
Citation: Du, J.; Laghari, Y.; Wei, Y.-C.;

Wu, L.; He, A.-L.; Liu, G.-Y.; Yang,

H.-H.; Guo, Z.-Y.; Leghari, S.J.

Groundwater Depletion and

Degradation in the North China Plain:

Challenges and Mitigation Options.

Water 2024, 16, 354. https://doi.org/

10.3390/w16020354

Academic Editor: Claudia Cherubini

Received: 5 December 2023

Revised: 13 January 2024

Accepted: 17 January 2024

Published: 21 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Review

Groundwater Depletion and Degradation in the North China
Plain: Challenges and Mitigation Options
Jun Du 1, Yaseen Laghari 2, Yi-Chang Wei 3,* , Linyi Wu 3, Ai-Ling He 1, Gao-Yuan Liu 1, Huan-Huan Yang 1,
Zhong-Yi Guo 4 and Shah Jahan Leghari 5

1 Institute of Plant Nutrition and Resource Environment, Henan Academy of Agricultural Sciences,
Zhengzhou 450002, China; dujun0520@163.com (J.D.); kay_1234@163.com (A.-L.H.);
liugaoyuan@hotmail.com (G.-Y.L.); 13253375996@163.com (H.-H.Y.)

2 College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210097, China;
yaseenlaghari1997@gmail.com

3 College of Surveying and Geo-Informatics, North China University of Water Resources and Electric Power,
Zhengzhou 450046, China; 1379402784@qq.com

4 China Zhumadian Academy of Agricultural Sciences, Zhumadian 463000, China; 343122348@qq.com
5 College of Mechanical and Electronical Engineering, Northwest A&F University, Xianyang 712100, China;

leghari222@gmail.com
* Correspondence: weiyichang@ncwu.edu.cn

Abstract: Groundwater is an important natural resource in the North China Plain (NCP) with
high economic benefits and social significance. It fulfills 60% of drinking and 70% of irrigation
water requirements. In this review, the information is retrieved from high-quality articles published
in MEDLINE and other sources. We saw that groundwater is declining faster (>1 m yr−1) and
polluting with NO3

− (>30 mg L−1) due to excessive water pumping and application of a nitrogen
(N) fertilizer, respectively. The water pumping (>600 mm ha−1 yr−1) for agricultural purposes in the
region is higher than the recharge amount (<200 mm yr−1). The low recharge is the result of low
rainfall (<600 mm yr−1), and high evapotranspiration (>800 mm yr−1) under the impact of dominant
vegetative characteristics of winter wheat–summer maize (WW-SM) rotations, covering >80% of the
land. Furthermore, N application exceeds the crop assimilation capacity (>250 kg ha−1 yr−1) and
leach deep down (>50 kg ha−1) as well as loss in the atmosphere. Presently, Beijing, Tianjin, and
Hebei are ecologically the most affected areas. We suggest that excessive water and N fertilizer use for
intensive cropping systems should be controlled by paying high attention to groundwater-friendly
farming practices. In addition, artificial groundwater recharge options and their safe utilization
would be explored across the region to replenish aquifers. This literature review contributes valuable
insights to the knowledge bank and offers a foundation for further research and policy development.

Keywords: groundwater depletion; degradation; cropping system; North China Plain; sustainability

1. Introduction

The degradation and depletion of groundwater worldwide have become serious
environmental problems that endanger ecosystem health and water security [1]. Rapid
urbanization, industrial needs, and intensive agricultural irrigation all lead to unsustain-
able extraction rates, which lower water tables and deteriorate aquifers [2]. Over pumping
for agricultural and urban water supply has resulted in significant drops in groundwater
levels in the Middle East, the United States, China, and the Indian subcontinent regions [3].
Climate change exacerbates the problem by changing precipitation patterns and affecting
aquifers’ natural replenishment too [4]. Groundwater becomes unsafe for human consump-
tion due to pollution caused by inappropriate waste disposal, industrial discharges, and
agricultural runoff [5].

According to World Health Organization (WHO) estimation due to pollution prob-
lems, almost 2 billion people worldwide do not have access to clean drinking water [6].
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Recharging aquifers, encouraging water use efficiency, and implementing effective irriga-
tion techniques are all examples of initiatives that are essential to sustainable groundwater
management [7]. Reducing pollution and over-extraction is largely dependent on the
establishment of strong monitoring programs, legal frameworks, and public awareness
initiatives [8]. The necessity of sustainable groundwater management is emphasized by the
2030 Agenda for Sustainable Development, particularly Goal 6 (Clean Water and Sanitation),
to protect the supply of clean water for present and future generations [9].

