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Abstract: This study investigated a hybrid membrane and electro-membrane separation process
for producing demineralized water from tertiary petrochemical effluent, reusing it as feeding water
for high-pressure boilers for steam generation. The effluents were treated in a pilot plant with a
1 m3 h−1 capacity by using a hybrid process of ultrafiltration (UF), reverse osmosis (RO), and elec-
trodeionization (EDI). The physicochemical parameters of interest and maximum limits in industrial
water were pre-determined by the industries. Operating parameters such as flow rate, pressure,
percentage of recovery, and electric current were monitored, along with the frequency of chemical
cleaning. The UF and RO systems operated with average permeate fluxes of 17 ± 4.06 L h−1 m−2

and 20.1 ± 1.9 L h−1 m−2, respectively. Under optimal operating conditions (flow rate of 600 L h−1,
voltage of 22.2 ± 0.7 V, and electric current of 1.3 A), EDI produced high-quality water with an
average electrical conductivity of 0.22 µS cm−1. Thus, the industrial water produced reached the
quality required for reuse as make-up water for high-pressure boilers in the petrochemical industry.
In addition, the specific energy consumption; the use of chemicals, spare materials, equipment; and
labor costs were determined to support the technical feasibility study for implementing an industrial
plant with a 90 m3 h−1 producing capacity. This resulted in a cost of USD 0.64 per cubic meter of
demineralized water produced, a cost similar to values reported in the literature.

Keywords: circular economy; ultrafiltration; reverse osmosis; electrodeionization; electro-membrane
process; petrochemical wastewater

1. Introduction

The growing scarcity of water resources, worsened by climate change, highlights the
pressing need to explore non-conventional water sources, such as wastewater. Considering
the high volumes of water used in petrochemical plants [1] and the increased demand for
petroleum derivatives worldwide, the reuse of treated wastewater in the petrochemical
industry is relevant from an environmental and economic point of view [2–4]. In addition,
selecting the most appropriate and sustainable technologies to deal with organic and inor-
ganic contaminants in these industrial effluents to meet stringent environmental standards
is a complex task [5]. Therefore, implementing water reuse systems faces significant obsta-
cles, including high costs and a lack of familiarity with advanced treatment technologies
usually required to achieve high-purity water.

In fact, high-purity water with an electrical conductivity lower than 0.06 µS cm−1 is
a critical factor for several industrial applications, such as semiconductor manufacturing
and pharmaceutical formulations [6], as well as for steam generation in high-pressure
boilers in the petrochemical industry [7]. These boilers require high-quality water to protect
equipment and to prevent scaling and corrosive processes [8], in addition to avoiding
other undesirable problems, such as a reduced heat exchange rate and increased fuel
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consumption, reduced steam production, the overheating and rupture of pipes, and the
fouling of instruments and control devices [9].

In this context, boiler feed water requires a very refined treatment, which gener-
ally employs conventional treatment systems (coagulation/flocculation plus sedimenta-
tion or flotation) together with one or more advanced ones [10], such as ion exchange
resin [1,11], reverse osmosis (RO) [8], electrodialysis reversal (EDR) [12], and electrodeion-
ization (EDI) [13,14].

Previous studies, carried out to characterize tertiary petrochemical wastewater and
to evaluate advanced technologies, allowed us to propose a hybrid treatment system
comprising ultrafiltration (UF), RO, and EDI to produce high-purity demineralized water
(conductivity < 0.17 µS cm−1) [15]. This hybrid system takes advantage of tertiary petro-
chemical wastewater, and operates at low pressures, reducing energy consumption. The
benefits of this approach include not only the energy savings associated with wastewater
disposal, but also reduced maintenance costs of current sprinkler and wastewater drip net-
works, as well as savings in monitoring efforts in these sprinkler areas [2,16]. Furthermore,
the implementation of the reuse system offers additional advantages, such as interrupting
the degradation process of the soil currently used for wastewater disposal.

On the other hand, implementing treatment systems on an industrial scale involves a
technical assessment of economic and management factors, with a special focus on water
quality, and capital and operational costs, in addition to the energy consumption [5], scala-
bility, and long-term stability of treatment plant components (e.g., membranes lifetime) [17].
The energy consumption to produce water in the industry using conventional treatment
methods is between 2.5 and 4 kWh m−3, depending on several factors such as the type of
abstraction and pre-treatment, as well as the turbidity of the raw feed water [18]. Neverthe-
less, for low-pressure and brackish water reverse osmosis (3–15 bar applied pressure and
500–2000 ppm feed water), energy consumption is less than 1 kWh m−3 [19].

