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Abstract: The modeling of metal concentrations in large rivers is complex because the contributing
factors are numerous, namely, the variation in metal sources across spatiotemporal domains. By
considering both domains, this study modeled metal concentrations derived from the interaction
of river water and sediments of contrasting grain size and chemical composition, in regions of
contrasting seasonal precipitation. Statistical methods assessed the processes of metal partitioning
and transport, while artificial intelligence methods structured the dataset to predict the evolution
of metal concentrations as a function of environmental changes. The methodology was applied to
the Paraopeba River (Brazil), divided into sectors of coarse aluminum-rich natural sediments and
sectors enriched in fine iron- and manganese-rich mine tailings, after the collapse of the B1 dam in
Brumadinho, with 85–90% rainfall occurring from October to March. The prediction capacity of the
random forest regressor was large for aluminum, iron and manganese concentrations, with average
precision > 90% and accuracy < 0.2.

Keywords: river; spatiotemporal domain; sediment source; metals; machine learning prediction

1. Introduction

Rivers are primary pathways for water and sediment transport and environments of
water–sediment interactions. However, understanding and predicting the water compo-
sition responses to these interactions is challenging, because the interactions are subject
to multiple factors that can change them over time and space [1]. One important factor is
sediment change downstream, particularly during mixing with inflows from tributaries
or hillslopes [2–4]. Rainfall runoff variations, either in the spatial or the temporal do-
mains, can also change the water–sediment interactions, as they affect sediment delivery
to streams [5,6], cause dilution effects [7], or trigger sediment resuspension during storm
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events [8,9]. A third important factor consists in changes of water temperature, pH or
redox conditions in the water column, as they affect the mobility of elements, especially of
metals [10,11]. Thus, the modelling of water–sediment interactions in rivers must consider
proper spatial and temporal domains where sediment sources, the hydrologic regime and
physical–chemical parameters of river water, are relatively homogeneous.

Having defined the proper spatial and temporal frames for the water–sediment inter-
action model, the next step is to select a method to resolve it. A response to this request
can be hydrological [12,13] or based on data analysis [14,15]. Hydrological models allow
unraveling the processes of flow (including extreme flows and floods), water and sediment
transport and ecosystem functioning, among many other issues related with riverine sys-
tems, and have been recently developed and used in various studies [16–22]. In this regard,
it is worth acknowledging the growth in open source software or scripts [23,24], which
makes hydrologic modeling fair [25]. However, in general, these models are challenging
with regard to data availability and calibration in similar work [26–29], especially in large
and heterogeneous river basins, despite the attempts to handle these issues effectively [30].
In these cases, data analysis methods may be the solution to understand and predict the
composition of river water. Conventional statistics (univariate, bivariate and multivariate)
enables establishing a comprehensive picture of relationships between element concen-
trations and their determinant factors (e.g., streamflow, size of sediment particles, water
pH or temperature), while artificial intelligence algorithms may be sufficiently precise and
accurate to allow reliable predictions of element concentrations in the near future.

In the most recent years, the use of artificial intelligence algorithms has intensified
in the modelling of streamflow [31] and sediment transport [32–37]. However, there are
few or no studies that have used these algorithms for the modelling of water–sediment
interactions. Even less common are those studies that have coupled statistical with artificial
intelligence models to simultaneously describe how the water composition responds to
interactions with sediments and the environment and provide water composition forecasts
within proper spatial and temporal domains.

In order to help reduce the scarcity of studies capable of predicting element concentra-
tions resulting from water–sediment interactions based on artificial intelligence methods,
the general purpose of this study was to develop a river model that describes the interaction
between the water compartment (physical and chemical characteristics) and the sediment
compartment (granulometric and chemical characteristics), while also considering the
influence of sediment source and streamflow. The pathway to achieve the general objective
comprised splitting the workflow into two phases. The first phase was called the experi-
mental phase, and encompassed data analyses using conventional statistical methods (e.g.,
boxplots, Spearman correlation coefficients, principal component analysis). This phase
allowed for understanding of the dynamics of metals and their changes/interactions in the
water and sediment compartments, both in the spatial domain, i.e., considering areas of
a river with different characteristics, and in the temporal domain, i.e., distinguishing dry
from rainy periods. In the second phase, called the modeling phase, the concentrations of
various metals (e.g., aluminum, iron and manganese) were modelled in the studied area
using artificial intelligence algorithms, separately for each spatiotemporal domain. Several
algorithms of different nature and complexity were tested, with the aim of evaluating and
comparing the precision and accuracy of the generated models. In the present study, the
selected algorithms were: multiple linear regression with stepwise forward selection of vari-
ables, multilayer perceptron neural networks and random forest regressor, using dissolved
and total element concentrations as targets (dependent variables), and tens of physical and
chemical characteristics of water and sediment as features (independent variables).

The river model was tested in the Paraopeba River, located in the state of Minas
Gerais, Brazil. This river was selected because of its marked segmentation in the spatial
and temporal domains, which occurred after the rupture of a mine-tailings dam (B1) on
25 January 2019 in a tributary stream called Ribeirão Ferro-Carvão. The accident has divided
the Paraopeba River into three main segments: (1) the “upstream” segment, not affected
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by the accident and where the streamflow carries natural sediments; (2) the “anomalous”
segment, where the tailings overlayed the natural sediments and the two fractions have
been dislocated downstream since then; (3) the “natural” segment, located far from the
accident, and where the streamflow also carries natural sediments, but not necessarily
equal to segment 1 sediments, considering the inflows of tributaries that occur between the
two regions. Besides the current spatial segmentation, the Paraopeba River basin is located
in a region of tropical climate, where rainfall changes greatly in the transition between
dry and the rainy seasons, with 85–90% of all rainfall occurring in the latter period. This
climate framing renders the possibility to investigate water–sediment interactions under
well-defined temporal domains, namely, those of low and high river flows.

The B1 dam was located in the municipality of Brumadinho and the rupture spilled
about 11.7 Mm3 of iron- and manganese-rich mine tailings into the Ribeirão Ferro-Carvão
watershed, of which 2.8 Mm3 reached the Paraopeba River some 10 km downstream [38].
The accident had immediate management consequences, such as the prohibition of drinking
water supply from the impacted areas of the Paraopeba River [39] due to the high levels
of heavy metals dissolved in the water, namely, aluminum (Al), iron (Fe) and manganese
(Mn). Among other urban centers, this ban affected the supply to the Metropolitan Region
of Belo Horizonte with a population of about 6 million inhabitants [40]. In addition to the
aforementioned ban, a monitoring plan of metal concentrations in sediments and water of
the Paraopeba River was implemented, with high spatial and temporal resolution, namely,
one monitoring station every 15 km along the river, from the confluence with the Ribeirão
Ferro-Carvão to the mouth of the Paraopeba River at the junction with the São Francisco
River, and daily or weekly measurements from 2019 to the present [41,42].

The experimental phase of our study, which, as indicated above, used conventional
statistical methods to assess water–sediment or water–tailings interactions, is expected
to bring knowledge on the relevance of countless data collected and monitored along the
Paraopeba River. That knowledge is important to make the best use of artificial intelli-
gence algorithms to obtain realistic river models of water–sediment and water–tailings
interactions. The machine learning neural networks trained for the Paraopeba River, where
a technological accident occurred with the release of various contaminants (metals), will
define predictive models that will allow, in future works: (i) to estimate the time needed to
bring the current contamination scenario towards pre-rupture conditions; (ii) to measure
the spatiotemporal impact of eventual preventive or corrective actions to be applied in
the Paraopeba River basin. Taking all these insights and potential actions together, the
main contribution and novelty of this work lies in combining, in a single study, the seg-
mentation of a river system that was divided into three segments due to a technological
accident: not impacted, impacted and potentially impacted. Each homogeneous sector was
analyzed from a geochemical and environmental point of view, using artificial intelligence
approaches capable of linking the immense number and diversity of variables that con-
tribute to the quality of water in rivers and sediments and, most importantly, building a
predictive structure capable of anticipating the river’s future.

2. Materials and Methods
2.1. Study Area

The study area comprises the Paraopeba River basin (area: 13,600 km2), located in
the Brazilian state of Minas Gerais (Figure 1). The basin rises from the mouth, located at
the confluence with the São Francisco River (altitude: 553 m.a.s.l.), where the Três Marias
reservoir was created by the Bernardo Mascarenhas hydroelectric dam, to the spring located
in the south edge of Espinhaço mountain range, Cristiano Otoni municipality (altitude:
1610 m.a.s.l). The relief has a strong influence on precipitation. In general, the annual
rainfall increases from the lowlands to the highlands, ranging from 1185 to 1750 mm·year−1.
Besides topography, seasonality is also a great factor in rainfall variation, because 85–90%
of all precipitation occurs in a rainy period generally running from October to March.



Water 2024, 16, 379 4 of 32

Figure 1. Map of Paraopeba River basin, with indication of major tributaries, municipality centers,
position in the Brazilian state of Minas Gerais, and location of four water and sediment monitoring
stations: PT-52 (“upstream”), PT-13, PT-14 (“anomalous”) and PT19 (“natural”), as well as one
streamflow station BCF-RL-08, all used in the statistical assessment and artificial intelligence modeling
of water–sediment interactions. The shaded areas describe the general precipitation increase from
the mouth to the spring areas of the basin. The datasets of streamflow and water and sediment
parameters are provided as Supplementary Materials.

In the municipality of Brumadinho, the Vale S.A. company of Rio de Janeiro, Brazil, a
major ore extractor in Brazil and worldwide, owned the tailings dam of the Córrego do
Feijão mine, known as dam B1. This dam collapsed on 25 January 2019, spilling about
11.7 Mm3 of iron- and manganese-rich tailings into the watershed of Ribeirão Ferro-Carvão,
a tributary of the Paraopeba River with an area of about 32.8 km2. The tailings moved along
the Ribeirão Ferro-Carvão, first as an avalanche and then as a debris flow and mud flow,
and 2.8 Mm3 of tailings ended up entering the Paraopeba River, nearly 10 km downstream,
depositing over and mixing with the natural river sediments. In the area closest to dam
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B1, the debris resulting from the collapse (tailings + soil ripped from the stream bed) had a
particle size distribution characterized by 22.5% sand (very fine to medium), 58.9% silt and
18.5% clay. This torrent lost energy over the sinuous course of Ribeirão Ferro-Carvão so that,
when the 2.8 Mm3 of tailings entered the Paraopeba River, they were just composed of very
fine fractions, namely, 63.4% silt and 36.3% clay. Regarding the chemical composition, this
mud contained aluminum (16.8 g·kg−1), iron (139.5 g·kg−1) and manganese (7.9 g·kg−1),
and smaller proportions of phosphorus, arsenic and lead, with an average density of
3.5 g·cm−3 [43]. When compared with the natural sediments of the Paraopeba River, the
mud was enriched in the finest fractions, because the natural sediments had, on average,
46.9–58.3% silt (dry period–rainy period) and only 2.3–3.9% clay. It was also enriched in
iron and manganese, but not in aluminum, as, in the dry period, the natural sediments of
the Paraopeba River presented average concentrations of aluminum, iron and manganese
of 18.6%, 79.3% and 1.6%, respectively, and in the rainy period, of 20.9%, 68.3% and 1.9%,
respectively (refer to the Supplementary Materials).