China is experiencing an over-extraction of groundwater from aquifers due to the
country’s fast economic expansion, urbanization, and intensification of agriculture. Due
to this, groundwater levels have decreased, land has begun to sink, and the quality of
the water has gotten worse [10]. The overuse of water for agriculture in China is a major
cause of groundwater depletion. Large-scale irrigation projects and the production of crops
that require a lot of water have resulted in unsustainable rates of extraction, especially
in northern areas like the North China Plain [11]. Furthermore, a serious problem is the
deterioration of groundwater quality, which is made unsafe for agricultural and drinking
uses by untreated sewage, industrial discharges, and agricultural runoff [12,13]. Statistics
of water consumption in 2020 are presented in Figure 1 [14].
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2. Overview of North China Plain (NCP)

The NCP is located in the eastern coastal region of China (34◦46–40◦25′ N and 112◦30′–
119◦30′ E). The Yanshan mountain border from the north, south, and west is the Tailhang,
Dabie, and Tianmu mountains, while from the east is the Yellow Sea boundary. The region
is widely extended to Henan, Hebei, and Shandong provinces and merges with the Yangtze
River in the north of Jiangsu and Anhui. Beijing is the national capital, Tianjin is a hub of
industries, and Shandong is the base of petroleum. Thus, the region is the main economic
and political center of the county [15,16].

The region has subtropical monsoon climatic conditions. Seasonally, dry cold air
emanating from central Asian regions prevails from December to February, resulting in a
temperature drop below −0 ◦C. The mean temperature during summer, particularly June
to July, ranges between 25◦ and 28 ◦C, which are considered the hottest months. Thus,
the region is classified into four distinct seasons based on changing weather year-round,
including spring (dry), summer (hot), autumn (windy), and winter (cold). The annual
precipitation is highly variable (300–1000 mm) throughout the NCP, with a mean range
from <600 mm and about 70% rainfalls during the maize growing season from June to
September [17]. Low rainfall makes the plain prone to drought. In the case of the current
paper, a set of 50 years of weather data comprising 89 stations was obtained from China’s
National Meteorological Information Centre (NMIC). Generally, there is no balance between
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mean annual rainfall and evapotranspiration. The long-term climatic scenario in the North
China Plain is presented in Figure 2.
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In the case of soil characteristics of NCP, it is mainly fluvo-aquic; other types include
meadow and coastal solonchak, saline meadow, saline swamp, sandy, and cinnamon. Illite
is the dominant layer silicate mineral; smectite, kaolinite, and chlorite are subdominant. In
most counties, the saline and sodic soils are severe problems for agricultural sustainability,
where soil properties are affected by monsoon rainfall events, groundwater chemistry, and
its depth, as well as surface water and variation in topographical characteristics. The soils
of most areas have low clay content [19,20]; however, it is suitable for most field crops.

The double cropping of winter wheat–summer maize (WW-SM) rotation is the domi-
nant pattern throughout the regions, covering >80%. Hence, this region meets >60% of the
national wheat and >30% of the corn demand of the country, and >50% of peanuts are also
produced here. All these features make this region crucially self-sufficient in food [21]. The
geographical boundary of NCP in China is shown in Figure 3.

In agriculture, modern technology, mechanization, and fertilization greatly help boost
crop productivity. Increased incomes dramatically changed the living standards of rural
peoples, poverty levels dropped sharply, and extreme poverty was eradicated. For example,
a significant increase in wheat yield (0.7 Mg ha−1) was observed in 2009 [22]. Nonetheless,
with that success, the side effects became visible within a short period in terms of ground-
water decline, and N pollution in the water bodies and air due to systematic change in crop
cultivation such as overuse of irrigation and fertilizers [23,24]. The excessive water use in
crop production system increased pressure on water-resources throughout the region and
excessive chemical fertilizer application deteriorated water quality [25]. Approximately
15% of food production in China could reduce due to water shortage caused by continuous
groundwater decline [26]. These concerns of groundwater depletion and N contamination
have existed for a long time. NO3

− has been found in shallow to deep aquifers [27]. A
recent study [28] revealed that N contamination was dominant with an excessive limit of
water quality standards in farmlands due to the use of manures. Groundwater in villages
is unsafe, and the consumption of water contaminated by high NO3

− levels could cause
several diseases in rural people [29].
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In response to escalating environmental concerns, the government has taken proactive
measures through legislative actions. For instance, a prohibition on groundwater pumping
has been enforced along the fourth ring road of Beijing. Additionally, efforts have been
made to advocate for eco-friendly policies, such as the implementation of the ‘land fallow
system’. This system encourages leaving soil unsown in regions heavily impacted by
groundwater depletion and pollution, particularly during the winter season. In 2014, a
document for water resources conservation was first proposed, and then NCP was selected
as one of the leading ecologically degraded and NO3-contaminated zones. After that,
researchers focused highly on the NCP, and many experiments were conducted. Research
is ongoing to overcome the problems [30,31]. The scientific outcomes are widely published.
However, the latest review of the literature on the interaction between cropping systems
and their impact on the environment is not available, which can collectively provide results
and recommendations abstracting from research papers. Therefore, in the current review,
our objectives were (i) to highlight the environmental issues for groundwater protection
in NCP and (ii) to collect the latest scientific information from the literature and deposit it
into the knowledge bank for researchers’ use, those working on ecosystem conservation.