The costs of treating and producing water from wastewater generally range between
USD 0.40 and 1.26 per cubic meter [20], depending on the level of conventional treatment
adopted (i.e., primary, secondary, or tertiary wastewater) and the specific quality require-
ments of treated water for its reuse, as well as the size and capacity of the plant [21]. This
combination of factors makes the hybrid UF/RO/EDI process a promising solution for the
treatment and reuse of industrial wastewater. However, the final cost of the produced water
can differ significantly due to inaccuracies in calculation methods, such as whether the
costs of conventional treatment, that are already being used, are taken or not into account.

In light of these considerations, the present study aims to (i) optimize a hybrid
UF/RO/EDI system on a pilot scale for the production of demineralized water from
tertiary petrochemical wastewater; (ii) based on this optimization, present a technical and
economic feasibility study to implement a demineralized water production plant (DWPP)
with a production capacity of 90 m3 h−1; and (iii) evaluate the quality and treatment cost of
demineralized water produced from tertiary petrochemical wastewater.

Considering that the economic evaluation is key to the industrial scaling up of a
process, in this paper, technical and practical information are used, based on data collected
directly on a pilot plant set at a petrochemical industry, and treating a real petrochemical
effluent. The technical challenges of using this real effluent in a pilot plant are presented as
important practical information to industries in need of high-purity water.

2. Materials and Methods
2.1. Description of the Wastewater under Study

The industries of the Southern Brazil Petrochemical Complex (SBPC) generate hetero-
geneous wastewaters, which are therefore segregated at the source as inorganic or organic.
The inorganic wastewater undergoes preliminary and primary treatment, while the organic
one also undergoes secondary treatment (activated sludge with extended aeration). Subse-
quently, these wastewaters are combined, treated in eight stabilization ponds in series, and
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sprayed on soil. A more detailed description of the wastewater treatment systems used in
the SBPC can be found in previous studies [16,22,23].

2.2. Hybrid UF/RO/EDI Treatment System

A hybrid system comprising UF, RO, and EDI was evaluated in treating tertiary
petrochemical wastewater, aiming to produce demineralized water with conductivity
lower than 0.3 µS cm−1. This system was operated on a pilot scale to treat the tertiary
petrochemical wastewater, which was collected at the outlet of the last stabilization pond
of the SBPC wastewater treatment plant. The pilot plant is equipped with flow, pressure,
and current meters, which allow the continuous monitoring of the operating parameters. A
schematic flowchart of the hybrid treatment system is presented in Figure 1.
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Figure 1. Schematic diagram of the hybrid demineralized water production system in pilot scale.
Adapted from [15].

The effluent from the last stabilization pond, namely stabilization pond 8 (SP8), is
pumped to a 15 m3 reservoir (R1), where 1 mg L−1 of ACTICIDE® DB 20—biocidal agent
supplied by Thor (São Paulo, SP, Brazil)—is dosed to inhibit the growth of microorganisms.
This wastewater is subjected to a system of sand and activated carbon filters, followed by
in-line dosing of 3.2 L h−1 of 0.7% sodium hypochlorite. The up-flow sand filter has a 1 m
thick bed divided into three layers, each composed of sand with a particle size of 1.4, 0.9,
or 0.4 mm. The activated carbon bed (Alphacarbo brand, Guarapuava, PR, Brazil) is 1 m
thick, with an average particle size of 1 mm and a filtration rate of 15.15 m3 m−2 h−1. When
the pressure exceeds 2.1 bar, the filters are backwashed for 30 min and then rinsed with
drinking water for 10 min. After the filtration stage, the wastewater is stored in another
15 m3 reservoir (R2).

The wastewater from R2 passes through a 20 µm disc filter to minimize possible
damage to the membrane and is then sent to the UF. A commercial PVDF hollow-fiber
UF membrane (model SFX-2860, supplied by DOW Water & Process Solutions, Minneapo-
lis, MN, USA) with a 51 m2 membrane area and 0.03 µm average pore size was used.
The UF system was operated for 130 days, 8 h per day, with temperature in the range
of 20.3 ± 1.6 ◦C, average pressures at the module inlet and outlet of 1.9 ± 0.4 bar and
1.6 ± 0.42 bar, respectively, and 90% of water recovery. The UF has an automatic cleaning
system to prevent fouling, which consists of backwashing with air, backwashing with UF
permeate, and cleaning with 0.7% sodium hypochlorite every 30 min.
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The UF permeate is subjected to the RO stage, which contains a polyamide thin-film
composite membrane (FilmTec Fortilife CR100 Element, DuPont, São Paulo, SP, Brazil) with
an area of 7.2 m2, and is preceded by a 5 µm cartridge prefilter. The RO was operated
for 113 days and 8 h per day, with an average pressure of 5.4 ± 0.1 bar, a temperature of
19.6 ± 2.5 ◦C, and approximately 50% permeate recovery. Table 1 describes the characteris-
tics of the membranes used in UF and RO systems.