2.2. Dataset

Since the date of the B1 dam disaster, the Vale S.A. company implemented a monitor-
ing plan, comprising daily water and sediment sampling accompanied by the physical–
chemical characterization of 270 parameters at 65 different locations [41,42], as ordered
by a court decision, to prevent the spill from spreading to the Atlantic Ocean. Although
implemented by the company that was responsible for the accident, the monitoring plan
is overseen by the Public Prosecution Service of Minas Gerais and the Minas Gerais Insti-
tute for Water Management, in the context of a Judicial Agreement [44]. The data were
made available for this study in the context of a contract between the Vale, S.A. com-
pany and the higher education institutions affiliated with the study, as indicated in the
Acknowledgements section.

The Vale S.A. company is required by court order to collect a large amount of data,
for example, to determine the presence of hydrocarbons in the water. Based on our experi-
ence from several studies already carried out, we selected the data suitable for this study.
The values of 30 parameters were compiled from the data records, spanning the January
2019–December 2021 period. The list of parameters is depicted in Table 1. The datasets
were organized into 6 compartments. Three of them (A, B, E) contained data about 6 con-
taminants: aluminum, arsenic, lead, iron, phosphorus and manganese, with the respective
concentrations in water (dissolved and total) and in sediment + tailings mixtures. A fourth
compartment (C) covered the data related to the river conditions: dissolved oxygen, pH,
oxy-reduction potential, temperature and turbidity. A fifth compartment (F) covered the
granularity of sediments and tailings: clay, silt, very fine-grained sand, fine-grained sand,
sand, coarse-grained sand and very coarse-grained sand. Finally, the flow of the Paraopeba
River was integrated in the (D) compartment.

The data on the 30 parameters were compiled from the records of four water and
sediment monitoring stations, represented in Figure 1, which were selected among the
65 monitored locations to represent specific domains within the Paraopeba River. The raw
data are provided as Supplementary Materials. The measurement protocols are described
in Section 2.2.1. After the rupture of dam B1 in Brumadinho, the Paraopeba River was
divided into three regions, namely “upstream”, “anomalous” and “natural”, justified by
the disparity of iron and manganese concentrations measured in the sediments or sediment
+ tailings mixtures. In Figure 1, it is evident that the station designated “upstream” (PT-52)
is located 12.6 km upstream of dam B1, meaning in a sector of the Paraopeba River exempt
from the effects of the accident. It also shows that the “anomalous” segment is located
between of the confluence of Ribeirão Ferro-Carvão with the Paraopeba River and the
physical barrier called Igarapé weir (PT-14, located 53.9 km downstream of the B1 dam
site). The PT-13 station, hereafter referred to as the “anomalous station”, corresponds to
the sector most impacted by the tailings dump, as per the report of the Arcadis company
about mechanical drillings executed along the river and corresponding characterization of
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sediment and tailings testimonies [45]. And finally, the “natural” station (PT-19) is located
249.8 km downstream of dam B1, corresponding to a sector not yet affected by the dam
break as per the same report of Arcadis company.

Table 1. Compartments and corresponding parameters assessed in the monitoring stations PT-52
(“upstream”), PT-13 (“anomalous”) and PT-19 (“natural”), as well as in the BCF-RL-08 streamflow
station, used in the statistical and artificial intelligence models. The dataset of weakly averaged
values for all these parameters is provided as Supplementary Materials.

Compartment Variable Description Unit

A
River water chemistry
(concentrations of contaminants;
dissolved)

Al(dis) Dissolved Aluminum mg L−1

As(dis) Dissolved Arsenic mg L−1

Pb(dis) Dissolved Lead mg L−1

Fe(dis) Dissolved Iron mg L−1

P(dis) Dissolved Phosphorus mg L−1

Mn(dis) Dissolved Manganese mg L−1

B
River water chemistry
(concentrations of contaminants;
total)

Al(tot) Total Aluminum mg L−1

As(tot) Total Arsenic mg L−1

Pb(tot) Total Lead mg L−1

Fe(tot) Total Iron mg L−1

P(tot) Total Phosphorus mg L−1

Mn(tot) Total Manganese mg L−1

C River water condition

DO Dissolved Oxygen mg L−1

pH pH
Eh Redox Potential mV
T Temperature ◦C
Tb Turbidity NTU

D Streamflow Q Streamflow m3 s−1

E
Tailings/sediment chemical
composition

Al(sed) Aluminum mg L−1

As(sed) Arsenic mg L−1

Pb(sed) Lead mg L−1

Fe(sed) Iron mg L−1

P(sed) Phosphorus mg L−1

Mn(sed) Manganese mg L−1

F Tailings/sediment grainsize
fractions

Clay Clay (0.0002–0.00394 mm) g kg−1

Silt Silt (0.00394–0.062 mm) g kg−1

sandVF Very fine-grained sand
(0.062–0.125 mm) g kg−1

sandF Fine-grained sand (0.125–0.25 mm) g kg−1

sandM Sand (0.250–0.500 mm) g kg−1

sandC Coarse-grained sand (0.500–1.000
mm) g kg−1

sandVC Very coarse-grained sand
(1.00–2.00 mm) g kg−1

The statistical and artificial intelligence models were based on weekly averages of
each time series presented in Table 1, smoothed by a moving average process of order 4 as
advocated by [46] for time series analysis. The use of a moving average plays a filtering
role, minimizing outliers but also attenuating peaks. The main advantage is to reduce the
time lag between the response of dependent variables (e.g., the metal concentrations) to
the evolution of streamflow. Our main independent variable is the streamflow, and we
know that there is always a delay between the moment of its increase or decrease and the
corresponding effect on the other variables. Thus, through the moving average process, we
minimize the lag phase among the intervening variables.
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In addition to the physical–chemical parameters measured in the water and sediment
samples, the models considered the flow records measured at the BCF-RL-08 hydrometric
station of the Vale, S.A. company (Figure 1). The database used in the statistical assessment
and artificial intelligence modeling is presented as Supplementary Materials, where the
laboratories and analytical methods used in the determination of each parameter are also
mentioned. Considering the large number of variables used in the current study, a list of
notations and abbreviations is provided in Abbreviations.

2.2.1. Measurement Protocols

Chemical and granulometric analyses of tailings, sediments and water were carried
out using industry-standard techniques in the laboratories of SGS and BIOAGRI [47]. The
ABNT NBR ISO/IEC 17025:2017 standard qualified both laboratories, ensuring their compli-
ance with traceable quality assurance/quality control (QA/QC) policies and processes [47].
The accreditation codes are CRL-0172 for BIOAGRI and CRL-386 for SGS.

Laser diffraction was used to assess the grain sizes of the tailings and sediments
according to ISO 13320:2009, while thermogravimetry (Leco, model 701) and pycnome-
try (Quantachrome Instruments, model ULTRAPYC 1200e) were used to calculate loss
on ignition (LOI) and density, respectively. Inductively coupled plasma atomic emission
spectrometry (ICP-AES; Agilent, model 5110) was used for measurement and EPA method
3050B—“Acid digestion of sediments, sludges and soils” was used for sample prepara-
tion [47]. The samples were examined using fused pellet analysis, and the amounts of major
and minor elements (such as Si, Al, Fe, Ti, Ca, Mg and P) were assessed using an X-ray
fluorescence spectrometer (Panalytical, model Axios Minerals) [47]. Vale SA’s Mineral
Development Center carried out the mineralogical analyses (including oxides of quartz,
feldspar, Fe and Mn, among other minerals). QEMSCAN identified the constituent minerals
by combining electron microscopy and EDS microanalysis pixel by pixel.

Multiparameter probes were used to measure the physical characteristics of the water
in situ. The Standard Method for the Examination of Water and Wastewater no. 3125—
“Metals in Water by Inductively Coupled Plasma Mass Spectrometry” (ICP-MS) was used
for measurement, and no. 3030—“Nitric Acid Digestion of Metal Samples” was used
for sample preparation in the chemical analysis of metals and arsenic in water [47]. The
standard technique of the “Ascorbic Acid Method” no. 4500-PE was used to quantify
phosphorus [47].

2.3. Model Framework

The workflow is illustrated in Figure 2, which generally describes the model frame-
work proposed in this study to assess water–sediment interactions in large rivers. The
dataset preparation, based on the definition of compartments, has been described in Sec-
tion 2.2. From that stage onwards, the river model sets up the working spatial and temporal
domains. In general, the spatial domain is thought to represent regions of dominant
sediment sources, either natural (e.g., determined by geology) or anthropogenic (e.g., de-
termined by land use). In the present study, the river model embedded a spatial domain
composed of three regions, two of them dominated by natural sediments (the “upstream”
and “natural” segments) and a third dominated by natural sediments overlaid or mixed
with mine tailings (the “anomalous” segment). The temporal domain is meant to discrimi-
nate periods of contrasting rainfall or streamflow, which, in the present study, were linked
to the dry and rainy periods of Brazil’s tropical climate.
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Figure 2. River model proposed to assess water–sediment interactions in large rivers, based on the
initial definition of spatial and temporal domains succeeded by the application of an ensemble of
statistical and artificial intelligence algorithms and integrated interpretation of their results.

2.3.1. Experimental Phase

Having defined the dataset as well as the spatial and temporal domains, this informa-
tion feeds univariate, bivariate and multivariate statistical models, all integrated in what
we called the “experimental phase”. The observed values of each parameter are obtained
by measurement using suitable and properly calibrated sensors. The sensors have their
accuracy specifications and confidence intervals, which can be checked in the references
listed in Section 2.2.1. Measurement protocols.

