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Abstract: In this study, the characteristics and transport of oxygen-doped graphitic carbon nitride
(OgCN) were investigated in comparison with multi-walled carbon nanotube (MWCNT), and the
transport of OgCN was evaluated under various conditions. OgCN was superior to MWCNT in trans-
port within a quartz sand layer with less attachment and more detachment than MWCNT, which is at-
tributable to more diverse and abundant functional groups, charges, defects, and amorphous graphitic
structures. OgCN transport was well described by a one-dimensional advection–dispersion–retention
model. The coefficients of retention (Smax), attachment (ka), and detachment (kd) calculated by the
model were not always well-correlated with OgCN concentration and the grain size of the medium,
suggesting that the OgCN transport was affected by various factors such as attachment, detachment,
and pore size. However, it was clearly and significantly inhibited by ionic strength, via improved
aggregation of OgCN. It is believed that the results of this study contribute to establish proper
sub-surface injection strategies of carbonaceous materials for in situ chemical oxidation.

Keywords: oxygen-doped graphitic carbon nitride; column experiment; breakthrough curves;
transport modeling

1. Introduction

In situ chemical oxidation (ISCO), which uses various oxidants, including hydrogen
peroxide (H2O2), peroxydisulfate (S2O8

2−, PDS), peroxymonosulfate (HSO5
−, PMS), and

permanganate (MnO4
−, PM), is an efficient and economical option for the removal of

organic pollutants from soil and groundwater via oxidative degradation, limiting the
spread of pollutants and their associated risks [1–3]. The ISCO is based on the oxidative
degradation of organic pollutants by the attack of radical and/or non-radical reactive
species, such as •OH, SO2

•−, and 1O2, via the activation of the oxidants [4,5]. The activation
is carried out using various homogeneous and heterogeneous catalysts and activators.

Homogeneous activators and/or catalysts include transition metal ions, most fre-
quently Fe2+, heat, UV, and ultrasound [6–8]. However, those homogeneous processes
have critical drawbacks in subsurface applications, such as high cost, limited large-scale
applications, blockage of pores in aquifers via the formation of metal precipitates, and
secondary pollution by the migration of metals to clean zones [9,10].

Therefore, the use of heterogeneous catalysts such as solid-phase zero-valence metals,
metal (hydr)oxides, metal-free carbonaceous materials, and composites can be beneficial in
ISCO. These heterogeneous catalysts and/or activators have a broader range of working
pH, are easily recovered, can be regenerated, and have a wider application via modification
of the reactive sites on them [11,12]. Among the heterogeneous catalysts, metal-containing
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materials have the inherent disadvantage of metal leaching, which causes secondary pol-
lution, pore blocking, and the deactivation of the catalysts via migration, as well as the
formation and accumulation of less reactive metal species [13–17]. On the other hand, the
risks of metal-containing materials are avoided by using metal-free carbonaceous materials,
such as graphene oxide (GO), cubic mesoporous carbon, carbon nanotubes (CNTs), nanodi-
amonds, graphitic carbon nitride (gCN), and activated carbon (AC). They have excellent
thermal and chemical stability, availability, and well-developed meso- and micro-pores,
which can provide more surface-reactive sites [13]. Therefore, carbonaceous materials can
be good options for use as catalysts in ISCO and have been the focus of recent research [14].

Other than the high potential of the carbonaceous materials as catalysts in ISCO, it
must be noted that the transport of the materials in the subsurface environment is critical
for their successful application in ISCO [2,11]. A catalyst and/or activator must be trans-
ported through the pores of soil layers and spread readily throughout the contaminated
zone [2,11,17]. The transport is more difficult for solid materials than dissolved ions, such
as Fe2+ [2,11]. However, limited numbers of publications have investigated the transport of
heterogeneous catalytic materials through porous media, such as aquifers.