3. Environmental Challenges

Currently, the entire NCP region is experiencing serious groundwater decline and
NO3

− pollution in water bodies due to the intensive double cropping pattern of WW-SM
under the farmer management practices. There are >7.6 million tubewells throughout the
region. The farmers of this region normally apply 6–7 times the irrigation in the WW-SM
rotations by each time pumping >90 mm; thus, annual groundwater abstraction reaches
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>600 mm ha−1 [32], and (N) fertilizer application exceeds the crop utilization capacity
of >250 kg ha−1 yr−1 [33]. Approximately >400 mm of irrigation water is applied to the
winter wheat crop. Consequently, enormous water pumping caused a >1 m yr−1 ground-
water decline [32] and overuse of N-contaminated groundwater via the NO3

− leaching
pathway [34]. In this paper, we have categorized NCP’s environmental problems as ground-
water depletion and degradation through NO3

− contamination, which are discussed below
under the sub-headings of 3.1 and 3.2. The historically measured groundwater water table
drop is shown in Figure 4 and the present ecosystem scenario of the region is precisely
illustrated in Figure 5.

3.1. Groundwater Depletion

Groundwater is an important natural resource in the NCP with high economic benefits
and social significance. It consists of four grouped layers of the aquifer. The first, second,
third, and fourth aquifers are about 40 m, 130 m, 220 m, and 350 m deep, respectively. The
specific yield of aquifers varies between 0.04 and 0.25 m, depending on their rock material.
Since the 1970s, frequent excessive water pumping has caused scarcity of underground
water reservoirs. Consequently, the first aquifer is already depleted, and now the second
aquifer is going to be depleted because water pumping from the ground for crop purposes
is quicker than it can replenish. The annual natural water refilling is low due to low
rainfall intensity. The amount of water from rainfall cannot meet the recharge requirements.
Therefore, the plain is the world’s fastest depleting groundwater region [11,35]. The
situation can be even tighter in the near future, and the agricultural system may fluctuate
badly. For example, the water table is continuously decreasing every year in the counties
along with the Beijing capital side, and the fast development of urban areas will further
increase the demand for water and reduce its availability. Xiao et al. [36] reported that there
is no balance between the water overdraft of a prevalent cropping pattern and groundwater
recharge. Luo et al. [37] conducted a field experiment on different cropping patterns for
4 years and reported that WW-SM caused the highest groundwater level drop and had the
lowest <128 mm recharge amount.

Recently, Liang et al. [38] evaluated various cropping patterns and reported that the
primary reason for groundwater decline was winter wheat. Wheat crop water consumption
was about 300–450 mm yr−1, which substantially exceeds the average annual rainfall of
280 mm yr−1 [39]. On the other hand, surface water resources are insufficient; groundwater
is the only strong source of irrigation [36], which accounts for 70% of the total water
supply [40] and low rainfall could only meet 25–40% of crop water requirements [41].

Many studies have reported groundwater level drops and their causes by using differ-
ent methodologies and techniques. Some researchers have used Geographical Information
Systems (GISs) to analyze water availability and geographic distribution. The GIS and
its tools are widely used in agriculture. The management of crop yield, optimization of
rotations, soil mapping, and analysis of groundwater vulnerability, storage potential, and
flow are greatly visualized and estimated by using GIS for future strategies. There are
several advantages of GIS, such as covering a wide area in the research, which is easier than
manually measuring. For example, groundwater storage variation monitoring in mountain
and arid regions is not only challenging but also time-consuming through relying on the
observation of wells because the well observations are generally limited [42] and satellite
missions such as the Gravity Recovery and Climate Experiment (GRACE) provide monthly
changes in terrestrial water storage [43]. Feng et al. [44] used GRACE satellite data to
estimate groundwater storage changes in the NCP during 2002–2014 and reported that
groundwater is being depleted faster. Yin et al. [45] also estimated groundwater drops and
reported that groundwater was severely depleted, particularly in the Beijing, Tianjin, and
Hebei provinces. In a recent study, Kumar et al. [46] stated that NCP has an unsustainable
groundwater level as compared to the south of China. Lin et al. [47] identified the hotspots
within the Yellow River basin, where the water declination rate was relatively higher in
the west and east areas of the river. This description indicates that groundwater security is
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quite important. Table 1 shows the different studies and estimations about groundwater
decline from 2001 to the present. The table contains local and regional level outcomes
of experimental work conducted in the NCP. We have calculated the average groundwa-
ter decline value as 1.18 m yr−1 from surveyed publications. The historically measured
groundwater water table drop from July 1974 to June 2014 and its forecasted trend are
shown in Figure 4 [48].
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3.2. Groundwater Degradation

Environmental pollution is another serious problem of NCP. Heavy reliance on N
fertilizers to boost grain productivity compared to the past created tough challenges for
both agriculture and environmental sectors. It has been identified that agricultural farming
causes more pollution than any other source [49,50]. A recent study showed that fertilizer
use increased by >30% in the past few years [51]. Intensive use of commercially available
chemical fertilizers is hazardous to the ecosystem (Figure 5) as they are produced by
blending with a range of trace metals [52]. A typical plant can uptake half of the applied N
only, while the remaining enters water bodies via a deep drain in the process of leaching
and is lost to the atmosphere through volatilization and denitrification pathways [53,54]. In
the NCP, the normal N fertilizer application rate reaches >600 kg ha−1 yr−1, exceeding up
to >250 kg N ha−1 yr−1 compared to the crop N requirement (CNR) for optimum growth
and development [33]. The exceeded N is generally lost and consequently contaminates the
environment since N, in the form of NO3