In the first step, descriptive statistical analyses are applied to a list of parameters (i.e.,
Table 1) measured at the monitoring stations that represent the spatial domains, with the
purpose of assessing their variability (univariate analysis). The analyses are repeated for
the dry and rainy periods to assess seasonally related variability. Complementing the
numerical assessments, the univariate analyses comprise the drawing of boxplot diagrams
to facilitate interpretation. The descriptive statistical analyses are followed by bivariate
and multivariate modeling in a second step. In the present study, we applied these and
subsequent analyses only to the “upstream” and “anomalous” PT-13 segments, because
they were the most contrasting sectors of the Paraopeba River in terms of their relationship
to the B1 dam collapse (non-impacted and impacted, respectively), and hence the best to
differentiate water–sediment interactions according to sediment source (natural sediments
or natural sediments + mine tailings, respectively). Thus, to understand the relationship
between the measured variables, Spearman rank-order correlation and principal component
analysis were performed. Spearman correlation coefficients are computed to capture the
magnitude of bivariate relationships among the relevant variables (e.g., those listed in
Table 1), and principal component analysis is used to identify the most relevant variables
in the system.

2.3.2. Modelling Phase

In the second phase of the workflow depicted in Figure 2, known as the “modeling phase”,
artificial intelligence models were trained. The choice of machine learning models is due to
the fact that they make no theoretical assumptions about the behavior of the phenomenon
under study. Thus, the relationship between system variables can be freely captured.

In this study, the models used included multiple linear regression models with step-
wise forward selection of variables, multilayer perceptron neural networks and random
forest regressors. Multiple linear regression (MLR) is a model based on minimizing the sum
of squares of the deviations between observed and estimated values (least squares) and was
used to help selecting variables for the artificial intelligence (AI) models and as a baseline
in comparisons of results and performances with the AI methods, as suggested by [48].
For the MLR model, the feature selection process was performed stepwise forward using
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the “Sequential Feature Selector” method [49] from the ‘mlxtend’ library [50] of Python
programming language version 3.9.12 (https://pypi.org/project/mlxtend/). The feature
selection ensures a better result for the MLR model, allowing greater robustness, using a
smaller number of variables but with a greater relevance.

Regarding the artificial intelligence methods, it is worth referring to the performance
of existing algorithms, which can be very different depending on the method’s complexity
and data quality [51]. In the present study, we selected multilayer perceptron neural
networks and random forest regressor, using the same variables as those resulting from
the stepwise selection of MLR models. Regardless of the model, the dissolved and total
concentrations of aluminum, iron and manganese in water were used as targets (dependent
variables; namely, Al, Fe and Mn from Table 1) and the remaining parameters included in
the working dataset as features (independent variables; i.e., the other variables listed in
Table 1). The multilayer perceptron (MLP) neural network model was chosen for this work
because it allows training on nonlinear problems, although it has training difficulties due
to local minimum problems and has a large number of hyperparameters, as mentioned
in [52]. The Random Forest (RF) regressor model was chosen because it is very flexible
in regression problems, for combining a collection of decision trees and being robust in
relation to outliers. Its training is slower when compared with other machine learning
algorithms, but the results are more precise and accurate [53]. The training method was
identical for all models and cross-validation with 3 folds was used. The precision of all
machine learning methods was assessed by the R2

Adjust (Equation (1)), as proposed by [54]:

R2
Adjust = 1 −

(
1 − R2)× (n − 1)

n − k − 1
(1)

where R2 is the coefficient of determination, n the number of entries in the dataset, and k
the number of independent variables.

R2
Adjust is the percentage of the model’s ability to correctly estimate the dependent

variable as a function of the independent variables. The closer it is to 1, the better the model.
The accuracy was analyzed by the Root Mean Squared Error (RMSE) (Equation (2)) [55]:

RMSE =

√
∑N

i=1(Yobsi − Yesti)
2

N
(2)

where Yobs is the target’s measured value and Yest the value estimated by the machine
learning models. RMSE is the average error between the predicted and observed values in
a data set. The smaller the value, the smaller the error.

Taking the statistical and machine learning results altogether, the river model is
expected to provide an assortment of insights about water–sediment interactions valid for
the working spatial and temporal domains, which comprise the contribution of sediment
source composition and grain size to changes in river water composition and the influence
of streamflow discharge and environmental conditions on the type of transport (dissolved
particulate). In similar work, these insights, together with the neural networks trained by
the machine learning algorithms, will set up the basis for predictions of water composition
as function of variations in streamflow and sediment characteristics. Thus, the river model
as whole (Figure 2) provides a comprehensive assessment and a panoramic view over most
factors controlling water–sediment interactions in a large river. It goes without saying that
the specific methods used to implement the river model can change without compromising
its structure or concept.

https://pypi.org/project/mlxtend/
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3. Results and Discussion
3.1. Experimental Results
3.1.1. Descriptive Statistics

• Aluminum, iron and manganese concentrations in water

The mean concentrations of heavy metals in the dissolved phase (Al(dis), Fe(dis) and
Mn(dis)) were always lower in the dry period than in the rainy period (Figure 3). This
outcome points to a positive correlation of these concentrations with the flow rate (cf.
Spearman correlation in Section 3.1.2), recalling that the discharge from Paraopeba River
basin is much lower in the dry period than in the rainy period. The contrast between higher
metal concentrations in the high-flow period (rainy) relative to those in the low-flow period
(dry) has been noted in other regions worldwide, notably in north-central Arkansas (USA),
as reported in the study of [56]. It implies the absence of dilution effects, notwithstanding
the report of those effects in other studies [57,58].

Figure 3. Boxplot diagrams of: (A) Fe(dis), (B) Al(dis) and (C) Mn(dis) concentrations in the dry and
rainy periods of 2019 to 2021, measured at the “upstream” (PT-52), “anomalous” (PT-13 and PT-14)
and “natural” (PT-19) monitoring stations.

The “anomalous” monitoring stations (PT-13 and PT-14) always presented higher
concentrations of those dissolved metals (Al(dis), Fe(dis) and Mn(dis); Figure 3) than the
“upstream” station. On the other hand, the station PT-13, which received the discharge
from the B1 dam break, showed higher values of iron and aluminum compared with the
station PT-14 and the “natural” station. The station PT-14 revealed higher manganese
concentrations than the other stations, and the “natural” station always obtained the lowest
concentrations of Al(dis), Fe(dis) and Mn(dis), regardless of whether the period was dry
or rainy. Overall, these results suggest a spread of contamination downstream, without
affecting the zone where the “natural” station is located, but increasing the manganese
concentrations in the station PT-14, where the Igarapé weir is located. The dissolved fraction
of metal concentrations at the station PT-13 unequivocally marks the disturbance caused
by the mine tailings. The accompanying magnitude can be related to the increase of Fe(dis),
Al(dis) and Mn(dis) concentrations, between the “upstream” station and “anomalous”
station PT-13. Thus, in the rainy period, at the “upstream” station, the average value
of Fe(dis) was 0.55 mg·L−1, while at the station PT-13, it was 0.8 mg L−1. Therefore, an
average increase of 0.25 mg L−1 [+45%] occurred due to the break of dam B1. Regarding
the Al(dis), which showed values of 0.7 mg L−1 and 0.55 mg L−1, respectively, at the
“anomalous” PT-13 and “upstream” stations, the increase was 0.15 mg L−1 [+27%]. Finally,
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for the Mn, where the concentrations varied between 0.1 mg L−1 and 0.025 mg L−1 from
the “anomalous” PT-13 to the “upstream” station, the increase was 0.075 mg L−1 [+300%].
In the dry period, the increases were smaller than in the rainy period, namely, 0.25 mg
L−1, 0 and 0.024 mg L−1, for Fe(dis), Al(dis) and Mn(dis), respectively. The observed
increases likely reflect the relative mobility of Al, Fe and Mn in the river water, which
depends on the isolated or combined action of several factors (e.g., ionic radius) and
processes (cation exchange, adsorption-desorption, hydrolysis, oxidation–reduction). Thus,
the large difference between the percentages of manganese increases relative to the iron
and aluminum counterparts probably reflect the greater mobility of Mn relative to Fe and
Al, as recognized in the reference literature [59].

The concentrations of Al(dis), Fe(dis) and Mn(dis) were always lower than the re-
spective total concentrations (Al(tot), Fe(tot) and Mn(tot)), as can be seen by comparing
Figures 3 and 4. On the other hand, the differences between total and dissolved concentra-
tions were more expressive in the rainy season relative to the dry period. Similar outcomes
were obtained in the work of Teramoto [40], who performed in-situ DGT (diffusive gra-
dient in thin films) monitoring and desorption experiments in the Paraopeba River after
the collapse of the B1 dam, which corroborates our results. These authors also pointed a
justification for the results. They anticipated that more material is moved in suspension
during the rainy season, which can raise the total concentrations of all metals. In addition,
a portion of the increased river flow during the rainy season is linked to surface runoff,
which may reduce the amounts of dissolved and labile metals. Similarity among our results
and those obtained elsewhere can also be used to validate our findings. Thus, higher
percentages of particulate versus dissolved transport were also reported in studies in the
Athabasca River [60], in the Fukushima region, where the accident at the Fukushima Daiichi
Nuclear Power Station occurred [61], or along the Yangtze River basin from its source to
the estuary during flood and drought periods [62], among others. In some case studies and
for some metals (e.g., aluminum), the proportions of dissolved transport overlapped those
of particulate transport, mainly when the effect of water pH was prominent over the other
factors. Usually, those observations hold for rivers affected by acid mine drainage, where
pH is low (<5), namely, for the Odiel River in southwestern Spain [63]. However, that was
not the case in the present study.