Table 1. Characteristics of the membranes used in UF and RO systems.

Characteristic UF Membrane a RO Membrane b

Membrane Type PVDF Polyamide Thin-Film Composite
Product Type Hollow fiber Spiral-wound element
Active Area (m2) 51 7.2
pH Range Continuous Operation 4–11 2–11
Maximum Operating Temperature (◦C) 50 45
Maximum Operating Pressure (bar) 5–9.5 15.5
Free Chlorine Tolerance (mg L−1) 5 <0.1
Maximum Feed Silt Density Index (SDI) 5
Minimum Salt Rejection (%) 99.5

Note(s): a ref. [24], b ref. [25].

The EDI system (Ion Tech® ITDS 10, Bergen op Zoom, The Netherlands) has ten cells
filled with mixed ion-exchange resins and two electrodes, a stainless-steel cathode, and
a titanium anode coated with titanium oxide. This system was operated for 24 h, with
average pressures of 2.0 ± 0.1 bar, 0.97 ± 0.03 bar, and 1.8 ± 0.02 bar in the feed water,
treated water, and brine streams, respectively. The treated water flow rate was 600 L h−1

under a voltage of 22.2 ± 0.7 V, an electric current of 1.3 A, a temperature of 17.9 ± 0.8 ◦C,
and 95.2% of water recovery. Water recovery at each treatment stage was calculated as the
ratio between the permeate and the feed flow rates in each stage (UF, RO, or EDI).

2.3. Analytical Methods

Samples of the tertiary petrochemical effluent, UF and RO permeates, and EDI-treated
water, as well as brine streams from UF, RO, and EDI systems, were collected and analyzed
according to the methodology described in the Standard Methods for Examination of Water
and Wastewater [26]. The monitored parameters and their respective analytical methods
are listed in Table 2.

Table 2. List of parameters and respective analytical methods used.

Parameter Method Parameter Method

Aluminum SM 3111D pH SM 4500H+
Calcium SM 3111D Potassium SM 3500KB
Chloride SM 4110B Silica SM 4500-SiO2C
Color SM 2120B Sodium SM 3500NaB
Electrical Conductivity SM 2510B Sulfate SM 4110B
Iron SM 3111B Total Organic Carbon SM 5310B
Magnesium SM 3111B Total Phosphorus SM 4500PD
Nitrate SM 4110B Turbidity SM 2130B

Note(s): SM: Standard Methods for Examination of Water and Wastewater [26].

2.4. Technical and Economic Feasibility Analysis

A technical feasibility analysis (TFA) was carried out using the Portfolio and Project
Management Methodology [27], which is currently used by the industries from the Southern
Petrochemical Complex. This methodology is divided into five stages, where the first three
are part of the project definition phase and are classified as Front-End Loading (FEL). In FEL
1 (investment assessment), the project team evaluates the company’s investment capacity
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and approves the start of the next stage. In FEL 2, the conceptual project is carried out with
a technical feasibility analysis, which is used to support approval for implementing the
basic engineering. In FEL 3, the basic project is prepared, and, after approval, the project
execution stage proceeds. In stage 4, the project is executed, while in stage 5, the plant
starts up, as illustrated in Figure 2. This study presents the results corresponding to FEL 1
and FEL 2.
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Figure 2. Portfolio and Project Management Methodology used by industries in the South Petrochem-
ical Complex. PA: project authorization, approval to carry out basic engineering. APE: authorization
for execution, approval for project execution. FEL: Front-End Loading, project definition phase. DR:
design review, assessment gates with the project team. Adapted from [27].

An economic assessment containing data on capital and operational expedition, CapEx
and OpEx, respectively, was carried out based on the results generated in the TFA. The
total cost of the demineralized water production plant (DWPP) was defined based on a
production capacity of 90 m3 h−1, evaluating the total cost of water per cubic meter. A
sensitivity analysis was carried out taking into account system productivity (treatment
capacity), costs of equipment, inputs, maintenance, and operation, in addition to evaluating
the balance point between CapEx and OpEx.