−, is highly water-soluble and mobile. Therefore,
it moves and displaces freely with water through most types of soils. Approximately a
10–20% N loss takes place via leaching from the crop production system. Many researchers
characterized the agriculture of the region as low-N-efficient. The N fertilizer efficiency
is often <25% to 20% because farmers apply N through the broadcasting method, which
is an inefficient method as compared to modern techniques. Ju et al. [55] reported that
annual N application at the rate of >550 kg ha−1 did not increase yield and led to two times
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greater NO3
− losses. Cao et al. [56] observed a peak of N fluxes at >180 kg N ha−1, and it

was observed immediately after fertilization. Wang et al. [57] performed a meta-analysis,
covering >150 field measurements for N loss from an agricultural system. They stated
that NCP is more widely affected by N contamination than any other region. Proper
farming practices that keep the soil moisture and pH at the optimum levels would help
decrease different forms of N losses such as NO− and NO3

− [58], and Li et al. [59] examined
cropping systems and found that the NO3

− flux was closely related to irrigation levels and
N fertilizer application rates; <40 kg ha−1 NO3

− leaching was observed when the N rate was
<180 kg ha−1, and maximum >50 kg ha−1 NO3

− leaching was noticed when the N rate was
>400 kg ha−1 in combination with >300 mm irrigation. Technically, field water transports
the excessive NO3

− to deep groundwater; thus, it is the dominant pathway of NO3
−

deposition in groundwater [60]. The leached NO3
− deteriorates both shallow and deep

water with an estimate of >20 mg L−1. Recently, Wang et al. [28] compared different land
use types, including farmland, forestland, and areas that were under natural vegetation.
They found that NO3

− contamination in water reached up to 50 mg L−1 in farmlands
because of manure use being >223 kg N ha−1 yr−1. This is an excessive limit of NO3

− in
the water following the water quality standard index and the World Health Organization’s
(WHO) criteria for safe water [6]. The consumption of such highly degraded water for
drinking could cause the conversion of hemoglobin to methemoglobin, which depletes
oxygen levels in the blood, thyroid gland enlargement, congenital disabilities, stomach,
colorectal, bladder, and breast cancer, and hypertension. Water that is contaminated with
>10 mg NO3

− L−1 is the most dangerous for the health of children. Furthermore, the
complete details about how NO3-s adversely impact health are well elaborated in the
specific literature of [29], where they specifically studied the N in relation to human health
issues. In the case of the current paper, we have calculated the average value of NO3

−

contamination in the groundwater as 48.67 mg L−1 from surveyed publications (Table 1).
In this section on environmental problems, we found that groundwater depletion and

N contamination are two serious challenges. These issues can be more complicated in the
near future. How do we overcome these problems? What are the mitigation measures? We
have given some options under the new heading, heading 3.
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kg ha−1 in combination with >300 mm irrigation. Technically, field water transports the 
excessive NO3− to deep groundwater; thus, it is the dominant pathway of NO3− deposition 
in groundwater [60]. The leached NO3− deteriorates both shallow and deep water with an 
estimate of >20 mg L−1. Recently, Wang et al. [28] compared different land use types, in-
cluding farmland, forestland, and areas that were under natural vegetation. They found 
that NO3− contamination in water reached up to 50 mg L−1 in farmlands because of manure 
use being >223 kg N ha−1 yr−1. This is an excessive limit of NO3- in the water following the 
water quality standard index and the World Health Organization’s (WHO) criteria for safe 
water [6]. The consumption of such highly degraded water for drinking could cause the 
conversion of hemoglobin to methemoglobin, which depletes oxygen levels in the blood, 
thyroid gland enlargement, congenital disabilities, stomach, colorectal, bladder, and 
breast cancer, and hypertension. Water that is contaminated with >10 mg NO3− L−1 is the 
most dangerous for the health of children. Furthermore, the complete details about how 
NO3-s adversely impact health are well elaborated in the specific literature of [29], where 
they specifically studied the N in relation to human health issues. In the case of the current 
paper, we have calculated the average value of NO3− contamination in the groundwater as 
48.67 mg L−1 from surveyed publications (Table 1). 

In this section on environmental problems, we found that groundwater depletion and 
N contamination are two serious challenges. These issues can be more complicated in the 
near future. How do we overcome these problems? What are the mitigation measures? 
We have given some options under the new heading, heading 3. 

 
Figure 5. A complete scenario of NCP, where Beijing, Tianjin, and Hebei are the most affected areas 
in terms of both groundwater depletion and degradation. ET: Evapotranspiration, IWR: Irrigation 
water requirement, DWR: Drinking water requirement [28,33,38,45,61–66]. 

Figure 5. A complete scenario of NCP, where Beijing, Tianjin, and Hebei are the most affected areas
in terms of both groundwater depletion and degradation. ET: Evapotranspiration, IWR: Irrigation
water requirement, DWR: Drinking water requirement [28,33,38,45,61–66].
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Table 1. Groundwater (GW) depletion rate and NO3
−1 contamination in groundwater reported by

different researchers.