Figure 4. Boxplot diagrams of: (A) Fe(tot), (B) Al(tot) and (C) Mn(tot) concentrations in the dry and
rainy periods of 2019 to 2021, measured at the “upstream” (PT-52), “anomalous” (PT-13 and PT-14)
and “natural” (PT-19) monitoring stations.
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The average concentrations of Al(tot), Fe(tot) and Mn(tot) were always lower in the
dry period than in the rainy period (Figure 4). This outcome reveals a positive correlation
of those concentrations with the flow rate (cf. Spearman correlation in Section 3.1.2), but
higher than those previously detected for the dissolved concentrations. The effect of flow
rate on increasing total concentrations, which can be related with particulate transport, was
also observed in the study of Beltaos and Burrel [64] in the Saint John River (Canada), where
slight increases in metal concentrations were reported during the thaw period. As verified
with the dissolved fraction concentrations, the “anomalous station” monitoring station
always had higher concentrations of Al(tot), Fe(tot) and Mn(tot) than the “upstream”
station. Thus, one can also estimate how much the rupture of dam B1 impacted the
total concentrations, by computing the differences of Al(tot), Fe(tot) and Mn(tot) between
the two stations. In the rainy period, the average Fe(tot) at the “upstream” station was
7 mg L−1, while at the “anomalous station”, it was 9 mg L−1. This represents an average
increase of 2 mg L−1 [+28%]. Regarding the Al(tot), where the values were 6 mg L−1 and
5.5 mg L−1, respectively, at the “anomalous” and “upstream” stations, the increase was
0.5 mg L−1 [+9%]. And for the Mn(tot) (with 1.5 mg L−1 and 0.7 mg L−1), the increase was
0.8 mg L− 1 [+114%]. These results are similar to (though smaller than) those verified with
the dissolved concentrations, so they are interpreted in a similar way. In the dry period, the
increases were null, with the exception of Mn, which increased 0.1 mg L−1. The “natural”
station showed values of total concentrations not very different from those measured at the
“upstream” station, indicating that the “natural” station has not yet undergone significant
changes due to the dam break.

• Ambient conditions and concentrations of other elements in the water

Regarding the variables pH (Figure 5A), temperature (Figure 5B), turbidity (Figure 5C)
and total arsenic (Figure 5D), they did not show significant differences between the “up-
stream” and “anomalous” monitoring stations. In other words, these variables were not
typical markers of the B1 dam break. However, dissolved lead (Figure 5E), total lead
(Figure 5F), dissolved phosphorus (Figure 5G) and total phosphorus (Figure 5H) showed
differences between the “upstream” and “anomalous” stations. Thus, as observed with
iron and manganese, lead and phosphorus also left a signature of Brumadinho’s tailings
dump in the Paraopeba River, at least between January 2019 and December 2021.

When comparing the results between the dry and rainy periods, there are significant
contrasts between temperature (Figure 5B), turbidity (Figure 5C), dissolved phosphorus
(Figure 5G) and total phosphorus (Figure 5H). The results for temperature and turbidity are
not surprising since they likely reflect the differences in air temperature and flow, respectively,
which are usually higher in the rainy period relative to the dry period of Brazil’s tropical
climate. The higher values of phosphorus in the rainy period, both dissolved and total,
reinforce the belief that possible dilution effects related with streamflow rate increases were
not dominant in this study. Thus, the justification for the results should be found in the
resuspension of particulate phosphorus in response to higher flows observed in the rainy
period, as well as in the subsequent transfer of this element to the dissolved phase (e.g.,
through desorption). Considering that phosphorus, in addition to its origin in the tailings
mud, is mainly related to agricultural activities, the higher concentrations observed in the
rainy period may also reflect a greater erosion of phosphorus from crop lands, transport in
surface runoff, and discharge into the main watercourse (Paraopeba River).
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Figure 5. Boxplot diagrams of ambient conditions and contaminants other than Fe, Al and Mn
dissolved and total concentrations in the water of Paraopeba River: (A) pH, (B) temperature,
(C) turbidity, (D) total arsenic, (E) dissolved lead, (F) total lead, (G) dissolved phosphorus,
(H) total phosphorus, in the dry and rainy periods of 2019 to 2021, measured at the “upstream”
(PT-52), “anomalous” (PT-13 and PT-14) and “natural” (PT-19) monitoring stations.

• Metal, arsenic and phosphorus concentrations in sediment and tailings

In the (E) compartment of Table 1, related to the chemical composition of sediments
+ tailings, the “anomalous” PT-13 station showed the lowest concentration of aluminum
(Figure 6A), while the concentrations of iron (Figure 6D), phosphorus (Figure 6E) and
manganese (Figure 6F) increased from the “upstream” to the “anomalous” PT-13 station
and from the latter to the “anomalous” PT-14 station, which reached the highest values in
both the dry and rainy periods. These results confirm aluminum as a secondary contributor
to the tailings, and that, during the January 2019–December 2021 period, a spreading of
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iron- and manganese-rich tailings from the zone most impacted by the spill to the Igarapé
weir zone located nearly 50 km downstream (Figure 1) has occurred.

Figure 6. Boxplot diagrams of compartment (E) variables, which are related to the chemical composi-
tion of sediments + tailings mixtures: (A) aluminum, (B) arsenic, (C) lead, (D) iron, (E) phosphorus
and (F) manganese, in the dry and rainy periods of 2019 to 2021, measured at the “upstream” (PT-52),
“anomalous” (PT-13 and PT-14) and “natural” (PT-19) monitoring stations.

• Particle size distribution in sediments and tailings

The studied period showed an average flow rate of 90 m3 s−1 and 25 m3 s−1 in the rainy
and dry periods, respectively (Figure 7H). This flow difference did not significantly alter the
particle displacement between the two seasons, with the exception of the “upstream” station in
relation to the very fine-grained (Figure 7C) and fine-grained (Figure 7D) sand fractions. The
coarse-grained (Figure 7F) and very coarse-grained (Figure 7G) sands had higher concentrations
in the dry period, mainly in the “anomalous” PT-13 and “natural” monitoring stations. In these
cases, the asymmetry of dry period values was much larger than that of their rainy period
counterparts. Eventually, in the rainy period, the higher flows ensure the displacement of
all sediment fractions, reducing the asymmetry, while in the dry period, there is a selective
deposition of coarse particles, justifying the larger asymmetry [65,66].
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Figure 7. Boxplot diagrams of (F) compartment variables (Table 1), which are related to the
granulometric fractions of sediments and tailings: (A) clay, (B) silt, (C) very fine-grained sand,
(D) fine-grained sand, (E) sand, (F) coarse-grained sand, (G) very coarse-grained sand.
Boxplot diagram of (D) compartment variable: (H) river flow. The dry and rainy periods between
2019 and 2021 were considered, as well as the “upstream” (PT-52), “anomalous” (PT-13 and PT-14)
and “natural” (PT-19) monitoring stations.

3.1.2. Analytical Statistics

• Spearman’s rank-order correlation matrix

The correlation analysis between all the variables listed in Table 1, computed for the
“upstream” and “anomalous” stations and the dry and rainy periods (Figure 8), points to
an overall negative correlation between the (E) compartment, which refers to the chemical
characteristics of sediments, and the streamflow compartment (D). The sediment’s granu-
lometry compartment (F) also correlated with the flow, but the results depended on the
season. In the dry period, the finer fractions correlated negatively and the coarser ones
positively with the flow. In the rainy period, the correlations with the flow were generally
negative, except for the clay fraction at the “upstream” station. Finally, the compartments
concerning the concentrations in water, dissolved (A) or total (B), had generally positive
correlations with the streamflow. The correlations between flow and grain size suggest
that mobilization of particles from the river bed into the water column can be markedly
influenced by particle diameter, as noted in other works [67–69], meaning that cohesive
properties of finer particles [70] also present in the sediments and tailings may not play a sig-
nificant role in that process in the studied locations. In a recent publication where sediment
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+ tailings transport was modeled in a sector of the Paraopeba River using the physically
based Riverflow 2D computer package [71], namely around the Igarapé weir, located near
the PT-14 station, the results were reliable without considering the aforementioned cohesive
effects. Thus, the finer particles were moved from the bed to the water column under the
action of flow (decreasing their relative concentration in the mixture), while the coarser
ones remained immobile (increasing their relative concentration). In the rainy period of
the “upstream” station, the relative increase in the clay fraction points to cohesive effects.
In this period, the transport capacity of higher flows likely allowed the mobilization of all
grain size fractions simultaneously, facilitating the interaction between particles, namely,
between clay particles that eventually developed cohesive bonds [72]. Thus, the non-clay
fractions maintained a non-cohesive behavior, responding to flow increases the same way
as in the dry period, while the clay fraction’s comportment reversed due to cohesive
forces. Regardless of the season, the resuspension of sediments was accompanied by the
mobilization of metals. The correlation between flow and sediments (compartment (F)),
coupled with the correlation between flow and metals and other chemical elements present
in the sediments (E) or in the water (A and B), probably means that, after resuspension,
the chemical elements of sediment particles moved to the water column in particulate or
dissolved form, through processes of dissolution or desorption [40]. This transfer is further
corroborated by the negative correlations observed between concentrations in water and
concentrations in sediment, particularly evident at the “upstream” station (Figure 8A,B).

Figure 8. Spearman’s rank-order correlations between all variables listed in Table 1, computed at the
“upstream” (panels (A,B)) and “anomalous” PT-13 (C,D) monitoring stations, in the dry and rainy periods.
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Considering the results of Spearman’s rank-order correlation analysis (Figure 8), a
selection of five variables with the highest positive and negative correlations for the predic-
tion of Al, Fe and Mn concentrations in water, dissolved and total, was carried out for each
monitoring station and the two seasons (Table 2). For example, total aluminum, total and
dissolved iron and flow rate (in green) are the variables with the highest correlations for
estimating the aforementioned targets at the “upstream” station and in the dry period. In
general. the results highlight the inter-correlation among the three metals, probably of geo-
logical origin [39], as well as their preferential association with turbidity and temperature
in the rainy period.

Table 2. List of the highest Spearman rank-order correlation coefficients at the “upstream” and
“anomalous” PT-13 monitoring stations and in the dry and rainy periods.

