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Abstract: Water resource management scenarios have become more crucial for arid to semi-arid
regions. Their application prerequisites rigorous hydrological modelling approaches since data are
usually exposed to uncertainties and inaccuracies. In this work, Soil Water Assessment Tool (SWAT),
an open source semi-distributed, continuous-time, process-based physical hydrological model is
used to model hydrological processes and eventually calculate groundwater recharge estimations in
Seybouse basin, Northeast Algeria. The model uses estimated rainfall to calibrate the model with
observed discharge from hydrometric stations. Model calibration and validation are performed
over four hydrometric stations located in the basin. Uncertainty analysis and sensitivity analysis
supported the calibration period. SUFI-2 algorithm is used for uncertainty estimations along with
a global sensitivity analysis prior to calibration simulations. Simulated flood hydrographs showed
generally good accuracy with few misfits on the peaks. The model obtained satisfactory and consistent
calibration and validation results for which the Nash score varied from 0.5 to 0.7 for calibration and
from −0.1 to 0.6 for validation and R2 from 0.6 to 0.7 for calibration and 0.03 to 0.8 for validation.
Moreover, estimated water budget values show strong similarities with the observed values found in
the literature. The present work shows that the rigorously calibrated and validated SWAT model can
simulate hydrological processes as well as major high and low flows using estimated rainfall data.

Keywords: hydrology; SWAT; Seybouse basin; SUFI-2; multi-station modelling; semi-arid regions;
groundwater recharge

1. Introduction

In semi-arid zones, the problem of water scarcity is exacerbated, posing a threat to
food cultivation, ecosystems, and public health. A swift expansion of semi-arid regions in
the Mediterranean, Africa, as well as North and South America is projected [1]. Mediter-
ranean semi-arid regions have been exposed to an increase in population due to industrial,
economic, and touristic developments since the late 70s. Water stress in those regions today
has become more critical under ongoing increases in temperature in subtropical zones.

Considering these socio-economical and hydro-climatological conditions, water re-
sources management measures need more scientific attention. Modelling surface and
ground waters and their interactions can be preliminary actions in terms of water resource
management in Mediterranean semi-arid regions. To secure the availability and sustain-
ability of water in many regions, various methods of artificial groundwater recharge are
used to replenish underground aquifers [2–6]. Wastewater treatment and reuse, artificial
recharge, and water storage in aquifers for drought emergencies with respect to current
or future climate change conditions have been considered to be sustainable solutions.
Understanding general water fluxes through surface waters and groundwaters in hydro
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systems and their interactions are very important for further applications of water resource
management scenarios [7]. For the TRUST project supported by the PRIMA 2020 program,
we are interested in estimating aquifer recharge and studying artificial recharge scenarios.
In this preliminary work, we aim to create a model that can estimate groundwater recharge
with hydrological models.

Hydro(geo)logical models provide extensive modelling approaches for simulating
water resource management measures and scenarios to the regional or national stakeholders
and authorities. There are two major schools in hydrological modelling: physical and
statistical (black box) models. While physical models represent the hydro system via
physical equations, statistical models aim to characterize the system in the mathematical
form [8]. Different advantages and inconveniences exist for both approaches. One can
address related literature for further lectures [8–11].

In this study, a process-based physical hydrological model, SWAT, is preferred for
hydrological modelling purposes thanks to its wide use and efficiency in recent years on
different types and sizes of basins. The aim of this study is mainly modelling hydrological
processes in a semi-arid Mediterranean basin, Seybouse, in Northeast Algeria within
the scope of the TRUST project: management of industrial treated wastewater reuse as
mitigation measures to water scarcity in the context of in two Mediterranean regions.
This preliminary modelling approach will provide hydrological simulations through a
calibrated and validated model and water budget. These results will be used as input
data in a hydrodynamic groundwater model. Therefore, modelling hydrological processes
and estimating hydrological entities, especially those related to river and groundwater
interactions such as groundwater recharge is an important focus for this study.

2. Materials and Methods
2.1. Study Area

The study area is the semi-arid Seybouse basin located in the northeastern part of
Algeria. It covers 6775 km2. The elevation in the basin ranges from 0 to 1600 m.a.s.l.
(Figure 1).
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Figure 1. Digital elevation map of the Seybouse basin and the locations of the hydro meteorologi-
cal stations.

It is bounded in the North by the Mediterranean Sea, to the East and West by the
Constantinois coastline, and to the South by the Kébir-Rhumel, Constantinois and Medjerda
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high plateaus. The Seybouse river recharges to the Mediterranean Sea at Sidi Salem towards
the South of the city of Annaba. The Seybouse basin rises in the semi-arid high plains on
the southern slope of the Atlas Tellien, flowing from South to North. According to the
Natural Waer Resource Agency, the Seybouse basin is divided into five sub-basins [12].
However, in this study, the basin is divided into 62 sub basins to better represent and model
the real-world hydrological processes.

2.1.1. Hydro-Climatology

The upper Seybouse is a mountainous area with a typically Mediterranean climate,
with hot summers and relatively mild winters; the annual amplitude characterizes the
degree of continental climate in the southern part of the Seybouse basin. In the middle of
Seybouse, the hot season runs from May to October, with an average temperature of 25 ◦C,
peaking in August, and corresponding to the dry season, with an absence of precipitation.
The wet season runs from October to April, with average temperatures below 15 ◦C. The
maximum temperature recorded in the lower Seybouse is around 46 ◦C and the minimum
is around 23 ◦C [13]. The mean annual temperature in the entire basin is recorded as
approximately 20 ◦C.