In this regard, the transport of a metal-free carbonaceous material, which is one of the
good candidates for catalysts for ISCO, was investigated in this study to establish a proper
strategy for its injection into subsurface-contaminated zones. Oxygen-doped gCN (OgCN)
was selected as the catalyst. OgCN has a graphene-like layered structure and is prepared
using cheap materials, such as urea and oxalic acid, via replacing N atoms in the amino
groups in the heptazine units of gCN [18]. The high potential of the OgCN in ISCO can be
justified by the remediation efficiency and safety.

Both gCN and OgCN are good photocatalysts [18–21]. However, OgCN demonstrates
effective PMS activation, an effect that is negligiblein gCN [18,19]. It was suggested that the
electron-rich O and the electron-poor C atoms near the O accelerated the electron transfer
from organic pollutants (electron donor) to PMS (electron acceptor), and the generation of
reactive species, such as SO2

•− and 1O2, eventually enhanced the oxidative degradation of
the organic pollutants [14,18,19]. For example, OgCN was excellent in the degradation of
bisphenol-A (BPA) and oxytetracycline via PMS activation to generate •OH, SO2

•−, and
1O2 [18,19]. Moreover, OgCN is also an efficient photocatalyst for BPA degradation via
improved charge-carriers separation and changing the positions of valance and conduction
bands [20,21]. In addition, gCNs are non-toxic [18], so the residual OgCN after the operation
of ISCO does not cause a risk in the underground environment. First, the properties and
transport of OgCN in a porous medium were compared with those of multi-walled carbon
nanotubes (MWCNT), to identify the effects of the material characteristics on transport.
Then, the transport of OgCN was evaluated under various OgCN concentrations, grain
sizes of the medium, and ionic strength (IS).

2. Materials and Methods
2.1. Materials

The OgCN was synthesized from a mixture of urea and oxalic acid via one-step
thermal treatment [21]. In detail, 20 g of urea and 8 g of oxalic acid were mixed and
ground for 30 min. Then, the mixture was heated in a box furnace at 550 ◦C for 4 h at
a ramp rate of 3 ◦C/min. It was shown that the doped O substitutes the graphitic- and
pyridinic-N to increase the electron-rich O atoms and the electron-poor C atoms near
the O, in OgCN [18,21]. The obtained brown powders were cooled to room temperature,
ground, and stored until use. MWCNTs and graphite flakes were purchased from Carbon
Nano-material Technology Co., Ltd. (Pohang, Republic of Korea) and Alfa Aesar (Ward
Hill, MA, USA), respectively. They were rinsed with de-ionized (DI) water 10 times before
drying at 105 ◦C for 24 h.

Standard sand (ISO 679, SNL Corp., Leucate, France) was used as the porous media. It
was separated into two size ranges, 0.25–0.6 mm and 0.6–1.0 mm, by sieving. They were
treated sequentially with 0.1 M of H2SO4 to remove metal oxides, and then 5% of H2O2 to
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remove organic materials on the surfaces [22]. They were then rinsed with DI water until
the pH was 7.0 ± 0.2 and dried in an oven at 105 ◦C for 24 h.