A calculation spreadsheet was generated based on the methodology described below
and the data from the TFA. Version 1.75.753 of the DuPont company’s Water Application
Value Engine (WAVE) software was used to simulate the UF and RO systems, while
the values for the EDI system were calculated based on results obtained and budgets
from the equipment manufacturer. So, the calculations were based on the following
assumptions: (i) plant with 90 m3 h−1 demineralized water production capacity; (ii) the
values referred to commercial proposals (budgets) prepared in 2022 or 2023; (iii) electricity
costs were set at USD 0.08 per kW h−1 (BRL 0.39 per kW h−1), the amount contracted with
the electricity concessionaire; (iv) UF system with 2448 m2 of hollow fiber membranes,
permeate flux of 39 L h−1 m−2, and 90% water recovery; (v) RO system with 6466 m2

of membranes, pressure vessels to accommodate 174 spiral-wound membrane elements,
permeate flux of 15.5 L h−1 m−2, and 75% water recovery; (vi) 5 years of useful life for the
membranes; (vii) plant lifespan established at 30 years; (viii) EDI system with 20 modules,
each with the capacity to treat 5 m3 h−1, and 90% water recovery; (ix) energy consumption
of 0.60 kWh m−3 for the pre-treatment/UF/RO system, obtained in a commercial proposal;
(x) energy consumption for EDI (EEDI) was calculated based on the parameters optimized
in the pilot plant, using Equation (1). It consists of the sum between the energy consumed
in the stack (EEDI-stack) and that spent in the EDI pumping system (EEDI-pump), which were
determined using Equations (2) and (3), respectively [28,29].

EEDI = EEDI-stack + EEDI-pump (1)

EEDI-stack =
VIt

L
(2)

EEDI-pump =

.
W
Q

(3)
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where V is the applied voltage (22.2 V), I is the electric current (1.3 A), t is the time used
(1 h), L is the volume of water treated (0.6 m3),

.
W is the rate of work done by the pump

(kW), and Q is the pumping flow rate in the EDI system (0.6 m3 h−1). A Power Quality
Analyzer PQA 824 m (HT Instruments, Faenza, Italy) was used to measure the power
pump. Therefore, the total energy consumption of the DWPP comprises the energy costs of
the pretreatment/UF/RO system plus the EEDI.

The conceptual framework of the demineralized water production plant (DWPP) is
illustrated in Figure 3.
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3. Results and Discussion
3.1. Characterization of the Tertiary Petrochemical Effluent

Table 3 shows the physicochemical characterization of the tertiary petrochemical
effluent used as feed water for the pilot plant, as well as the standard for demineralized
water required in the petrochemical complex. This water-quality standard was defined
by the petrochemical industry under study, whose objective is to use high-quality water
to maximize heat-exchange efficiency and protect boilers and pipelines against corrosion,
scaling, and other damages, as discussed in a previous work [2].

Table 3. Physicochemical characteristics of tertiary petrochemical effluent and the standard for
demineralized water (DW) required in the petrochemical complex.

Parameter Tertiary Effluent Standard for DW a

Aluminum (mg L−1) <2.50 ns
Calcium (mg L−1) 23.2 0.12
Chloride (mg L−1) 103 ns
Color (mg Pt-Co L−1) 31.6 ns
Electrical Conductivity (µS cm−1) 1222 <0.30
Iron (mg L−1) 0.51 <0.01
Magnesium (mg L−1) 5.27 0.25
Nitrate 2.12 ns
pH 7.77 6–7
Potassium (mg L−1) 64.0 ns
Silica (mg L−1) 25.0 0.02
Sodium (mg L−1) 170 ns
Sulfate (mg L−1) 272 ns
Total Organic Carbon—TOC (mg L−1) 10.0 ns
Total Phosphorus (mg L−1) 1.38 ns
Turbidity (NTU) 13.7 ns

Note(s): ns: not specified. a ref. [2].

The effluent has a neutral to slightly basic characteristic (pH 7.77), low levels of organic
matter (10 mg L−1 TOC) and turbidity (13.7 NTU), and moderate color (31.6 mg Pt-Co L−1),
in addition to an electrical conductivity of 1222 µS cm−1 which is mainly attributed to
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sodium, chloride, and sulfate. Silica, magnesium, nitrate, iron, and other contaminants are
present in lower concentrations, but well above the values required for high-purity water
as those used in high-pressure boilers. Both contaminants and concentrations detected are
in line with studies previously carried out with the aforementioned tertiary petrochemical
effluent [15,16,22,23,30].

Considering the characteristics presented in Table 3, in this study, UF was applied as
a pretreatment of RO, and especially to remove turbidity and color. After that, RO was
responsible for removing TOC, iron, calcium, magnesium, monovalent ions, and other
contaminants. As a final treatment, EDI was assessed for producing high-purity water.