GW Depletion Location NO3− Level Location References

0.10 m yr−1 Hebei to Tianjin 2.18 mg L−1 Eastern Taihang
Mountains [67,68]

3.83 m yr−1 Zhangjiakou 178.7 mg L−1 Hutuo River Valley
Plain [69,70]

1.30 m yr−1 Luancheng 10.34 mg L−1 Baiyangdian Lake
Area [71,72]

0.33 m yr−1 Hebei 1.840 mg L−1 Beijing Urban Sides [38,73]
1.70 m yr−1 Shijiazhuang 70.40 mg L−1 Rural Beijing [74,75]
0.59 m yr−1 Beijing and Tianjin 124.4 mg L−1 Hutuo River Plain [37,76]
1.00 m yr−1 WR 6.230 mg L−1 Pinggu District [77,78]
1.60 m yr−1 Hebei 50.00 mg L−1 WR [28,79]
1.10 m yr−1 Luancheng 184.6 mg L−1 Shandong [66,80]

1.14 m yr−1 Taihang Mountain 47.70 mg L−1 Catchment Areas of
Hutuo [81,82]

1.15 m yr−1 Hufu Plain 134.8 mg L−1 Baiyang Lake Area [83,84]
1.25 m yr−1 WR 31.60 mg L−1 Beiyishui Watershed [30,85]
1.50 m yr−1 Luancheng 10.00 mg L−1 Luoyang Basin Area [86,87]
1.00 m yr−1 WR 29.60 mg L−1 Yellow River Sides [87,88]
1.07 m yr−1 Taihang Mountains 13.40 mg L−1 WR [89,90]
0.71 m yr−1 Piedmont Plain 56.80 mg L−1 Tangshan [91,92]
0.80 m yr−1 Xian 9.370 mg L−1 Hebei [93,94]
1.21 m yr−1 Hebei 13.80 mg L−1 Beijing [95,96]
1.00 m yr−1 WR 10.00 mg L−1 Huantai [97,98]
0.45 m yr−1 Hebei 20.00 mg L−1 Quzhou [99,100]
0.87 m yr−1 Ningjin 20.00 mg L−1 Shijiazhuang [101,102]

1.10 m yr−1 Shijiazhuang 45.00 mg L−1 Beijing and
Surroundings [103,104]

Note: Hence, the average value of groundwater depletion is calculated as 1.18 m yr−1 from the surveyed
publications and the average value of NO3

− contamination in the groundwater is calculated as 48.67 L−1. The
classification of NO3

− content levels: 0–3 mg L−1 (clean), 3–6 mg L−1 (lightly polluted), 6–10 mg L−1 (polluted),
and 10 or >10 mg L−1 (severely polluted) [105]. The WR indicates that the study reported on the whole region.
GW is groundwater.

4. Mitigation Options

There are several mitigation options that could be taken in the NCP to overcome
groundwater depletion and reduce the risk of water pollution. These include water saving
and change in crop type, the ban on cereals, reduced and soil test-based N application, use
of slow-release coated urea, and optimum irrigation to minimize the risk of N transport
in the groundwater through deep drainage. All these options fall in the category of a
cropping system. Therefore, a change in the cropping system has high potential [38] and
has been found to be the most commonly used approach in the literature related to NCP
published by researchers. Other options, including artificial recharge by utilizing urban
and industrial wastewater, could be significant as well. However, brackish water should
not be used on high land [5]. It is somewhat suitable only for lowlands as a substitution for
freshwater [105]. In Figure 6, some broad options are enlisted where sub-components are
classified with their potential level.
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4.1. Cropping System Change Option

The cropping system is a broad idea, where selections of crop type and cultivation
practices are critically important. A cropping system should be environment-friendly and
socio-economically viable.

4.1.1. Groundwater Neutral Cropping Pattern

The current cropping pattern of winter wheat–summer maize is unsustainable. There-
fore, other options like a monoculture of spring maize or adopting any alternative cropping
pattern could be eco-friendly. The annual crop water requirement of spring maize would
not be >350–551 mm [108]. The plots of three harvests in a two-year pattern of winter
wheat, summer maize, and spring maize or one harvest in one year demonstrated sig-
nificant potential to reduce water and N consumption, produce maximum grain yield,
and maintain groundwater balance [38]. Meng et al. [22] studied various crop rotations
in long-term field experiments from 2004 to 2010 and reported that although >70 mm of
water can be saved by optimizing the irrigation schedule in a double cropping pattern
as compared to the conventionally managed field, the annual groundwater utilization of
250 mm was still high, where >70% water was consumed only by the wheat crop. At the
same time, the triple cropping pattern and monoculture saved 35–61% water with a minor
decrease in wheat grain yield. These cropping patterns would decrease 94–190 mm of
annual groundwater demand.

In addition, the 59–72% N rate can also be reduced by adapting alternative patterns
against conventional double cropping patterns. Yang et al. [66] evaluated five cropping pat-
terns in which many crop species were included. The results showed that WW-SM rotation
had the highest evapotranspiration (ET) rate of 734 mm yr−1 compared to any other crop-
ping pattern. Therefore, they observed a maximum groundwater decline of 1.1 m yr−1 and
low WUE and a minimum groundwater decline of 0.4 m yr−1 with high WUE from sweet
potato–cotton–sweet potato–winter wheat–summer maize in a 4-year cycle. Many other
researchers also evaluated WW-SM in comparison with alternative cropping patterns and
suggested optimizing cropping patterns. Recommendations include winter wheat–early
maize–early maize–fallow [109], alfalfa–winter wheat [57], peanut–winter wheat–summer
maize [39], winter wheat monoculture [110], sweet potato–cotton–sweet potato–winter
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wheat–summer maize [66], and sole summer maize [111]. Furthermore, Table 2 shows
some recommendations with supporting comments for the development of groundwater
water-neutral cropping patterns. However, replacing a double cropping system of winter
wheat–summer maize with a new cropping system could cause grain production decline in
the region.