Station Period Target
Variable

Greater
+Correla-

tion
Feature Greater

−Correlation Feature Most Important
Features

PT-52 Dry Al(dis) 0.725 Fe(dis) −0.490 Fe(sed) 0.913 Turb
SeaSon Al(tot) 0.913 Turb −0.315 Al(sed) 0.896 Al(tot)

Fe(dis) 0.745 Q −0.639 Al(sed) 0.895 Fe(tot)
Fe(tot) 0.896 Al(tot) −0.414 Al(sed) 0.745 Q
Mn(dis) 0.426 Silt −0.416 Q 0.725 Fe(dis)
Mn(tot) 0.895 Fe(tot) −0.402 Al(sed)

PT-52 Rainy Al(dis) 0.665 P(dis) −0.479 T 0.967 Fe(tot)
Season Al(tot) 0.967 Fe(tot) −0.234 pH 0.967 Al(tot)

Fe(dis) 0.817 P(dis) −0.578 Fe(sed) 0.817 P(dis)
Fe(tot) 0.967 Al(tot −0.238 pH −0.578 Fe(sed)
Mn(dis) 0.469 P(tot) −0.250 Sand_c −0.479 T
Mn(tot) 0.838 Fe(tot) −0.244 T

PT-13 Dry Al(dis) 0.729 Al(tot) −0.466 Pb(dis) 0.898 As(tot)
Season Al(tot) 0.729 Al(dis) −0.326 pH 0.831 Turb

Fe(dis) 0.898 As(tot) −0.185 Sand_f 0.729 Al(tot)
Fe(tot) 0.557 Mn(tot) −0.353 pH 0.729 Al(dis)
Mn(dis) 0.686 As(tot) −0.281 Sand_vc 0.557 Mn(tot)
Mn(tot) 0.831 Turb −0.285 pH

PT-13 Rainy Al(dis) 0.766 Fe(dis) −0.387 T 0.908 Turb
Season Al(tot) 0.743 Turb −0.289 pH 0.886 Fe(tot)

Fe(dis) 0.885 Mn(dis) −0.247 As(sed) 0.885 Mn(dis)
Fe(tot) 0.908 Turb −0.205 T 0.885 Fe(dis)
Mn(dis) 0.885 Fe(dis) −0.259 As(sed) −0.387 T
Mn(tot) 0.886 Fe(tot) −0.228 As(sed)

• Principal Component Analysis

The results of principal component analysis (PCA) provided joint information (multi-
variate) about the list of parameters represented in Table 1, allowing a deeper understanding
on the interactions among the defined compartments. The PCA was run four times, con-
sidering the combinations of monitoring stations and seasons, namely the “upstream”
and “anomalous” stations and the dry and rainy periods. The dataset variability at the
“upstream” station in the dry period, was explained in 50% by the components PC1 and
PC2. Ata the same station, but in the rainy period, the percentage was 48.3%, while the
“anomalous station” reached values of 40.6% and 46.3% for the dry and rainy periods,
respectively (Figure 9).
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Figure 9. Principal component analysis (biplots) of all parameters listed in Table 1: (A) “upstream”
station in the dry period; (B) “upstream” station in the rainy period; (C) “anomalous” PT-13 station
in the dry period; (D) “anomalous” PT-13 station in the rainy period.

For the “upstream” station in the dry period (Figure 9A), the results suggested that the
principal component PC1 should be termed “Chemical Characteristics”, as the chemistry
of the sediments (compartment (E); Table 1) clustered together, contrasting with the total
concentrations of metals in water (compartment (B)). In addition, the principal component
PC2 could be called “Granulometric Characteristics”, because the concentrations of metals
in the dissolved phase (compartment (A)) were in the opposition to the grain size of
sediments (Compartment (F)). These results indicate for the “upstream” station in the
dry period, that the Al(tot), Fe(tot) and Mn(tot) correlated negatively with the sediments’
chemical characteristics, while the Al(dis), Fe(dis) and Mn(dis) had negative correlation
with the granulometric characteristics. In terms of interactions among compartments,
the results showed that the total concentrations in water are mostly explained by the
resuspension of particles composed of aluminum, iron and manganese oxides (under
the action of flow), while the dissolved concentrations are explained by the desorption
(controlled by oxidation–reduction processes) of metals from sediment particles suspended
in the water column that do not necessarily have to be aluminum, iron or manganese
oxides. This type of nexus, involving total concentrations, dissolved concentrations and
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their respective control factors (resuspension, change in the ambient conditions) has been
similarly described in several rivers [73–75]. The results of PCA added comprehension
to the boxplot and Spearman’s correlation analyses, where this type of association has
been suggested as well, because the PCA set a clear separation between particulate and
dissolved transport through linking the two processes to independent variation trends (the
PCs), while the previous analyses could not accomplish that result.

At the “upstream” station, but in the rainy period (Figure 9B), the principal compo-
nents PC1 and PC2 could also be called “Chemical Characteristics“ and “Granulometric
Characteristics”, respectively, similarly to the dry period. However, in the rainy period,
the Al(dis), Fe(dis) and Mn(dis) in water showed negative correlation with the sediment’s
chemistry, while the Al(tot), Fe(tot) and Mn(tot) correlated negatively with the sediment’s
grain size. Thus, the associations among compartments reversed in the rainy period relative
to the dry period. The main difference between the two periods is represented by the hy-
drologic regime, which is generically laminar and of low flow in the first case and turbulent
and of high flow in the second. Thus, the observed inversion should be linked to that
condition. The negative correlation between the chemical composition of water (dissolved
metal concentrations) and the sediment’s chemistry suggests that for the “upstream” station
in the rainy period, resuspension succeeded by dissolution of Al, Fe and Mn oxides may
have been a dominant mechanism in the partition and transport of these metals. As stated,
during periods of high stream discharge, the flow may become turbulent, a condition
that causes the disaggregation of large cohesive flocs through more intense and frequent
collisions, thus increasing the dissolution potential of Al, Fe and Mn oxides [76,77]. On
the other hand, the higher flows from the rainy period allow the re-suspension of coarser
particles that are less capable of metal adsorption because of their smaller specific surface
area [78,79]. This could help to explain the negative correlations between the sediment’s
granulometric compartment and the total concentrations of metals in the water.

The “anomalous” station obtained very different responses from those observed at the
“upstream” station representing the non-impacted (control) sector of Paraopeba River. Thus,
the differences between the two stations should be viewed as the impact of the B1 dam
rupture on the structure of the relationships between the flow (either in the dry or rainy
period), the characteristics of sediments + tailings mixtures, and the quality of river water.
In the dry period, PC1 opposed the grain size classes to all the other variables in the system.
In PC2, there was a negative correlation between the dissolved and total concentrations of
metals in the water and the concentrations of metals in the sediments + tailings (Figure 9C).
In the rainy period, there was a strong negative association in PC1 with the percentage
of sand and the other system variables. PC2 opposed the concentration of lead in the
sediments + tailings to the concentrations of the other variables (Figure 9D). Regardless of
the period being dry or rainy, PC1 highlights the importance of grain size for the structure of
“anomalous station” data. This is not surprising because this “anomalous” station received
sediments and tailings during the studied period, and a major difference between natural
sediments and tailings is represented by their grain size distributions. The tailings that
were injected into the Paraopeba River were characterized by a mixture of silt (63.4%) and
clay (36.3%), while the natural sediments contained some silt (46.9–58.3%; dry period-rainy
period) but were very poor in clay (2.3–3.9%). Regarding PC2, in the dry period, the results
point out the dominance of sediments + tailings chemistry in the formation of contaminant
concentrations in water, both of particulate and dissolved fractions. Combining these
results with those of PC1 for this period, it becomes clear that, even under conditions of
low flow, in the impacted zone, it was possible to mobilize the tailings from the bed into
the water column, increasing the total concentrations (particulate fraction) downstream,
and simultaneously desorb or dissolve the metals contained in the silt and clay particles,
increasing the concentrations of the dissolved fraction. In other words, the dry period
results expose under no doubt an impact of the B1 dam rupture on the water quality of
the Paraopeba River, through the resuspension of iron- and manganese-rich silts and clays
from the tailings and subsequent mobilization of these metals into the water column.
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3.2. Artificial Intelligence Modelling
Artificial Intelligence Methods

The experimental phase of this study statistically analyzed the processes and condi-
tions responsible for the concentrations of aluminum, iron and manganese in the impacted
and non-impacted areas of Paraopeba River after the occurrence of B1 dam disaster at the
Córrego do Feijão mine, which injected 2.8 Mm3 of iron- and manganese-rich tailings into
the main watercourse on 25 January 2019. One way to understand how these concentra-
tions may evolve in the future is to develop models capable of being precise and accurate
enough to gain predictive power. The following sections present the results of the models
tested with increasing complexity, which have always shown remarkable precision and
accuracy. They will therefore serve as a basis for the development of scenarios to support
decision-making in the river’s ecological and environmental restoration.

• Multiple linear regression with stepwise forward selection of variables

The multiple linear regression (MLR) with stepwise forward selection of variables was
precise for the estimates of dissolved and total Al, Fe, Mn, because the average R2

Adjust
was 0.84, with all models significant at p < 0.05. The models behaved better for iron
(R2

Adjust = 0.89), than for aluminum (0.84) and finally for manganese (0.77). These num-
bers jointly refer to precisions of total and dissolved concentrations taken together. In more
detail, it was seen that the models behaved better for the total concentrations relative to the
dissolved concentrations, because the corresponding average R2

Adjust were larger in the first
case, namely for Al (0.92 > 0.75), Fe (0.96 > 0.81) and Mn (0.90 > 0.63). The accuracy values
were all less than 2 for Al(tot), Fe(tot) and Mn(tot) and less than 0.2 for Al(dis), Fe(dis) and
Mn(dis). The R2

Adjust of all MRL models are depicted in Table A1 of Appendix A.
The feature variables selected for the MLR models differed according to the target vari-

able, namely for the total and dissolved concentrations of aluminum, iron and manganese.
They are indicated in Table A1 of Appendix A and accompanied by the corresponding
fitting parameters. For example, to estimate the dissolved Al at the “upstream” station,
considering the joint dry and rainy periods, the fitted equation was (Equation (3)):

Al(dis) = 0.186 + 0.15 Al(tot) − 0.032 Pb(dis) + 0.029 Pb(tot) + 0.071 Fe(dis) − 0.127 Fe(tot) + 0.031 Pb(dis) + 0.008 Mn(dis) + 0.025 Turb +0.001 sandM − 0.017 sandVC (3)

As the variables were standardized, the angular coefficients also informed about their
importance in the estimate. In the case of Al(dis) equated above, the most important
variable was Al(tot), with an angular coefficient of 0.15. Thus, for each standardized
increase of one unit in Al(tot), the Al(dis) will increase by 0.15 or 15%. The linear coefficient
or intercept (0.186) indicates the mean value of Al(dis) at the monitoring station. The
models for dissolved and total iron and for dissolved and total manganese are presented in
Tables A2 and A3 in Appendix A, respectively.

Multiple linear regression gives good results, but it also has a high dependence on the
variables. It is not always guaranteed that a strategy can estimate a variable before using it
in a prediction equation.