2.2. Characterization

The crystal structure of the materials was analyzed via X-ray diffraction (XRD) using
an X-ray Diffractometer (D8 Advance, Bruker, Germany) at a 2θ range of 3◦ to 89.14◦ and
scanning speed of 0.2◦/min, using Cu Kα radiation. The Raman spectra were recorded
with an inVia Raman microscope (Renishaw, UK). The excitation wavelength was 514 nm,
the spectral resolution was 4 cm−1, the exposure time was 10 s, and the total acquisitions
was 20. Fourier-transform infrared spectroscopy (FTIR) spectra were obtained using the
Spectrum One system (Perkin-Elmer, Shelton, CT, USA) to determine the surface functional
groups. The pellet was prepared using the ground mixtures of 200 mg of KBr with 0.2 g of
OgCN or MWCNT. The spectra were recorded for 8 successive scans at the wavelengths of
4000–400 cm−1, with a resolution of 4 cm−1. The element chemical states on the surfaces
of the catalysts were obtained via X-ray photoelectron spectroscopy (XPS) with K-Alpha
(Thermo Electron, Waltham, MA, USA). A monochromatic Al α-Alpha radiation source
was used and the spot diameter was 400 µm. The high-resolution XPS spectra were
recorded for C1s, N1S, and O1s for 10 scans (0.1 eV steps) and with 30 eV of pass energy.
The particle size distribution (PSD) was determined via dynamic light scattering (DLS)
using a Zetasizer nanoseries (Zen 3600 Zetasizer Nano ZS, Particle Size Analyzer, Malvern
Instruments, Malvern, UK) and the zeta potential of OgCN at different ionic strength (IS)
concentrations (0, 2, 5, and 10 mM, pH 7) was determined using a Zeta Potential Analyzer
(Brookhaven Instruments Corporation, Holtsville, NY, USA). The 5 g/L suspensions of
OgCN or MWCNT were prepared in 0.01 M KCl aqueous solution and the pH was in a
range from 2 to 10.

2.3. Column Experiments

The aqueous suspension of OgCN, MWCNT, or graphite was prepared by mixing
500 mg of OgCN in 1 L of DI water (Aquapuri 5-Super Water Purification System, Youngin
Chromass, Anyang, Republic of Korea), and sonicated for 60 min to avoid aggregation. The
pH of the suspension was adjusted to 7.0 ± 0.2 with 0.1 M HCl and 0.1 M NaOH.

A glass column of 25 mm inner diameter and 145 mm length, equipped with two end
plates with stainless steel screens, was filled with the ISO sands. The packing densities
were 1.43 and 1.5 g/cm2, the pore volumes were 23 and 24 mL, and the porosities were
0.38 and 0.44 when the column was filled with sands of 0.25–0.6 mm and 0.6–1.0 mm,
respectively. The tracer breakthrough test was carried out using 1 M of KCl (Daejung
Chemicals, Siheung, Republic of Korea) solution at a flow rate of 5 mL/min to estimate the
longitudinal dispersity [22]. The concentration of KCl was determined with a conductivity
meter (LabQuest 2, Vernier Software & Technology LLC, Beaverton, OR, USA).

The transport of OgCN was investigated via the pulse injection method. The sand-
filled column was flushed with 40 pore volumes (PVs) of the DI water. Then, 4 PVs of
the OgCN suspension were injected into the saturated column for 22 min. It was quickly
switched into DI water, and the flow was maintained until no OgCN was detected. The
suspension and the DI water were injected using a peristaltic pump (LeadFluid-BT301L,
Baoding Lead Fluid Technology Co., Ltd., Baoding, China), at a constant flow rate of
5 mL/min.

The effluent from the column was collected at predetermined intervals. The con-
centration of the OgCN and graphite of the samples was measured using a UV-Vis spec-
trophotometer (UVmini-1240, Shimadzu Corporation, Kyoto, Japan) at a wavelength of
500 nm [23], while that of MWCNT was determined at 400 nm [22].

2.4. Modeling

The results of transport experiments, i.e., the concentration of OgCN or MWCNT in
the effluents of the columns at a predetermined time, were analyzed using the HYDRUS
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1D software package. HYDRUS 1D is based on the advection–dispersion equation (ADE)
via breakthrough curves (BTCs) of OgCN or MWCNT at different conditions to model
transport and retention in the column [24]. The governing equations in this simulation are
provided in Equations (1)–(3) [25]:

θ
∂C
∂t

= θD
∂2C
∂x2 − q

∂C
∂x

− ρ
∂S
∂t

(1)

ρ
∂S
∂t

= θkaΨC − kdρS (2)

Ψ =

(
1 − S

Smax

)(
dc + x

dc

)−β

(3)

where C is the OgCN concentration in the influent (mg L−1); S is the solid phase OgCN
concentration trapped in the media (mg g−1); t is the time passed (min); D is the dispersion
coefficient (cm min−1); x is the travel distance (cm); θ is the porosity; ρ is the bulk density
of sand (g cm−3); q is the Darcy velocity (cm min−1); Smax is the maximum retention of
OgCN concentration on sand (mg g−1); ka is the first-order attachment coefficient (min−1);
kd is the first-order detachment coefficient (min−1); dc is the medium grain size (cm); Ψ is
the dimensionless function; and β is an empirical factor (with 0.43 as an ideal value) [24].