3.2. Performance of the UF/RO/EDI Hybrid Treatment System

Figure 4 shows the behavior of pH, turbidity, and flux of the UF permeate over the
130 operating days, obtaining the following average values: 7.9 ± 0.33, 0.37 ± 0.2 NTU, and
17 ± 4.06 L h−1 m−2, respectively. The mean pressures at the UF module inlet and retentate
stream were 1.9 ± 0.43 and 1.6 ± 0.42 bar, respectively. In the first eleven operating days, the
UF permeate flux remained above 20 L h−1 m−2. After that, a permeate flux reduction was
observed, resulting from membrane fouling caused by organic matter and microorganisms
(mainly algae) remaining in the tertiary effluent, as already demonstrated in previous
studies [15]. From the twelfth operating day, two flux bands were observed. Between the
41st and 60th day and from the 92nd day onwards, higher fluxes were observed, with an
average value of 18 L h−1 m−2, while from the 12th to the 40th day and from the 61st to
the 91st day, the average flux was 14 L h−1 m−2. These periods with higher and lower
fluxes were related to a smaller and larger proliferation of algae in the stabilization ponds,
respectively, whose occurrence was influenced by climatic conditions. A greater algal
bloom was observed in the driest and hottest periods, which coincided with periods of
lower permeate fluxes, that is, between the 12th and 40th operating day and between the
61st and 91st day. In fact, the UF membrane systems require strict control, such as oxidant
dosages, to mitigate fouling and maintain constant permeate flux [5,31].
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Figure 4. Behavior of the flux, turbidity, and pH of the UF permeate over the operating time.

The UF permeate was then treated by RO to produce water with enough quality to
feed the EDI process. Figure 5 shows the behavior of the main parameters monitored over
the 113 days of RO operation. During this period, the RO presented average permeate flux
values of 20.1 ± 1.9 L h−1 m−2, with a turbidity of 0.25 ± 0.1 NTU, EC of 17.1 ± 4.9 µS cm−1,
and neutral pH (7.1 ± 0.4).
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Figure 5. Flux and electrical conductivity of the RO permeate over the operating time.

On only two events (days 14 and 33) was a more significant decrease (ca., 20%) in
RO permeate flux observed, probably caused by membrane fouling. This may have been
related to the increase in biological material in the UF permeate, resulting from variations
in influent quality. Nevertheless, the RO permeate flux was restored to its average value
after a simple cleaning procedure consisting of rinsing for 5 min with the RO permeate.
This behavior with a low variation indicates that the pre-treatment with UF allows water
production with sufficient quality to feed the RO, minimizing fouling on the RO membrane,
as recommended by Jafarinejad [31]. Furthermore, adding biocides also contributed to
the maintenance of the stability of the RO permeate flux [16]. Moreover, the EC of the
RO permeate remained below 30 µS cm−1 throughout the evaluated period, classifying
this stream as suitable for feeding EDI, which requires feed water with an EC lower than
40 µS cm−1. The small variation observed in EC values of the RO permeate is associated
with the natural variability of the feed water composition, a typical behavior for real
samples such as the tertiary petrochemical wastewater used in this study.

Subsequently, the EDI system was operated with a flow rate of 600 L h−1, electrical
current of 1.3 A, and feed water EC of 11.4 µS cm−1, reaching an average water recovery
of 95.2%. During the operation of the EDI system with the RO permeate as feed water,
stability was observed in both the flow rate and the EC of the EDI product, which remained
at around 0.22 µS cm−1. This is a valuable result, as it meets the parameter required for
demineralized water from the Petrochemical Complex, i.e., EC < 0.3 µS cm−1.

Figure 6 shows the concentrations of the major ions monitored in this study after
each treatment step, namely stabilization pond 8 (SP8), ultrafiltration, reverse osmosis,
and EDI. The tertiary effluent from SP8 contains 23.2, 5.27, 0.51, and 1.38 mg L−1 of
calcium, magnesium, iron, and total phosphorus, respectively, with these values being
kept practically constant also in the UF permeate and then diminished drastically after
RO treatment. Despite not producing a permeate complying with demineralized water
standards (<0.3 µS cm−1), RO acted as an excellent pre-treatment for EDI. RO removed
more than 90% of the ions and organic compounds remaining from the UF step, which
could cause fouling in the EDI system, as pointed out by Hernon et al. [32]. EDI, in turn,
removed the ions that had prevailed in the RO permeate, producing water within the
quality standards required for the demineralized water currently used in the Southern
Petrochemical Complex [2]. Among these ions, calcium was about 0.32 mg L−1 in the RO
permeate; however, as it is considered a cation that can be easily removed via EDI due to
its ease of adsorption by resins, a reduction of 98% was achieved.
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Figure 6. Concentration values (in logarithmic scale) of the major ions monitored throughout this
study after each treatment stage: stabilization pond 8 (SP8), ultrafiltration (UF), reverse osmosis (RO),
and electrodeionization (EDI).