Table 2. Some recommendations for groundwater water conservation under the cropping pattern
change option.

Recommendations Supporting Comments for Recommendations References

WW-SM-SPM Water conserved up to 284 mm [22]
WW-SM-SPM Lowered groundwater decline by 0.33 m yr−1 [38]

SP-C-SP-WW-SM The system showed less groundwater decline by 0.4 m yr−1 [66]
WW-SM-SPM-SPM N fertilizer can be reduced up to 30–50% in the system [112]

WW-EM-EM-F Increased water saving of 2322 × 106 m3 [113]
SM-monoculture Showed 30% low water overdraft [111]

2Y3MS1 Balanced groundwater overdraft [114]
Ww-SM

Opt Saves 62% of groundwater use (minimum irrigated) [115]
Catch crops Decreased 23.6% drainage and 32.8% NO3

− leaching [116]
Mixing switchgrass Lowered water table drop by 0.4 m yr−1 [75]

SPM × SOY Increased land utilization rate by >40% [117]
Alfalfa-WW Reduced water consumption by 70.5% and NO3

− leaching by 35% [57]
WW-SM-SPM-SPM Resulted in less groundwater drop of 0.07 m yr−1 [37]

SS-WW Mitigate groundwater decline through fewer evaporations [118]
Early maize only It had 190 mm less groundwater overdraft [112]
WW-SM-F-SPM Revealed low water overdraft by 150 mm yr−1 only [113]

SPM-monoculture Showed 31% high grain yield via minimum water use [119]
PN-WW-SM The system had 19% low evapotranspiration [39]
CT-WF-ESM Exhibited 33.7% higher water utilization [120]

WW
Opt-no-till Reduced risk of groundwater drop [110]

WW-watermelon Consumed low water and N fertilizer [121]
SPM-monoculture Showed lowest, 139 mm yr−1, water consumption [122]

Note: Hence, the change in cropping pattern is recommended by rejecting the conventional cropping pattern of
WW-SM based on surveyed publications. WW: Winter wheat, SM: Summer maize, EM: Early maize, F: Fallow,
PN: Peanut, SOY: Soybean, SPM: Spring maize, SS-WW: Sweet sorghum–Winter wheat, CWF-ESM: Cotton–Wheat
fallow–Early summer maize, SP-C-SP-WW-SM: Sweet potato–Cotton–Sweet potato–Winter wheat–Summer maize,
CT: Cotton, WF-ESM: Winter fallow–Early summer maize.

4.1.2. Groundwater-Friendly Farming Practices

Many studies evaluated farming practices to better understand the impacts of field
management on groundwater. Along with the change in the cropping pattern, different
farming techniques should also be considered, such as root-zone watering, low N applica-
tions, and deficit irrigation [53], and limited water supply to the conventional WW-SM could
reduce 15 to 35% water consumption by increasing 10 to 30% WUE [123]. Xu et al. [124]
revealed that improved farming practices and technology have shown good results by
reducing >60% of N and >50% of water loss by sloping croplands; together, 20% of crop
productivity also improved. Still, there are several challenges for sustainable water and
nitrogen use. A breakthrough is required in a series of agricultural technologies, including
efficient crop production, mechanization, and standardization, which can help to achieve
sustainable yield goals by protecting and restoring natural resources. This would all be
possible through enhancing WUE and NUEs, which are associated with farming practices.
Advance farming practices include the use of new drip, sprinkler, central pivoted, and
subsurface irrigation technology, as well as the application of slow-release N and Nano
fertilizers. Nowadays, easy-to-use remote sensors have also been invented for farmers’ use,
so they can analyze CWR very quickly by themselves without going to laboratories and
finding specialists, but such technology is not successfully transferred to the farmers.

Furthermore, there is a lack of awareness among the farmer community due to edu-
cation factors. If farmers apply water via a drip and nitrogen after testing soil moisture
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and N concentration and follow the integrated agronomical strategy, then excessive use
of water and N could be reduced in the region. For example, Meng et al. [22] saved 19%
water and two times more NUE via soil testing than farmer practice in the WW-SM field
and also obtained optimum grain yield. Sun et al. [122] achieved 5.4 kg ha−1 mm−1 greater
WUE as compared to the conventionally managed field of WW-SM rotations. Similarly,
Chen et al. [125] prevented 85.2% NO3

− leaching through an analysis. There are several
studies concerning farming practices; Yan et al. [126] conducted a field experiment on
the maize crop from a plant density aspect and suggested 7.5 plants m−2 as optimum
for enhanced crop N utilization. Li et al. [127] performed an experiment on irrigation
methods and concluded that raining of irrigation (RI) to the crop via a sprinkler was the
best practice compared to conventional border irrigation (BI). They also found that the RI
system increased by 64.8% WUE. Yan et al. [126] suggested that wide precision planting
enhanced both WUE and NUE. Hu et al. [128] recommended the use of slow-release coated
urea for maximum N recovery.