3. Results and Discussion
3.1. Comparisons of OgCN and MWCNT
3.1.1. Transport

The transports of OgCN and MWCNT were compared first, to investigate the differ-
ences between OgCN and MWCNT in relation to their properties. Figure 1 shows that
the transport of OgCN was much better than that of MWCNT. Their transport recovery
percentages were 76% and 18%, respectively. The maximum retention (Smax) of OgCN
was higher (3.3527 mg g−1) than that of MWCNT (2.6913 mg g−1), and the ka of OgCN
(0.1514 min−1) was around 31% of that of MWCNT (0.4886 min−1). However, the kd of
OgCN (0.0052 min−1) was 4.7 times higher than that of MWCNT (0.0011 min−1), suggesting
that the better transport of OgCN, compared with MWCNT, was more attributable to its
superior detachment rather than a decreased attachment. In addition, it was found in
the experiments that MWCNT was readily aggregated into larger particles when it was
pumped out from the tank of the suspension, which was mixed for the whole of the period
of experiments; in other words, when the mixing was stopped. This result is probably
because of the intrinsically high hydrophobicity, which caused the MWCNT to mostly
accumulate near the inlet of the column.
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Figure 1. Experimental and modeling breakthrough curves of OgCN and MWCNT. [OgCN] =
[MWCNT] = 50 mg L−1, flow rate = 5 mL min−1, pH = 7 ± 0.2, grain size = 0.6–1.0 mm.

3.1.2. Characteristics

The superior transport of OgCN relative to MWCNT was investigated further with
respect to their properties. The FTIR spectra of OgCN and MWCNT showed common
bands at ~3430, ~2917/2849, and ~1623 cm−1, which can be assigned to the stretching
vibrations of N–H/O–H, C–H, and aromatic C=C bonds, respectively. However, more
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bands were found for OgCN at 1418, 1318, and 1255 cm−1 representing C=O, C–N, and
C–O in CN heterocycles, respectively [21,26]. In addition, a clear band was found at
810 cm−1, which corresponds to the triazine units of gCNs [21] (Figure 2A).
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Figure 2. Results of (A) FTIR spectroscopy of OgCN and MWCNT; (B) C1s, (C) O1s, and (D) N1s XPS
of OgCN; and (E) C1s and (F) O1s XPS of MWCNT.

The atomic fractions of C, N, and O were 47.2%, 49.06%, and 3.74%, respectively, for
OgCN, while they were 98.89%, 0.26%, and 0.85%, respectively for MWCNT, demonstrating
a CN structure and the successful doping of O in OgCN and the high purity of MWCNT,
respectively. The (O + N)/C of OgCN (1.12) was much higher than that of MWCNT
(0.01), indicating a greater hydrophilicity of OgCN than MWCNT. The high-resolution XPS
spectra are presented in Figure 2B–F. The C1s, O1s, and N1s spectra were deconvoluted
into characteristic peaks using XPS peak 4.1 software (Table 1) [27]. The C1s XPS spectrum
of OgCN showed the peaks of graphitic C–C/C=C, C–O, C=O, and N–C–N at 284.2, 285.9,
287.2, and 287.8 eV, respectively, as assigned in previous works related to gCNs [28,29].
On the other hand, in the C1s XPS spectrum of MWCNT, the peaks of sp2–C and sp3–C,
at 284.6 and 285.2 eV, respectively [28,29], were clearly separated, and the peaks of C–O
and N–C–N were absent. The C=O peak was dominant in the O1s XPS spectrum of
OgCN, while MWCNT’s O1s XPS spectrum showed low-intensity peaks of C=O, C–O, and
O–C=O [28]. The N1s spectrum of OgCN consisted of peaks corresponding to C–N=C,
C3–N, and C2–N–H, at 397.8, 399.4, and 400.5 eV, respectively, as also reported in previous
works about CNs [28,29].