• Artificial neural network multilayer perceptron

Anticipating potential non-linear relationships between variables from a riverine
dataset (e.g., Table 1), we chose to apply machine learning models such as multilayer
perceptron neural networks (MLP), with the purpose of improving the precision and
accuracy attained by the multiple linear regression (MLR) models. The fit of MLP neural
networks resulted in R2

Adjust = 0.79 (on average), which is similar than that of MLR models
(0.84). However, the MLP fittings of “upstream” station applied to the rainy period were
better (average R2

Adjust = 0.78) than the corresponding fittings based on MLR (0.74). As
with the MLR, the average R2

Adjust decreased from the iron (0.84) to the aluminum (0.79)
and then to the manganese (0.74) adjustments. The MLP model fits were implemented
using the Grid Search CV method and resulted in different activation, architecture, learning
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rate and solver models for each target (Table 3). The RMSE values (Equation (2)) for total
and dissolved Al, Fe and Mn were less than 2 and 0.2, respectively.

Table 3. Multilayer perceptron neural networks for the estimation of dissolved and total aluminum
(Al), iron (Fe) and manganese (Mn) concentrations in Paraopeba River water, assessed at the “up-
stream” and “anomalous” PT-13 stations and in the dry and rainy periods. The precision was
computed by the R2

Adjust (Equation (1)). The accuracy values calculated by the RMSE (Equation (2))
were less than 2 for the total and less than 0.2 for the dissolved concentrations.

Station/Period Target Activation Architecture Learning
Rate Solver R2

Adjust

“Upstream” Al(dis) identity 2, 2, 2 adaptive lbfgs 0.79

“Anomalous” PT-13 Al(dis) identity 1, 3 adaptive lbfgs 0.55

“Upstream”/Dry Al(dis) identity 2, 3, 4 adaptive lbfgs 0.95

“Anomalous” PT-13/Dry Al(dis) identity 2, 1, 4 adaptive lbfgs 0.85

“Upstream”/Rainy Al(dis) identity 1, 2, 2 adaptive sgd 0.5

“Anomalous” PT-13/Rainy Al(dis) identity 1, 4, 1 adaptive sgd 0.45

“Upstream” Al(tot) identity 3, 2 adaptive lbfgs 0.98

“Anomalous” PT-13 Al(tot) identity 1, 2 adaptive sgd 0.60

“Upstream”/Dry Al(tot) identity 2, 1 adaptive lbfgs 0.99

“Anomalous” PT-13/Dry Al(tot) identity 2, 1 adaptive lbfgs 0.97

“Upstream”/Rainy Al(tot) identity 2, 1 adaptive sgd 0.96

“Anomalous” PT-13/Rainy Al(tot) identity 2, 1 adaptive lbfgs 0.87

“Upstream” Fe(dis) identity 4, 3 adaptive lbfgs 0.80

“Anomalous” PT-13 Fe(dis) identity 1, 2 adaptive sgd 0.50

“Upstream”/Dry Fe(dis) identity 2, 1 adaptive lbfgs 0.93

“Anomalous” PT-13/Dry Fe(dis) identity 2, 1 adaptive lbfgs 0.95

“Upstream”/Rainy Fe(dis) identity 2, 1 adaptive lbfgs 0.82

“Anomalous” PT-13/Rainy Fe(dis) identity 2, 1 adaptive sgd 0.75

“Upstream” Fe(tot) identity 2, 4 adaptive sgd 0.95

“Anomalous” PT-13 Fe(tot) identity 2, 2 adaptive sgd 0.94

“Upstream”/Dry Fe(tot) identity 2, 1 adaptive lbfgs 0.97

“Anomalous” PT-13/Dry Fe(tot) identity 2, 1 adaptive sgd 0.52

“Upstream”/Rainy Fe(tot) identity 2, 2 adaptive sgd 0.93

“Anomalous” PT-13/Rainy Fe(tot) identity 1, 2 adaptive lbfgs 0.98

“Upstream” Mn(dis) tanh 4, 3 adaptive lbfgs 0.52

“Anomalous” PT-13 Mn(dis) tanh 2, 2 adaptive lbfgs 0.95

“Upstream”/Dry Mn(dis) tanh 2, 2 adaptive lbfgs 0.45

“Anomalous” PT-13/Dry Mn(dis) tanh 2, 2 adaptive lbfgs 0.31

“Upstream”/Rainy Mn(dis) tanh 2, 2 adaptive lbfgs 0.54

“Anomalous” PT-13/Rainy Mn(dis) tanh 1, 2 adaptive lbfgs 0.95

“Upstream” Mn(tot) identity 3, 2 adaptive lbfgs 0.90

“Anomalous” PT-13 Mn(tot) identity 2, 1 adaptive lbfgs 0.96

“Upstream”/Dry Mn(tot) identity 2, 2 adaptive lbfgs 0.93

“Anomalous” PT-13/Dry Mn(tot) identity 2, 1 adaptive lbfgs 0.87

“Upstream”/Rainy Mn(tot) identity 1, 2 adaptive lbfgs 0.51

“Anomalous” PT-13/Rainy Mn(tot) identity 2, 2 adaptive sgd 0.96
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• Random forest

The results of MLR and MLP were precise and accurate, but showed some variability:
the R2

Adjust differed among the metals and the RMSE differed among the dissolved and
total concentrations. Thus, we implemented random forest (RF) regressor models based
on decision trees (Table 4) with the purpose of overcoming these problems. The random
forest regressor models obtained average R2

Adjust = 0.92 and RMSE always lower than 0.2,
regardless the target. These results indicate that the RF models were more accurate and
precise than the MLR and MLP models.

Table 4. Random forest regressor model for the estimation of dissolved and total aluminum (Al), iron
(Fe) and manganese (Mn) concentrations in Paraopeba River water, assessed at the “upstream” and
“anomalous” PT-13 stations and in the dry and rainy periods. The precision was computed by the
R2

Adjust (Equation (1)) and the average value was 0.92 regardless the target. The accuracy values
calculated by the RMSE (Equation (2)) were always less than 0.2.

Station/Period Target R2
Adjust

“Upstream” Al(dis) 0.94

“anomalous” PT-13 Al(dis) 0.94

“Upstream”/Dry Al(dis) 0.92

“Upstream”/Rainy Al(dis) 0.92

“anomalous” PT-13/Dry Al(dis) 0.88

“anomalous” PT-13/Rainy Al(dis) 0.91

“Upstream” Al(tot) 0.99

“anomalous” PT-13 Al(tot) 0.94

“Upstream”/Dry Al(tot) 0.92

“Upstream”/Rainy Al(tot) 0.92

“anomalous” PT-13/Dry Al(tot) 0.88

“anomalous” PT-13/Rainy Al(tot) 0.91

“Upstream” Fe(dis) 0.95

“anomalous” PT-13 Fe(dis) 0.94

“Upstream”/Dry Fe(dis) 0.92

“Upstream”/Rainy Fe(dis) 0.92

“anomalous” PT-13/Dry Fe(dis) 0.88

“anomalous” PT-13/Rainy Fe(dis) 0.91

“Upstream” Fe(tot) 0.98

“anomalous” PT-13 Fe(tot) 0.94

“Upstream”/Dry Fe(tot) 0.92

“Upstream”/Rainy Fe(tot) 0.92

“anomalous” PT-13/Dry Fe(tot) 0.88

“anomalous” PT-13/Rainy Fe(tot) 0.91

“Upstream” Mn(dis) 0.87

“anomalous” PT-13 Mn(dis) 0.94

“Upstream”/Dry Mn(dis) 0.92

“Upstream”/Rainy Mn(dis) 0.92

“anomalous” PT-13/Dry Mn(dis) 0.88

“anomalous” PT-13/Rainy Mn(dis) 0.91

“Upstream” Mn(tot) 0.97

“anomalous” PT-13 Mn(tot) 0.94

“Upstream”/Dry Mn(tot) 0.92

“Upstream”/Rainy Mn(tot) 0.92

“anomalous” PT-13/Dry Mn(tot) 0.88

“anomalous” PT-13/Rainy Mn(tot) 0.91
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3.3. Summary

Figure 10 summarizes the performance accomplished by the three machine learning
models implemented in the “upstream” and “anomalous” PT-13 monitoring stations in-
stalled in the Paraopeba River (location indicated in Figure 1), in the dry and rainy periods.
The Y-axis values refer to the average R2

Adjust of fittings to the Al(dis), Fe(dis), Mn(dis),
Al(tot), Fe(tot) and Mn(tot) concentrations. The random forest regressor model performed
better and with less variability than the other models. In absolute terms, the scores of
random forest R2

Adjust were always higher than 0.9, ensuring a robust predictive capacity,
even more so considering the accuracy values that were always lower than 0.2. To illustrate
graphically this remarkable performance, Figure 11A–D plot the time series of measured
and estimated Fe(dis) and Fe(tot) as assessed in the “upstream” and “anomalous” PT-13
stations, which show a considerable overlapping.

Figure 10. Mean values of R2
Adjust (Equation (1)) relative to the estimates of Al(dis), Fe(dis), Mn(dis),

Al(tot), Fe(tot) and Mn(tot) concentrations, at the “upstream” and “anomalous” PT-13 stations and in
dry and rainy periods. The terms MLR, MLP and RF designate the multiple linear regression models
with stepwise forward selection of variables, multilayer perceptron neural networks and random
forest regressor, respectively.

The Paraopeba River is an open and dynamic natural system that has suffered a large
technological accident, making it a special case study. In fact, there have been more tailings
dams failures in the world [80–83], but nothing that resembles the complexity of Paraopeba
River’s case, which, besides the accident, has, for example, numerous mining operations
along its course. This characteristic means, among other things, that different dynamics
occur along the main watercourse of this river system, which change the importance of
variables in the mobilization of water and sediments, as well as their amplitudes in the dry
and rainy periods, which are very contrasting.

In this study, we highlighted the performance of classical statistical analyses compared
to machine learning-based analyses. The latter approach highlighted how complex the
methods can be, but also warned of limitations and acknowledged very accurate results.
The two approaches are complementary: the statistical assessment allows understanding the
complexity of what a river system is—a complexity that is confirmed throughout the work
by the numerous citations, both to similar studies reported worldwide as well as to studies
focused on the Brumadinho disaster carried out by ourselves and other working groups.
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Figure 11. Time-series of Fe(dis) and Fe(tot) concentrations, as measured (obs in the legend) or
estimated (est in the legend) by the random forest regressor model in the “upstream” (panels (A,B))
and “anomalous” PT-13 (panels (C,D)) stations.