The iron from the tertiary effluent (0.51 mg L−1) was removed by 80% in the UF stage,
which is in agreement with the study by Chaturvedi and Dave [33], who also reported
the effective use of ultrafiltration for removing this contaminant. In turn, the remaining
iron was removed by RO and EDI. Indeed, the iron concentration after RO treatment was
0.026 mg L−1, above the standard required for demineralized water (<0.01 mg L−1, Table 3).
After being processed by EDI, it was reduced to 0.009 mg L−1, equivalent to 61% of the
concentration found in the RO permeate. Conversely, the magnesium concentration in
the RO permeate was already within the recommended values for demineralized water
(0.25 mg L−1).

The tertiary effluent also presented, ca., 170, 103, and 64 mg L−1 for sodium, chloride,
and potassium, respectively, with a significant decrease achieved after RO treatment. The
demineralized water produced in the pilot unit presented concentrations of 0.14, 0.05,
and <1 mg L−1 for potassium, sodium, and chloride, respectively. These ions should
also be monitored as they have a major influence on the electrical conductivity of water.
A 98% sodium removal was achieved after EDI. Analogous results were obtained by
Wenten et al. [14] when producing demineralized water by EDI for steam generation,
where the sodium concentration reached about 0.003 mg L−1. In another study [11] for
producing demineralized water from secondary wastewater, using ion exchange resins
in a separated and mixed-bed configuration, removals of chloride, sodium, potassium,
magnesium, and calcium of 98, 99, 65, 100, and 89% were achieved, respectively. However,
EDI has advantages over the ion exchange process, as it does not require chemicals to
regenerate the resins, being a continuous and environmentally cleaner process.

In the same field of water reuse, the East River Generating Station in Manhattan uses an
RO/EDI system with a production capacity of 1500 m3 h−1 of demineralized water for the
make-up water in steam generators of the largest urban heating system in the world [34,35].
Other researchers have also investigated reclaimed water as an alternative source to produce
ultrapure water. They considered a viable solution for the more sustainable use of water
resources, but emphasized that the main challenge in this practice is related to the higher
content of low-molecular-weight organic pollutants in reclaimed water, which is difficult to
remove through traditional ultrapure water production processes [36].

3.3. Technical and Economic Feasibility Analysis of the UF/RO/EDI Hybrid Treatment System

The UF/RO/EDI hybrid system was analyzed considering the installation of a plant
with the capacity to produce 90 m3 h−1 of demineralized water for reuse in high-pressure
boilers at the Southern Brazil Petrochemical Complex. The data collected in the technical
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feasibility study were used to calculate CapEx, OpEx, and the total cost per cubic meter of
demineralized-reuse water produced (see Table 4).

Table 4. Economic analysis and comparison of the cost of producing demineralized water by
UF/RO/EDI from petrochemical tertiary wastewater with a study producing demineralized water
from drinking water by RO/EDI.

Parameter
Value

UF/RO/EDI
(This Study)

RO/EDI
(Wenten et al. [14])

CapEx in USD
Equipment and materials

Pre-treatment 93,617.02
UF 672,340.43
RO 704,255.32
EDI 308,510.64

Taxes and other fees (20% on equipment value) 355,744.68
Construction 115,114.21

Total CapEx 2,249,582.30
OpEx in USD

Feed water cost ----- 106,275.84
Energy consumption 89,262.54 97,240.07
Membranes’ replacement 91,323.83 170,048.00
Maintenance 56,239.56 11,473.12
Labor

Plant operation (3 technicians) 80,074.47 -----
Chemicals

For Pre-treatment 10,026.49
For UF 32,122.20
For RO 41,582.04 4724.00
For EDI 24,546.80 -----

Other consumables 4427.23
Total OPEX 429,605.16 389,761.03
Production capacity (m3 year−1) 788,400 950,000
Specific water production cost (USD m−3) 0.54 0.42
Depreciation of DWPP (USD m−3) a 0.10 0.11
Total specific water production cost (USD m−3) 0.64 0.53

Note(s): a A depreciation time of 30 years was considered for the present study and 10 years for Wenten et al. [14].

CapEx corresponds to the DWPP’s installation cost, which includes the values of
equipment and materials, taxes and fees (ca., 20% over the equipment values), and other
construction costs. OpEX represents the annual operating costs, including energy consump-
tion, membranes’ replacement, maintenance, labor (three technicians for plant operation),
chemical products, and other consumables. Then, the specific cost was obtained from
the ratio between the total OpEx and the plant’s production capacity (788,400 m3 year−1

demineralized water). Adding the annual depreciation cost of the plant to this value, the
total specific cost for producing one cubic meter of demineralized water was determined:
USD 0.64 per cubic meter. Depreciation, in turn, corresponds to the total CapEx divided by
the plant’s operating period (30 years) and its annual production capacity. The CapEx and
OpEx values were estimated based on a basic/preliminary engineering technical study,
which could result in a variation of up to 15% in the values reported in Table 4.