Table 1. XPS results of OgCN and MWCNT.

C1s O1s N1s
C–C/
C=C

C–C,
sp2

C–C
sp3 C–O C=O N–C–N Π–Π* Shake-up

Satellite C=O C–O O–C=O C–N=C C3–N C2–N–H

OgCN Position (eV) 284.2 285.9 287.2 287.8 531.4 533.0 397.8 399.4 400.5
Fraction (%) 9.2 11.2 17.9 8.8 3.2 0.6 32.7 13.3 3.1
FWHM (eV) 1.7 1.9 1.3 1.9 2.3 1.5 1.5 1.6 1.2

MWCNT Position (eV) 284.6 285.2 287.3 290.5 531.5 531.8 533.2 - - -
Fraction (%) 53.3 25.3 3.3 17.0 0.1 0.3 0.5
FWHM (eV) 0.8 2.2 1.5 5.1 2.5 1.0 1.9 - - -

The XRD patterns of OgCN and MWCNT showed common peaks in the (100) plane
for in-plane graphitic structures (13.4◦) and in the (002) plane for inter-layer stacking [21]
(Figure 3A). However, the diffraction angle of OgCN (27.6◦) was higher than that of
MWCNT (26.5◦), indicating that the interlayer stacking was more severe in OgCN than
in MWCNT [30]. This suggests that OgCN has a better tribological property, i.e., higher
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wear resistance and lower friction, than MWCNT, which would facilitate easier transport
through the pores of a medium with less resistance [31].
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Figure 3. The (A) XRD patterns, (B) Raman spectra, and (C) zeta potential of OgCN and MWCNT.

The D4–, D–, D4–, G–, 2D–, and D + G bands were found in the Raman spectrum of
OgCN at 1232, 1384, 1519, 1595, 2724, and 2938 cm−1, respectively (Figure 3B) (Table 2).
The D4–band represents the disordered graphitic lattice, ionic impurities, and polyenes,
while D–, D4–, G–, 2D–, and D + G bands are associated with disordered structures
such as defects and edges, amorphous carbon, ideal lattice of graphitic structures, single
graphene-like layers, and a combination of the D and G bands, respectively [32,33]. The
D4–band was not found, while a small D + D′′–band was found at 2458 cm−1 in the Raman
spectrum of MWCNT, which is assigned to the combination of the D–band and the D′′–band
representing amorphous carbon. On the other hand, the ratio of the intensity of the D–band
to the G–band (ID/IG) represents the relative abundance of defects in graphitic structures,
while the ratio of the intensity of the 2D–band to the G–band (I2D/IG) is indicative of the
relative abundance of single-layer graphene and is inversely proportional to the degree
of stacking of graphitic layers [32]. It was shown that ID/IG was higher for OgCN (1.83)
than for MWCNT (1.81), while the I2D/IG was greatly larger for MWCNT than for OgCN.
The results show that, compared with that in MWCNT, the graphitic structure in OgCN is
characterized by more defects, either structural or by impurity, more amorphous structures,
less ideal graphitic planes, less single-layer graphene-like structures, and a much greater
degree of stacking, which is also suggested in XRD patterns (Figure 3A).

Table 2. Raman spectroscopy results of OgCN and MWCNT.