3.4. Limitations, Implications and Future Work

The methodology presented has three main limitations: (1) it applies to rivers that
have suffered a technological accident, resulting in the division of the river into three dis-
tinct segments. We have a non-impacted segment, an impacted segment and, finally, a
potentially impacted segment. (2) The wastes are metals with water–sediment interactions.
(3) The climate is tropical with a strong contrast in rainfall between the rainy and dry periods.

This article is part of a project called Entire which aims to study the impact of the tailings
from the Brumadinho dam collapse for a restored aquatic environment and aims to model the
three segments of the river to later be able to simulate the behavior of the river as a whole. The
collapse of the Brumadinho dam has prompted a wide range of studies, which have resulted
in numerous publications with valuable contributions in various areas, such as the economic–
financial [84], health [85], social [86], environmental [86,87] and aquatic ecosystems [88].

In future work, the random forest regressor model will be used to predict the evolution
of Al, Fe and Mn concentrations along the Paraopeba River, attempting to predict the time
required for the “anomalous” sector to reach an environmental condition identical to the
“upstream” sector (pre-rupture condition), and to see if (and how and when) it propagates
to the “natural” sector, producing contamination.

4. Conclusions

The framework proposed in this study proved efficient to understand the spatial distri-
bution of aluminum, iron and manganese concentrations in the Paraopeba River, currently
segmented into sectors affected and not affected by the rupture of the B1 tailings dam, which
exhibit marked differences in the grain size and composition of sediments. It also highlighted
the role of streamflow, which is markedly different in the rainy period compared with the
dry period. The sequence of results obtained by the univariate (boxplot diagrams), bivariate
(Spearman rank-order correlation coefficients) and multivariate (principal component anal-
ysis) statistical analyses allowed an accumulation and integration of interpretations about
the partition and transport of metals and other contaminants in the Paraopeba River, after
the collapse of the mine-tailings dam B1 in Brumadinho in January 2019. On the other hand,
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the comparative analysis of the precision and accuracy of three machine learning methods
allowed us to identify the random forest regressor method as ideal for the elaboration of
scenarios. Regarding the statistical analyses, it was concluded that:

1. The results of boxplots showed unequivocally that the concentrations of Al, Fe
and Mn in the river water, either dissolved or total, were always lower in the dry period
or at the “upstream” station, relative to the corresponding values in the rainy period or
at the “anomalous” station. In addition, the dissolved fraction was systematically much
lower than the particulate fraction. These results allowed us to highlight the effect of
flow (intrinsically related to the season) on the resuspension and transport of sediments
and tailings and the consequent spread of water contamination downstream, especially
in the particulate form. They also made it possible to quantify the impact of the B1 dam
breach on the increase of these metal concentrations: during the rainy period, the dissolved
concentrations increased by 27–300% from the “upstream” to the “anomalous” station, and
the total concentrations by 9–114%; during the dry period, the increases were smaller.

2. The Spearman rank-order correlation coefficients explained the effect of flow rate
highlighted in the boxplots, as they generally allowed the establishment of a link between
the increase in flow rate, the resuspension of sediment + tailings particles rich in metals, and
the subsequent transfer of metals from the solid phase to the aqueous phase by dissolution
or desorption. In addition, the correlation analysis allowed the identification of some
peculiarities of sediment transport, namely, non-cohesive transport of clays during the dry
period and cohesive transport of clays during the rainy period. Finally, it reinforced the
conviction brought from the boxplot analysis that particulate transport dominates over
dissolved transport because turbidity had one of the highest correlation coefficients with
the flow and total metal concentrations.

3. The results of principal component analysis showed that the resuspension processes
of natural sediments with adsorbed metals, as well as of iron and manganese oxides from
the tailings, combined with the desorption and dissolution processes that moved the Al,
Fe, Mn and other contaminants from the solid phases into the water column, accounted
for about 50% of the data variability. In addition to this quantification, the results of PCA
distinguished dissolved from particulate transport as two independent sources of data
variation, linked to PC1 and PC2. Finally, the “anomalous” station was clearly distinguished
as a site where the river water interacted with the silts and clays of the B1 dam tailings,
releasing Fe and Mn into the aqueous phase, a result not verified for the “upstream” station.
Put another way, the PCA revealed the fingerprint left by the B1 dam break in the Paraopeba
River sediment and water chemistry.

The machine learning methods showed high accuracy and precision, with emphasis
on the random forest regressor, which showed the best accuracy (RMSE less than 0.2)
regardless of the target (dissolved and total concentrations of Al, Fe and Mn) and the best
precision (average R2

Adjust higher than 90%).
Considering the accurate results obtained with the machine learning methods for the

Paraopeba River, which describe the river system after the collapse of the B1 tailings dam
that released an immense amount of harmful metals, a predictive platform was developed
to help answer questions such as: (i) to estimate of the moment when the “anomalous”
station will be in a state identical to the current state of PT-52, i.e., the return time to a
pre-rupture state; (ii) to estimate the moment when the “natural” PT-19 station will have
a contamination level similar to the current state of the “anomalous” station. In addition
to modeling the different river segments, climate projections will be taken into account in
future works, considering the evolution of atmospheric concentrations of greenhouse gases
and other radiative forcings, as well as socioeconomic parameters.

As final remark, we must say that the aim of this study was to put environmental modeling
at the service of scientific, technical and political actors, providing a tool to model contaminants
in complex river systems, namely, those profoundly disturbed by the sudden incorporation of
huge amounts of mine tailings, with the ultimate goal of restoring a vital resource—WATER—
and delivering it back to the benefit of Brumadinho and other local communities.
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The present study has demonstrated the ability of machine learning methods to process
a considerable amount of data and produce very good predictive results. There are also a
variety of deep learning algorithms that can be applied to this type of spatio-temporal data,
such as Long Short Term Memory Networks (LSTMs).
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Abbreviations

Al Aluminum
Al(dis) Aluminum dissolved
Al(sed) Aluminum sediments
Al(tot) Aluminum total
As(dis) Arsenic dissolved
As(sed) Arsenic sediments
As(tot) Arsenic total
B1 mine-tailings dam (Córrego do Feijão mine of Vale, S.A)
BCF-RL-yy hydrometric station (nº yy)
DO Dissolved oxygen
Eh Redox potential
Fe Iron
Fe(dis) Iron dissolved
Fe(sed) Iron sediments
Fe(tot) Iron total
m.a.s.l. metres above sea level
MLP Multilayer perceptron (neural network model)
MLR Multiple linear regression (artificial intelligence model)
Mn Manganese
Mn(dis) Manganese dissolved
Mn(sed) Manganese sediments
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Mn(tot) Manganese total
P(dis) Phosphorus dissolved
P(sed) Phosphorus sediments
P(tot) Phosphorus total
Pb(dis) Lead dissolved
Pb(sed) Lead sediments
Pb(tot) Lead total
PCA Principal Component Analysis
PC1 Chemical Characteristics (PCA result)
PC2 Granulometric Characteristics (PCA result)
PT-xx Monitoring station (nº xx)
R2 Coefficient of determination
RF Random Forest (regressor models based on decision trees/machine learning algorithm)
RMSE Root Mean Squared Error (accuracy)
sandC Coarse-grained sand (0.500–1.000 mm)
sandF Fine-grained sand (0.125–0.25 mm)
sandM Sand (0.250–0.500 mm)
sandVC Very coarse-grained sand (1.00–2.00 mm)
sandVF Very fine-grained sand (0.062–0.125 mm)
T Temperature
Tb Turbidity

Appendix A. Results of Multiple Linear Regression with Stepwise forward Selection of
Variables to Estimate Concentrations of Aluminum, Iron and Manganese

Table A1. Multiple linear regression with stepwise forward selection of variables, for the estimation
of dissolved (Al(dis)) and total (Al(tot)) aluminum concentrations. The precision was assessed by the
R2

Adjust (Equation (1)). The accuracy values measured by the RMSE (Equation (2)) were less than 2
for Al(tot) and less than 0.2 for Al(dis).