Comparing the costs for producing demineralized water in this study with those
obtained by Wenten et al. [14]—which was carried out in Indonesia using drinking water
as feed with the cost of electricity being less than half that practiced in Brazil—slightly
higher values were observed. This is intrinsically related to the characteristics of the
feed water, since the feed water of our UF/RO/EDI system contains microorganisms
(mainly algae, see ref. [15]), in addition to organic matter, requiring greater control and a
higher dosage of chemicals to mitigate membrane fouling, which leads to higher chemical
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and operating costs. Furthermore, the ultrafiltration additional to the RO/EDI process
increases the system’s operation and maintenance costs, CapEx, and electrical energy
consumption. It is worth highlighting that energy continues as a preponderant factor in
these systems [37], especially in Brazil, where electrical energy costs USD 0.08 per kWh,
while in other countries such as Indonesia [14], it is only USD 0.038 per kWh. While the
total energy consumption in the DWPP was estimated at 0.938 kWh m−3, the EDI system
was responsible for only 0.328 kWh m−3, a value similar to those found in other studies.
For instance, by using an EDI system to treat feed water with 50 µS cm−1, for obtaining
demineralized water with 0.1 µS cm−1, Wood and Gifford [38] reported a consumption of
approximately 0.3 kWh m−3.

The values we found (USD 0.64 per cubic meter) also comply with those reported by
Pérez et al. [39], who investigated a UF/RO system treating a secondary sanitary effluent
to produce water to feed low- and medium-pressure boilers. Considering a plant treating
2.5 m3 h−1, specific costs of EUR 1.096 per cubic meter were obtained, but this value would
be reduced to EUR 0.57 per cubic meter for a plant treating 20 m3 h−1. Katsoyiannis
et al. [11] reported a cost in the range of 1.5 to 2.5 EUR per cubic meter of water produced.
The slightly higher costs are associated with the fact that, in addition to a conventional
system with coagulation/flocculation/sedimentation/filtration followed by UF/RO/ion
exchange resins, the authors also used evaporators and crystallizers to treat the waste
generated in UF, RO, and ion exchange resins, aiming at the concept of Zero Liquid
Discharge (ZLD).

Indeed, it is worth noting that, although the costs of producing demineralized-reuse
water from wastewater are higher than those of producing DW from fresh water, this
practice has a direct influence on the wastewater treatment plant, reducing environmental
impacts by decreasing the wastewater volume currently disposed on soil, and costs related
to monitoring and maintenance in effluent sprinkler areas and networks. Furthermore,
the reuse of wastewater reduces the intake of raw water from the environment, leaving
this valuable resource available for other noble uses, such as drinking water, for example.
These actions are particularly aligned with the sustainable development goals (SDG) of the
2030 Agenda [40] since reusing wastewater provides more sustainable water management
(SDG 6), promotes sustained economic growth (SDG 8) and sustained industrialization
(SDG 9), and ensures sustainable production patterns (SDG 12) and contributes to combat-
ing climate change (SDG 13). Moreover, our particular case study would also contribute
to the sustainable use of terrestrial ecosystems, as it would avoid or at least minimize
the disposal of effluents in the soil, whose action is related to SDG 15, resulting in soil
protection and combating desertification, in addition to contributing for advancing the
protection of terrestrial biodiversity.

The investment displayed above refers to the solution that allows the use of the EDI
product as demineralized water in boilers for steam generation. When considering typical
resources allocated to sanitation projects, the wastewater treatment plant for producing
demineralized water stands out for presenting a moderate investment value. This is associ-
ated with the adoption of modular systems and highly energy-efficient equipment, as well
as the reduced area required for their installation, compared to conventional treatment sys-
tems. An outstanding characteristic of this type of plant is the demand for low-complexity
civil construction, which contributes significantly to saving resources. Furthermore, the
plant installation can be completed in a relatively short period, comprising 3 to 6 months.
These characteristics make the DWPP an attractive and viable option for companies seeking
to implement effective, energy-efficient, and quickly implemented sanitation solutions,
while ensuring sustainable management of water resources. Furthermore, considering the
project’s particularities, the UF/RO/EDI plant for treating tertiary petrochemical wastewa-
ter presents a certain equilibrium between the components of the total cost of producing
demineralized water.