D4 D D4 G D + D′′ 2D D + G ID/IG I2D/IG

OgCN Center (cm−1) 1232 1384 1519 1595 2724 2938 1.83 0.15
Area (%) 6.8 32.8 4.1 17.9 2.8 35.6
FWHM (cm−1) 127.2 182.9 65.8 141.4 113.1 304.1

MWCNT Center (cm−1) 1348 1531 1590 2458 2695 2932 1.31 1.89
Area (%) 26.0 5.3 19.8 1.2 37.5 10.2
FWHM (cm−1) 48.9 175.7 64.9 94.4 91.6 106.8

The zeta potential of OgCN and MWCNT are provided in Figure 3C. The points of
zero charge (pHpzc) were around 3.6 and 4.6 for MWCNT and OgCN, respectively. The
absolute values of zeta potential were higher for OgCN than for MWCNT, at pHs of 2–4
and >5. This indicates that OgCN contains more acidic and/or basic functional groups than
MWCNT [34]. This is also suggested by the FTIR spectra and XPS spectra, which show
that OgCN was more abundant in O-, N-, and C-containing groups such as C=O, C–N, and
C–O, than MWCNT (Figure 2).

Collectively, OgCN was less crystalline, more stacked, and more negatively charged at
the pH of this study (7.0), richer in O- and/or N-containing functional groups, and more
abundant in structural defects, than MWCNT. These properties are beneficial for transport
in porous media, providing more charges and hydrophilicity. It was reported that a
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modified MWCNT, enriched with O-containing functional groups such as carboxylic groups
via refluxing with HNO3, showed enhanced transport relative to pristine MWCNT [35].
The enhanced transport of a material achieved by enriching functional groups was also
demonstrated for single-wall CNTs (SWCNTs). The transport in quartz sand columns
was better for humic-acid-modified SWCNTs than for oxidized SWCNTs because of more
abundant functional groups, which provide more negative charges [36].

3.2. Transport of OgCN under Various Conditions

The transport of OgCN was investigated under varying OgCN concentrations, medium
grain sizes, and IS. All results were analyzed using HYDRUS-1D (Equations (1)–(3)), which
provided good fits to the experimental results, except for when IS was extremely high
(10 mM KCl). The calculated parameters for each condition are presented in Table 3, and
the results are discussed separately thereafter.

Table 3. Experimental conditions and parameters of HYDRUS-1D.

Concentration
(mg L−1)

Grain Size
(mm)

IS
(mM KCl)

ka
(min−1)

kd
(min−1)

Smax
(mg g−1) r2

OgCN 10 0.25–0.6 0 0.1831 0.0029 2.76 0.950
50 0.25–0.6 0 0.1920 0.0086 3.73 0.954
100 0.25–0.6 0 0.3468 0.0033 4.30 0.916

10 0.6–1.0 0 0.1850 0.0023 2.56 0.948
50 0.6–1.0 0 0.1514 0.0052 3.35 0.973
100 0.6–1.0 0 0.0936 0.0115 3.57 0.981

50 0.6–1.0 2 0.2458 0.0001 3.81 0.933
50 0.6–1.0 5 0.4160 0.0017 4.56 0.927
50 0.6–1.0 10 0.6190 0.0005 5.74 0.885

MWCNT 50 0.6–1.0 0 0.4876 0.0023 2.69 0.975
50 0.6–1.0 10 0.4886 0.0011 3.43 0.963

3.2.1. Effects of OgCN Concentration and the Grain Size of the Medium

Figure 4 shows the breakthrough curves of OgCN with respect to the passed pore
volume at different OgCN concentrations and the grain size of the packed quartz sand. The
ka, kd, and Smax are presented with respect to the OgCN concentrations in Figure 5.

The Smax increased with increasing OgCN concentration for both 0.25–0.6 and
0.6–1.0 mm sand, indicating that the retention is significantly affected by the influent
amount. However, the increase in Smax was not as significant as the increase in OgCN
concentration. The Smax was increased 1.56 (2.76 to 4.30 mg/g) and 1.40 (2.56 to 3.57 mg/g)
times for the 0.25–0.6 mm and 0.6–1.0 mm sand columns, respectively, when the OgCN
concentration was increased 10 times, i.e., from 10 mg/L to 100 mg/L. This suggests
that not only the attachment, but also the detachment played an important role in the
transport of OgCN, and that increased injection of OgCN is not necessarily followed by
greater retention.