These findings are pioneering and would significantly help to improve farming prac-
tices for groundwater sustainability. A list of recommendations is presented in Table 3
for developing groundwater-neutral farming practices and controlling NO3

− transport in
the groundwater.

Table 3. Some recommendations for groundwater water conservation under optimized farm-
ing practices.

Recommendations Supporting Comments for Recommendations References

<200 kg N ha−1 Because >200 kg N ha−1 caused N leaching from WWSM [24]
Larger spike wheat Larger spike wheat showed N efficiency > 10% [25]
Straw incorporation Significant inhibited annual N loss of about 31% [58]

75 mm watering From jointing to booting stages in WW showed excellent result [69]
394 mm water yr−1 Showed as optimum for WW-SM rotations [75]
330 kg N ha−1 yr−1 Reduced N losses by 34% from WW-SM field [39]

Soil test-based N 85.2% NO3
− leaching can be reduced from the wheat field [125]

7.5 plants m−2 Showed higher NUE of maize than plant density, 9.0 m−2 [126]
Subsoiling tillage (ST) Water storage capacity increased in 2 m soil layer [129]

ETWatch-UZF-MODFLOW Improved the groundwater balance for shallow aquifers [130]
Drip irrigation Proven as efficient irrigation method in water-scarce area [46]

BI→RI RI showed 64.8% WUE compared to conventional BI [131]
FP → OPT Significantly decreased N loss by 28.6% in WW-SM [132]

43 kg N ha−1 Concluded as the optimum ecological dose for maize [133]
Sprinkler irrigation Lowered water consumption and improved WUE (17.7%) [134]

N via fertigation Reduced risk of NO3
− contamination in groundwater [135]

Wide planting Enhanced WUE and NUE compared to traditional method [59]
CTS → NTS NTS significantly decreased NO3

− leaching losses [136]
Use of coated urea Slow-release coated urea increased maximum N recovery [128]

Conservatory tillage 30.1% WUE was improved compared to conventional tillage [137]
5-day-delay sowing ET was decreased by 3.5 mm day−1 for wheat [138]
Mulching in maize Reduced soil evaporation loss by 40–50 mm yr−1 [139]

Note: Hence, the optimized farming practices are recommended by rejecting conventional cultivation practices in
light of surveyed publications. BI: Border irrigation, RI: Raining irrigation, FP: Farmer practice, OPT: Optimized
practice, CTS: Conventional-tillage system, NTS: No-tillage system.

4.2. Groundwater Recharge Option

Integrated use of options such as a change in the cropping system plus aquifer charge
should be preferred to conserve natural resources because the shallow aquifer is already
depleted, and the deep aquifer is under stress in the region. Artificial recharge of aquifers
is a great technique for groundwater recovery and improving water availability. It can help
to solve many problems associated with water scarcity, including low crop productivity
issues, land subsidence, intrusion of seawater, particularly in the Tianjin coastal area, and
ecosystem damage. The artificial recharge of groundwater is becoming a necessary measure
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over time because natural recharge is low in the region. For instance, Cao et al. [140] and
Min et al. [141] conducted research on groundwater recharge in the NCP and found that
the mean groundwater recharge was 130 and 200 mm yr−1 during the period between
1993 and 2008 and 1976 and 2013, respectively. In a recent study, Min et al. [142] reported
the groundwater recharge rate as 92.80 mm yr−1 in the central plain areas. There is a
significant difference in groundwater recharge from area to area in the region. Approxi-
mately 89 mm yr−1 of groundwater is recharged through rainfall contribution [143] and
>40 mm yr−1 comes from irrigation [144]. Generally, natural groundwater recharge in the
region is influenced by some biotic and abiotic factors, i.e., the vegetation type, precip-
itation, soil properties, especially texture, and amount of irrigation to the crop. Every
year, the increase in the cultivated area increases the annual rate of ET and thus reduces
recharge [134]. The magnitude of natural recharge depends on precipitation events. The
recharge of <100 mm yr−1 and <200 mm yr−1 could be classified as rainfall representation
of 18% and 30%, respectively. Scientifically, precipitation undergoes various evaporative
effects before recharging the groundwater [140]. In this paper, groundwater recharge has
been calculated from the surveyed publications with an average value of 121.96 mm yr−1

