/s00271-008-0122-3
http://atmcorr.gsfc.nasa.gov/
https://doi.org/10.2480/agrmet.64.4.5
https://doi.org/10.2307/2401901
https://doi.org/10.1016/j.rse.2004.03.010
https://doi.org/10.3390/rs8110938
https://doi.org/10.1016/j.rse.2017.06.031
https://power.larc.nasa.gov/data-access-viewer/
https://doi.org/10.1016/0378-4290(89)90023-3
https://doi.org/10.2166/wcc.2021.018
https://doi.org/10.1007/s00271-011-0287-z
https://doi.org/10.1016/j.advwatres.2012.10.008
https://doi.org/10.1016/j.agwat.2022.107763
https://doi.org/10.5194/hess-19-4877-2015
https://doi.org/10.5935/1806-6690.20180025
https://doi.org/10.1016/S0167-8809(02)00034-8
https://doi.org/10.1046/j.1365-2486.2002.00503.x
https://doi.org/10.1080/07900620500405734
https://doi.org/10.1007/s00271-009-0199-3
https://doi.org/10.5958/0976-4038.2015.00058.5
https://doi.org/10.59797/ija.v59i1.4518


Water 2024, 16, 422 26 of 26

58. Hussain, I.; Sakthivadivel, R.; Amarasinghe, U. Land, and water productivity of wheat in the Western Indo-Gangetic plains of
India and Pakistan: A comparative analysis. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; CABI
Publishing: Wallingford, UK, 2003; pp. 255–271.

59. Singh, R.; Van Dam, J.C.; Feddes, R.A. Water productivity analysis of irrigated crops in Sirsa district, India. Agric. Water Manag.
2006, 82, 253–278. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.agwat.2005.07.027

	Introduction 
	Materials and Methods 
	Study Area 
	Micrometeorology Sensors and Measurements 
	Energy Fluxes: Observation/Estimation 
	Field Observation and Measurements 
	Spatial Evapotranspiration Modeling Interface (SETMI) Model 
	Validation of the SETMI Model with a Large Aperture Scintillometer (LAS) 
	Model Input Parameters 
	Evaluation of Model-Estimated Parameters 

	Estimation of Regional and Seasonal ET of the Wheat Crop for the Winter Season (Rabi) 2018–2019 
	Estimation of ETrF between Days of Satellite Image Acquisitions 
	Estimation of Monthly and Seasonal Evapotranspiration 

	Estimation of Regional Wheat Yield for the Winter Season (Rabi) 2018–2019 
	Estimation of Crop Water Productivity (WP) for Winter/Rabi Season 2018–2019 

	Results 
	Performance of the SETMI Model in the Field Experiment 
	Estimation of Regional Wheat Water Productivity 
	Regional Actual Evapotranspiration Using the SETMI Model 
	Regional Wheat Yield Estimation for Winter/Rabi Season (2018–2019) 
	Regional Wheat Water Productivity for the Winter/Rabi Season (2018–2019) 


	Discussion 
	Conclusions 
	References