The ka was decreased from 0.1850 to 0.0936 min−1, while kd was increased from 0.0023
to 0.0115 min−1, as the OgCN concentration was increased in 0.6–1.0 mm sand, indicating
that some of the OgCN retained in the quartz sand was detached. However, it is also shown
that ka and kd were at their highest when OgCN concentrations were 100 and 50 mg/L,
respectively, in 0.25–0.6 mm sand, having a lower porosity (0.38) than 0.6–1.0 mm sand
(0.44). The different attachment and detachment values of OgCN indicate that they were
significantly affected by the porosity, pore size, and factors such as the uniformity and
size of the media, as recently revealed [37]. In addition, it is speculated that the retained
OgCN itself may form an unstable permeable network with varying holding capacity of
particles [38].
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Figure 4. Experimental results and modeling breakthrough curves of the transport of OgCN of
different concentrations in the column filled with quartz sands of different grain sizes: (A) 10 mg L−1,
(B) 50 mg L−1, and (C) 100 mg L−1. Flow rate = 5 mL min−1, pH = 7 ± 0.2.
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Figure 5. The correlations of OgCN concentration with (A) ka, (B) kd, and (C) Smax for 0.25–0.6 mm
and 0.6–1.0 mm sand.

The Smax was similar for both sizes of sand when the OgCN concentration was 10 and
50 mg/L, with values of 2.56–2.76 and 3.35–3.73 mg/L, respectively, but it was higher in
0.25–0.6 mm sand (4.30 mg/g) than in 0.6–1.0 mm sand (3.57 mg/g), at 100 mg/L. This
suggests that the attachment was improved while the detachment was suppressed in a
medium of smaller pores above a certain input concentration of OgCN, i.e., 100 mg/L.

3.2.2. Effect of Ionic Strength

The breakthrough curves of OgCN at different IS are provided in Figure 6A, with the
simulated curves, in relation to the volume of the O-gCN suspension passed through the
column (V) divided by the pore volume of the column (V0). The transport of OgCN was
decreased as the IS was increased to 10 mM KCl. The parameters representing attachment
(ka) and retention (Smax) were increased, while the indicator of detachment (kd) was de-
creased. The ka and Smax were linearly correlated with IS (the concentration of KCl) with
correlation coefficients (r2) of 0.9917 and 0.9818, respectively. This strongly suggests that
IS was directly correlated with the attachment and retention of OgCN in the medium in
this study, i.e., quartz sand. On the other hand, the kd was 0.0052 min−1 when no KCl was
added, but was decreased greatly to 0.0001–0.0017 min−1 with 2–10 mM KCl. This indicates
that the detachment of OgCN would be decreased dramatically under a low IS. Therefore,
the increase in Smax with increasing IS was attributable to both enhanced attachment and
suppressed detachment.

The enhanced attachment and suppressed detachment observed in the OgCN particles
are associated with enhanced aggregation of OgCN particles and increased aggregate
size. It was found that the zeta potential of OgCN was not notably affected at pHs of 2–5;
however, it decreased significantly as the IS was increased at pHs of 6–7, where the exper-
iments in this study were carried out (Figure 6B). The zeta potential was −39.28 ± 1.54
and −21.27 ± 6.58 mV when KCl concentrations were 0 (zero) and 10 mM, respectively.
In addition, it was found via the PSD analysis of the aggregated OgCN particles in the
suspensions at various IS, i.e., KCl concentration, that the average hydrodynamic diameter
of the OgCN increased gradually from 1484.7 ± 127.4 to 2035.0 ± 209.1 µm as the KCl
concentration increased from 0 (zero) to 10 mM (Figure 6C). This is attributable to the
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compression of the electrical double layer on the surface of OgCN and the charge neu-
tralization via the adsorption of ions with counter charge, which reduces the repulsion
between OgCN particles [39,40], leading to increased retention of OgCN particles on the
media as well as the aggregation of OgCN. The results in Figure 6 are compatible with
Derjaguin–Landau–Verwey–Overbeek (DLVO) theory explanations, which proposed that
electrostatic interactions played a detrimental role in regulating the transport of OgCN via
controlling the colloidal stability and aggregation of OgCN [39,40].
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Figure 6. (A) Experimental and modeled breakthrough curves of OgCN with various IS and (B) the
correlations of the parameters of the HYDRUS–1D model with IS. The flow rate was 5 mL min−1,
[OgCN] = 50 mg L−1, pH = 7 ± 0.2. (C) The size of the OgCN aggregates with respect to IS (KCl
concentration).