As depicted in Figure 7, the main cost components of producing demineralized water
are chemical products, energy consumption, and the replacement of membranes, represent-
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ing 21%, 18%, and 18%, respectively. As mentioned previously, the presence of algae in
tertiary effluent raises the costs of chemical products used in cleaning procedures. Though
the costs of electrical energy and membrane replacement are representative, they com-
ply with the literature data. Valizadeh et al. [21] attributed 18.7% of the total cost for an
MF/RO plant, with a capacity of 80 m3 h−1, to membranes’ replacement. Nevertheless, as
we use conservative values for the useful life of the membranes, the cost for membranes’
replacement may be overestimated. With an adequate plant operation, these values may be
reduced by 17–50%, since a study [41] reported 6 years as the mean lifespan of 8” membrane
modules. But there are also studies reporting full-scale plants running well with mem-
branes that have been in use for eight [42,43] and even more than ten [44] years. In addition,
expanding the plant capacity has the potential to decrease the specific cost associated with
producing reused water. This is because the relationship between the costs associated with
wastewater treatment plants and their capacity is typically expressed through exponential
equations [45,46]. Valizadeh et al. [21] performed the economic assessment of MF/RO
integrated systems for treating oily wastewater for reuse application. By increasing the
plant’s capacity from 40 to 80 m3 h−1, the total production cost slowed down from 0.82 to
0.61 USD m−3, and for a 2000 m3 h−1 plant, the total cost would be just, ca., 0.40 USD m−3.

Water 2024, 16, x FOR PEER REVIEW 13 of 15 
 

 

 
Figure 7. Percentages of the total annual cost of a UF/RO/EDI plant for tertiary petrochemical 
wastewater treatment with a capacity of 90 m3 h−1. 

4. Conclusions 
The UF/RO/EDI hybrid system stood out as a promising alternative for treating 

tertiary petrochemical effluents to produce demineralized water. Thus, demineralized 
water produced from tertiary wastewater can be used as the make-up water in high-
pressure boilers for steam generation in the petrochemical industry. 

The economic analysis of the plant designed in this study showed a slightly higher 
cost estimate than those found in studies that produce demineralized water from fresh 
water, which is associated with the characteristics of the feed water, since tertiary 
petrochemical wastewater has a greater load of contaminants than fresh water. 

The sensitivity analysis showed that the most critical aspect regarding the economic 
viability of these systems is the cost of equipment and materials. Conversely, additional 
advantages of hybrid wastewater treatment systems for industrial reuse include greater 
water security and the diversification of water sources, in addition to promoting 
sustainability, which is in line with the global demands for environmental conservation 
and protection. 

Author Contributions: Conceptualization, A.B.d.S., M.A.S.R. and A.M.B.; methodology, A.B.d.S.; 
software, A.B.d.S.; validation, A.B.d.S. and M.A.S.R.; formal analysis, A.B.d.S. and A.G.; 
investigation, A.B.d.S., A.G., M.A.S.R. and A.M.B.; resources, M.A.S.R.; data curation, A.B.d.S. and 
A.G.; writing—original draft preparation, A.B.d.S. and A.G.; writing—review and editing, A.B.d.S., 
A.G. and A.M.B.; visualization, A.G., M.A.S.R. and A.M.B.; supervision, M.A.S.R. and A.M.B.; 
project administration, M.A.S.R. and A.M.B.; funding acquisition, M.A.S.R. All authors have read 
and agreed to the published version of the manuscript. 

Funding: The authors are grateful for the financial support the partnership established between the 
Petrochemical Complex Industrial Development Committee (COFIP), Finep, CNPq, Capes, Fapergs, 
and the Companhia Riograndense de Saneamento (CORSAN) and all the professionals involved in 
this project who provided the research. 

Data Availability Statement: The data that support the findings of this study are available from the 
corresponding author upon reasonable request. 

Acknowledgments: The authors are grateful for the technical support during the operation of the 
pilot unit provided by the Superintendence of Liquid Effluent Treatment SITEL/CORSAN and all 
the professionals involved in this research project. 

Conflicts of Interest: The authors declare no conflicts of interest. 

  

Energy consumption
18%

Membranes 
replacement

18%

Maintenance
11%Labor

16%

Other 
consumables

1%

Depreciation
15%

Chemicals
21%

Figure 7. Percentages of the total annual cost of a UF/RO/EDI plant for tertiary petrochemical
wastewater treatment with a capacity of 90 m3 h−1.

4. Conclusions

The UF/RO/EDI hybrid system stood out as a promising alternative for treating
tertiary petrochemical effluents to produce demineralized water. Thus, demineralized
water produced from tertiary wastewater can be used as the make-up water in high-
pressure boilers for steam generation in the petrochemical industry.

The economic analysis of the plant designed in this study showed a slightly higher cost
estimate than those found in studies that produce demineralized water from fresh water,
which is associated with the characteristics of the feed water, since tertiary petrochemical
wastewater has a greater load of contaminants than fresh water.

The sensitivity analysis showed that the most critical aspect regarding the economic
viability of these systems is the cost of equipment and materials. Conversely, additional ad-
vantages of hybrid wastewater treatment systems for industrial reuse include greater water
security and the diversification of water sources, in addition to promoting sustainability,
which is in line with the global demands for environmental conservation and protection.
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