Station/Period Target Features/Standardized Coefficients R2
Adjust

“Upstream” Al(dis) Const
0.186

Al(tot)
0.15

Pb(dis)
−0.032

Pb(tot)
0.029

Fe(dis)
0.071

Fe(tot)
−0.127

P(dis)
0.031

Mn(dis)
0.008

Turb
0.025

sandM
0.001

sandVC
−0.017 0.77

“anomalous”
PT-13 Al(dis) Const

0.206
Pb(dis)
−0.045

Fe(dis)
0.043

Mn(dis)
0.041

Mn(tot)
0.059

pH
−0.033

T
0.015

Turb
0.053

Al(sed)
−0.037

As(sed)
0.019

P(sed)
−0.026 0.65

“Upstream”
Dry Al(dis) Const

0.099
Al(tot)
0.071

As(tot)
−0.003

Pb(tot)
0.014

Fe(dis)
0.057

Fe(tot)
−0.091

Mn(tot)
0.036

SandVF
0.004

SandM
0.016

SandC
−0.012

Q
−0.015 0.87

“Upstream”
Rainy Al(dis) Const

0.271
Al(tot)
0.159

Pb(dis)
−0.035

Pb(tot)
0.026

Fe(dis)
0.05

Fe(tot)
−0.011

P(dis)
0.052

P(tot)
−0.024

Mn(dis)
0.014

T
−0.026

SandVC
−0.011 0.64

“anomalous”
PT-13 Dry Al(dis) Const

0.095
Al(tot)
0.048

Pb(tot)
−0.025

Mn(tot)
−0.016

Turb
0.011

Pb(sed)
−0.003

P(sed)
−0.028

Mn(sed)
0.022

SandVF
−0.013

SandC
−0.009

Qmed
0.006 0.84

“anomalous”
PT-13 Rainy Al(dis) Const

0.321
Al(tot)
0.031

Pb(dis)
−0.019

Fe(dis)
0.163

pH
−0.02

T
−0.042

Al(sed)
−0.021

Pb(sed)
−0.041

Fe(sed)
0.023

SandC
−0.042

Q
−0.064 0.73

“Upstream” Al(tot) Const
3.011

Al(dis)
0.458

As(tot)
0.148

Pb(dis)
0.276

Pb(tot)
−0.379

Fe(dis)
−0.579

Fe(tot)
3.895

P(dis)
0.21

Mn(tot)
−0.428

P(sed)
−0.378

Mn(sed)
0.335 0.97

“anomalous”
PT-13 Al(tot) Const

3.164
As(tot)
1.028

Fe(tot)
2.675

P(tot)
0.386

Mn(dis)
−0.968

Mn(tot)
−1.801

pH
−0.245

Turb
2.138

Al(sed)
−0.209

P(sed)
−0.154

SandF
−0.198 0.90

“Upstream”
Dry Al(tot) Const

0.558
Al(dis)
0.127

As(tot)
−0.041

Pb(tot)
0.091

Fe(dis)
−0.214

Fe(tot)
0.379

P(dis)
0.030

pH
−0.041

Turb
0.151

SandF
0.033

Q
−0.004 0.93

“Upstream”
Rainy Al(tot) Const

5.402
Al(dis)

0.53
As(tot)
0.228

Pb(dis)
0.347

Pb(tot)
−0.391

Fe(dis)
−0.465

Fe(tot)
3.574

P(dis)
0.34

Mn(tot)
−0.42

T
0.198

Turb
0.291 0.95

“anomalous”
PT-13 Dry Al(tot) Const

0.569
Al(dis)
0.198

As(tot)
0.064

Pb(tot)
0.077

Fe(dis)
0.265

Fe(tot)
0.289

P(tot)
0.105

Mn(tot)
0.043

Turb
−0.198

P(sed)
0.112

Mn(sed)
−0.072 0.92

“anomalous”
PT-13 Rainy Al(tot) Const

5.861
As(tot)
1.388

Fe(tot)
3.643

P(dis)
0.621

Mn(dis)
−1.142

Mn(tot)
−2.736

pH
−0.341

Turb
2.008

Al(sed)
−0.526

Mn(sed)
−0.821

Silt
0.711 0.87
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Table A2. Multiple linear regression with stepwise forward selection of variables, for the estimation of
dissolved (Fe(dis)) and total (Fe(tot)) iron concentrations. The precision was assessed by the R2

Adjust

(Equation (1)). The accuracy values measured by the RMSE (Equation (2)) were less than 2 for Fe(tot)
and less than 0.2 for Fe(dis).

Station/Period Target Features/Standardized Coefficients R2
Adjust

“Upstream” Fe(dis) Const
0.437

Al(dis)
0.084

Al(tot)
−0.216

Pb(dis)
0.034

Fe(tot)
0.241

P(dis)
0.088

pH
−0.015

T
0.022

Turb
−0.069

Mn(sed)
−0.014

SandM
0.031 0.80

“anomalous”
PT-13 Fe(dis) Const

0.692
Al(dis)
0.196

Fe(tot)
−0.375

P(dis)
−0.111

Mn(dis)
0.368

Turb
0.395

As(sed)
−0.103

Pb(sed)
−0.136

P(sed)
0.243

Silt
0.086

SandVF
−0.102 0.56

“Upstream”
Dry Fe(dis) Const

0.336
Al(dis)
0.061

Al(tot)
−0.109

Pb(dis)
0.032

Pd(tot)
−0.015

Fe(tot)
0.162

P(dis)
0.010

Mn(tot)
−0.049

pH
−0.007

SandF
0.013

Q
0.063 0.93

“Upstream”
Rainy Fe(dis) Const

0.536
Al(dis)

0.05
Al(tot)
−0.105

As(tot)
0.035

Pb(dis)
0.045

Fe(tot)
0.078

P(dis)
0.097

Turb
−0.063

As(sed)
0.055

Mn(sed)
−0.089

As(sed)
0.026 0.78

“anomalous”
PT-13 Dry Fe(dis) Const

0.586
Al(dis)
−0.004

Al(tot)
0.331

As(tot)
0.192

Fe(tot)
−0.477

P(dis)
−0.243

Mn(tot)
0.155

Turb
0.283

Fe(sed)
−0.111

Mn(sed)
0.087

Q
0.090 0.93

“anomalous”
PT-13 Rainy Fe(dis) Const

0.803
Al(dis)
0.212

Al(tot)
−0.117

Pd(tot)
−0.082

Fe(tot)
0.264

Mn(dis)
0.409

Mn(tot)
−0.144

Pb(sed)
0.056

Mn(sed)
−0.036

SandF
−0.026

Q
0.11 0.88

“Upstream” Fe(tot) Const
4.078

Al(dis)
−0.311

Al(tot)
2.605

Pb(dis)
−0.086

Pd(tot)
0.486

Fe(dis)
0.449

P(dis)
−0.177

Mn(dis)
−0.071

Mn(tot)
0.721

T
0.074

Turb
0.283 0.98

“anomalous”
PT-13 Fe(tot) Const

4.986
Al(tot)
1.881

As(tot)
0.494

Fe(dis)
−0.571

P(tot)
−0.601

Mn(tot)
4.846

pH
−0.215

Turb
1.442

Pb(sed)
−0.255

SandVF
−0.766

SandF
0.334 0.96

“Upstream”
Dry Fe(tot) Const

1.315
Al(dis)
−0.244

Al(tot)
0.326

As(tot)
0.043

Fe(dis)
0.327

P(tot)
0.028

Mn(dis)
−0.046

Mn(tot)
0.376

Turb
0.204

As(sed)
0.023

Q
−0.19 0.98

“Upstream”
Rainy Fe(tot) Const

6.771
Al(dis)
−0.266

Al(tot)
2.684

Pd(tot)
0.439

Fe(dis)
0.316

P(tot)
−0.121

Mn(tot)
0.795

Turb
0.328

P(sed)
0.484

Mn(sed)
−0.781

SandC
0.131 0.97

“anomalous”
PT-13 Dry Fe(tot) Const

1.28
Al(tot)
0.717

As(tot)
−0.174

Fe(dis)
−1.085

P(dis)
−0.542

Mn(dis)
−0.114

Mn(tot)
0.472

Turb
0.673

Al(sed)
0.058

As(sed)g
−0.135

Q
0.156 0.91

“anomalous”
PT-13 Rainy Fe(tot) Const

8.838
Al(tot)
2.135

As(tot)
0.485

Fe(dis)
0.908

P(dis)
−0.676

Mn(dis)
−0.763

Mn(tot)
6.168

Turb
1.437

As(sed)g
0.327

SandVF
−1.573

SandF
0.984 0.96

Table A3. Multiple linear regression with stepwise forward selection of variables, for the estimation
of dissolved (Mn(dis)) and total (Mn(tot)) manganese concentrations. The precision was assessed by
the R2

Adjust (Equation (1)). The accuracy values measured by the RMSE (Equation (2)) were less than
2 for Mn(tot) and less than 0.2 for Mn(dis).

Station/Period Target Features/Standardized Coefficients R2
Adjust

“Upstream” Mn(dis) Const
0.022

Al(dis)
0.002

Fe(dis)
−0.002

P(tot)
0.005

Al(sed)
−0.002

Pb(sed)
0.002

Fe(sed)
−0.003

As(sed)
−0.003

SandF
−0.002

SandC
−0.004

SandVF
0.001 0.37

“anomalous”
PT-13 Mn(dis) Const

0.068
Al(dis)
0.006

Al(tot)
−0.041

As(tot)
0.026

Fe(dis)
0.021

P(tot)
−0.020

Mn(tot)
0.127

As(sed)
0.008

Silt
−0.009

SandVF
0.011

Q
−0.01 0.87

“Upstream”
Dry Mn(dis) Const

0.017
Pb(dis)
0.004

Fe(dis)
−0.003

Fe(tot)
−0.006

P(tot)
0.002

Mn(tot)
0.008

pH
−0.002

As(sed)
−0.002

Silt
0.005

Sand_m
0.005

Q
−0.003 0.61

“Upstream”
Rainy Mn(dis) Const

0.025
Al(dis)
0.003

As(tot)
0.003

Pd(tot)
−0.002

P(tot)
0.006

T
0.001

Fe(sed)
−0.005

As(sed)
−0.004

SandVF
0.001

SandC
−0.005

SandVF
0.003 0.31

“anomalous”
PT-13
Dry

Mn(dis) Const
0.042

As(tot)
0.015

Pb(dis)
0.016

Pd(tot)
−0.020

Mn(tot)
0.003

T
0.005

Pb(sed)
0.008

P(sed)
−0.009

Mn(sed)
0.010

Silt
0.003

SandVF
0.002 0.72

“anomalous”
PT-13 Rainy Mn(dis) Const

0.095
Al(dis)
−0.034

As(tot)
0.021

Pd(tot)
0.023

Fe(dis)
0.111

Fe(tot)
−0.058

P(dis)
−0.023

Mn(tot)
0.139

Pb(sed)
−0.014

SandVF
0.007

Q
−0.029 0.91

“Upstream” Mn(tot) Const
0.383

Al(dis)
0.029

Al(tot)
−0.161

As(tot)
0.069

Pb(dis)
−0.030

Pd(tot)
−0.055

Fe(tot)
0.437

P(dis)
0.023

P(tot)
0.061

Mn(dis)
0.016

As(sed)
0.014 0.89

“anomalous”
PT-13 Mn(tot) Const

0.818
Al(tot)
−0.291

As(tot)
−0.127

Pb(dis)
0.068

Fe(dis)
0.067

Fe(tot)
1.161

P(tot)
0.228

Mn(dis)
0.448

pH
0.071

SandVF
0.164

SandF
−0.129 0.96

“Upstream”
Dry Mn(tot) Const

0.121
Al(dis)
0.026

Pd(tot)
−0.013

Fe(dis)
−0.028

Fe(tot)
0.084

P(tot)
−0.007

Mn(dis)
0.013

pH
0.003

Turb
−0.034

SandVC
0.005

Q
0.034 0.94

“Upstream”
Rainy Mn(tot) Const

0.637
Al(tot)
−0.219

As(tot)
0.084

Pb(dis)
−0.040

Pd(tot)
−0.052

Fe(tot)
0.473

P(dis)
0.053

P(tot)
0.059

As(sed)
0.039

P(sed)
−0.123

Mn(sed)
0.096 0.80

“anomalous”
PT-13 Dry Mn(tot) Const

0.213
Al(dis)
−0.023

Al(tot)
0.014

Fe(dis)
0.057

Fe(tot)
0.087

P(dis)
0.076

Mn(dis)
0.031

Turb
0.020

Pb(sed)
−0.015

Fe(sed)
0.013

Q
−0.017 0.87

“anomalous”
PT-13 Rainy Mn(tot) Const

1.446
Al(tot)
−0.395

As(tot)
−0.148

Pb(dis)
0.140

Fe(tot)
1.516

P(dis)
0.222

Mn(dis)
0.549

As(sed)g
−0.089

SandVF
0.321

SandF
−0.289

SandVC
−0.089 0.96
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