On the other hand, non-DLVO interactions, such as hydrogen bonding, would con-
tribute to the results in Figure 6A [41]. It was reported that hydrogen bonding between the
nitrogen lone pair electrons in gCN and Si-OH on quartz sand was promoted at high ISs.
In addition, the deposited gCN provides new adsorption sites of gCN introduced later, via
π–π conjugation [42]. It was also reported that the Debye length of gCN approaches the
length of hydrogen bonds, i.e., 0.26–0.33 nm, with increasing IS, thus facilitating hydrogen
bonding between quartz sand and gCN [42].

Meanwhile, the response of MWCNT to the raised IS was less sensitive compared
with that of OgCN and differed from that of OgCN (Table 3). The Smax was increased from
2.69 to 3.43 mg/g when 10 mM KCl was used. However, the ka did not show a notable
change, while the kd decreased greatly from 0.0023 to 0.0011 min−1. These observations
suggest that a decreased detachment, rather than increased attachment, was responsible
for the enhanced retention of MWCNT, i.e., increased Smax is associated with increased IS.

4. Conclusions

In this study, OgCN and MWCNT were compared in terms of their characteristics and
transport in porous media to identify the properties that would be beneficial for transport.
Afterward, the transport of OgCN was investigated to evaluate the potential of its use
in ISCO.

The transport of OgCN was much better than that of MWCNT, with less attachment
and greater detachment. The OgCN contained more diverse and abundant O- and/or
N-containing functional groups, such as graphitic C–C/C=C, C–O, C=O, N–C–N, C–N=C,
and C3–N, than MWCNT. In addition, OgCN contained more stacked, charged, disordered,
defective, and amorphous graphitic structures than MWCNT. The transport of OgCN
was well described using a 1-D ADR model (HYDRUS-1D), the parameters of which are
provided. The Smax increased with increasing OgCN concentration, but the increase was
not as significant as the increase in OgCN, and ka and kd were not always clearly dependent
on the OgCN concentration and grain size of sand. These indicate that OgCN transport
was influenced by a combination of attachment, detachment, and pore size. However, IS
has clear and significant effects on transport via the reduction in zeta potential and the
associated increase in the size of OgCN aggregates. MWCNT showed similar responses to
raised IS, but they were not as sensitive as OgCN.
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The results of this study contribute substantially to efforts to prepare more readily
transportable materials and to establish proper strategies for the subsurface injection of
materials for ISCO.
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J. Graphene Oxide-Based Nanocomposites Decorated with Silver Nanoparticles as an Antibacterial Agent. Nanoscale Res. Lett.
2018, 13, 116. [CrossRef] [PubMed]

33. Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman Microspectroscopy of Soot and Related Carbonaceous
Materials: Spectral Analysis and Structural Information. Carbon NY 2005, 43, 1731–1742. [CrossRef]

34. Kim, Y.; Choi, K.; Jung, J.; Park, S.; Kim, P.-G.; Park, J. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem
and six major sulfonamides, and their potential ecological risks in Korea. Environ. Int. 2007, 33, 370–375. [CrossRef] [PubMed]
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