(Table 4). This recharge amount of water is insufficient, considering figures of ground-
water obstruction in the region. Therefore, artificial groundwater should be considered.
It has been estimated that >40 b m3 of water could be stored underground via artificial
recharge [145]. After a deep search of the literature, we found that a few government
projects are running for groundwater recharge, including the Chaobai river (spreading
basin), Yongding river (trench + well injection), and Tanggu section (deep well injection).
The first two schemes are being used to enhance groundwater storage. As a result, ground-
water has risen to a satisfactory level, and the decline has slowed as compared to the
historical background of selected areas. At present, the new South-to-North Water Transfer
(SNWTP) project is being highly appreciated. It is called the “Silver bullet” and can restore
the groundwater when it will be fully operational. This project has been designed to
deliver 20 b m3 yr−1 to address the water shortage issue of the region [146]. This kind of
government effort would be a key to recovering groundwater storage, but the government
should also take some low-cost steps for local-level groundwater recharge methods, such
as commonly rural peoples harvesting rainfall water in wells, ponds, ditches, and basins
for crop production, which is greatly helping to restore and sustain the groundwater. En-
couraging such human activities through technology and finance will provide better results
in conserving groundwater reservoirs. The digging of ditches and small basins inside the
crop land and on the wasteland could save an ample amount of water, which will serve
as recharge sources after pumping. On the other hand, urban and industrial wastewater
should be well utilized after primary or secondary treatment. It should be regarded as a
valuable water resource for not only groundwater recharge but also for farming use since
the amount of urban and industrial wastewater is very high. For example, the Hai river
basin generates about 10,000 mm3 yr−1. The proper wastewater harvesting and recycling
will also carry surface drainage waters, including rainfall, which will be additionally advan-
tageous to solve the problems related to wastewater management. It would minimize the
risk of pollution caused by the wastewater discharge. However, there are some institutional
and technical constraints to effectively harvest wastewater and reuse it [114]. A better
strategy and joint work of ministries such as Water and land and resources, Agriculture,
Environmental protection, Housing, and Urban and rural development would be useful
to overcome technical matters since the subject of groundwater management is widely
fragmented among these ministries. Some literature showed that urban wastewater was
utilized in a few severe water shortage areas for crops and groundwater recharge without
adequate measures, which resulted in the deterioration of underground water through
NO3

− contamination [79].
Strategies such as rainwater harvesting and artificial recharge for groundwater show

possibilities in mitigating groundwater depletion and deterioration [147]. Rainwater is
collected and stored for a variety of uses, which is known as rainwater harvesting. This
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technique offers an alternative water source that can lessen the need for groundwater for
household and agricultural requirements by collecting rainfall runoff from rooftops or
other surfaces [148]. This is an economical and ecologically sustainable method that may be
applied at many levels, ranging from individual dwellings to more extensive community-
wide initiatives [147]. Intentionally accelerating the natural process of water penetration
into the earth is known as artificial recharge of groundwater. Spreading grounds, injection
wells, and recharge basins are involved in some of the techniques that can be used to accom-
plish this [149]. These methods successfully recharge aquifers and mitigate the detrimental
consequences of excessive groundwater extraction by facilitating the percolation of water
into the soil [150]. Groundwater quality is enhanced and groundwater levels are restored
via both artificial recharge and rainfall harvesting. When rainwater percolates through
the soil during artificial recharge, pollutants are naturally filtered away, and it is usually
devoid of the toxins commonly present in surface water. Thus, these approaches provide a
dual advantage by raising the amount of accessible groundwater and improving its overall
quality [149,151].

Table 4. Groundwater water recharge reported by different researchers.

Recharge Area Reference Recharge Area Reference

102.0 mm yr−1 WR [65] 177.0 mm yr−1 Lacustrine
plain sites [152]

65.00 mm yr−1 WR [99] 90.00 mm yr−1 WR [144]
120.0 mm yr−1 Central plain [140] 108.0 mm yr−1 Liaocheng city [153]
200.0 mm yr−1 WR [141] 85.80 mm yr−1 Luancheng [154]

92.80 mm yr−1 Central plain [142] 168.0 mm yr−1 Weishan
district [155]

130.0 mm yr−1 WR [156] 126.8 mm yr−1 Shijiazhuang [157]
188.0 mm yr−1 Cangzhou [158] 63.80 mm yr−1 Tongzhou [159]
180.0 mm yr−1 Piedmont plain [160] 138.7 mm yr−1 Hebei [161]

150.0 mm yr−1 Taihang
mountains [133] 124.3 mm yr−1 Hengshui [162]

134.0 mm yr−1 Luancheng [163] 175.0 mm yr−1 Hebei [164]

Note: Hence, the average groundwater recharge value is calculated as 121.96 mm yr−1 from the surveyed
publications. The WR indicates that the study reported on the whole region.

5. Conclusions and Future Perspective

In the current review, we found low average groundwater recharge, faster decline,
and higher NO3

− contamination via combined studies of local and regional level research
papers. The conventional cropping system is a primary cause of ecosystem damage. The
scenario could be severe in the future due to the rapid increase in the human popula-
tion, which will demand more food and a safe water supply. Continuously declining
groundwater reservoirs will result in water scarcity for both drinking and crop cultivation.
Food production could be decreased due to water shortage. Information presented in
this document would be useful for researchers when referencing the North China Plain in
agriculture, hydrology, and environmental studies.

In the context of the above-mentioned facts, some valuable suggestions are pro-
vided below:

■ The government should take some steps to control excessive groundwater pumping
and the application of nitrogen fertilizers.

■ Farmers would be facilitated with highly efficient irrigation and nitrogen applica-
tion systems.

■ Control measures for NO3
− leaching in the field should be well studied via large-

scale research.
■ The groundwater recharge rate should be determined with the response to rainfall

intensity throughout the region.
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■ Artificial recharge options should be explored in every part of the region, the actual
amount of water should be quantified, and safe utilization should be ensured via
modern technology to minimize the risk of NO3

− transport in the groundwater.
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