The spatial distribution of rainfall fields in the region is subject to three influences;
that of altitude, topographical conditions of longitude and finally that of distance from the
sea. The rainfall intensity increases with altitude and from West to East but is higher on
slopes exposed to wet winds than on leeward slopes. It decreases moving away from the
coast [13]. The mean annual rainfall in the entire basin varies from 500 mm to 1100 mm
approximately which proves a heterogenous rainfall distribution in the study area.

2.1.2. Hydrology and Hydrogeology

The Seybouse basin is characterized by a heterogeneous, compartmentalized relief
(plains, mountains, valleys, hills, slopes, etc.). The basin drains a series of highly heteroge-
neous regions. The high plains, with their simple relief and low or even non-existent runoff,
are followed by the rugged Atlas Tellien, with its highly complex structure. The wadis
have irregular flows. The longitudinal profile allows rapid drainage. The Seybouse basin
has a hydrographic network of over 3000 km, with forty-two wadis over 10 km long. It is
made up of highly heterogeneous natural units, e.g., mountains, depressions, and plateaus
resulting in different modes of feeding and runoff. The existence of depressions containing
alluvial aquifers through which the Seybouse flows regulates the seasonal flow and results
in low to zero river flows in summer despite the high proportion of winter rainfall received
by this mountain range.

2.1.3. Database

The Seybouse basin contains 17 rain gauges, and 4 hydrometric stations. However,
the database has data gap issues in different scales (i.e., monthly, or annually). For instance,
the hydrometric station that is closest to the basin outlet, chosen as the station to calibrate
the model with, has discharge data available from 1968 to 1991. Rain gauges have rainfall
data in different measurement time steps (annual mean, monthly mean or daily and daily
or monthly maximum). Due to the rainfall measurements possessing significant data gaps,
Climate Forecast System Reanalysis (CFSR) of The National Centers for Environmental
Prediction (NCEP) weather estimates are used. The CFRS system includes daily precip-
itation, wind, relative humidity, and solar radiation data from 1979 to 2014. The CFSR
was designed and executed as a global, high resolution, coupled atmosphere-ocean-land
surface-sea ice system to provide the best estimate of the state of these coupled domains
over this period. In situ rain gauge data and CFRS data showed good correlations for the
periods where both databases had available data. Therefore, databases were used for model
calibration and validation for the period of 1979–1991. Calibration and validation periods
were divided into two parts after excluding two years of warming up (training period) to
avoid initial condition-related uncertainty issues.
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2.2. SWAT Modelling

The Soil and Water Assessment Tool (SWAT) is a semi-distributed, continuous-time,
process-based, physical hydrological model. It is meant to assess the impacts of water re-
source management alternatives in large river basins [14]. The spatial distribution of model
parameters is controlled by subbasins having distinct spatial positions and hydrological
response units (HRUs) which are lumped within subbasins with respect to distinct combi-
nations of land use, soil, and slope characteristics. The SWAT model requires a wide range
of parameters using manual or automated calibration processes such as shuffled complex
evolution method SCE-UA [15–17], semi-automated SUFI-2 method providing sensitivity
and uncertainty analysis [18–20] and GLUE [21,22]. SUFI-2 conducts a comprehensive
optimization and uncertainty analysis via employing a global search approach, enabling it
to handle a considerable quantity of parameters.

SWAT embedded in geographic information system platforms, e.g., QGis and ArcGis,
works via a graphical user interface and allows users to design hydrological models. Model
design is supported by digital elevation topographical map (DEM), river networks, land
use, soil, and slope maps in order first to create subbasins and then hydrological units.

2.2.1. Model Inputs

The basic data set required for a SWAT model includes: a DEM of the basin, climate
data, land use/land cover and soil data. The DEM used for this study was of 30 m resolution
from NASA’s Shuttle Radar Topography Mission (SRTM). The soil map is obtained from
FAO and related soil textures and soil hydraulic groups are written in SWAT database
(Table 1).

Table 1. Soil classes in the basin with associated soil textures and hydraulic groups.

Soil Group Numbers Soil Textures Hydraulic Group

1 CLAY D
2 CLAY C
3 CLAY_LOAM D
4 LOAM D
5 LOAM D
6 SANDY_CLAY_LOAM C
7 LOAM D

Climate data include daily precipitation, temperature, solar radiation, relative humid-
ity, and wind data from the CFRS dataset which is compatible with SWAT. Eight weather
stations from the CFRS system were considered as weather data out of sixteen stations.
Discharge data from 4 hydrometric stations is used during calibration for rainfall-runoff
modelling (Figure 1).

The land use data is obtained from ESA’s Global land use GlobCover, 2009 data
(Table 2). Global land use GlobCover data is adapted to the SWAT codes and a new land
use database is created to be read by SWAT model easily.

Table 2. Global Land Use GlobCover with related SWAT land use classes.

GlobCover Code GlobCover Definition SWAT Code SWAT Definition

AGIR Post-flooding or
irrigated crops AGRL Agricultural land

AGRF Rainfed croplands AGRL Agricultural land

AGMX
Cropland

(50–70%)/grassland,
shrubland, forest (20–50%)

AGRL Agricultural land

CRGR Grassland, shrubland, forest)
(50–70%)/cropland (20–50%) CRGR Cropland/grassland
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Table 2. Cont.

GlobCover Code GlobCover Definition SWAT Code SWAT Definition

FRSE Broadleaved evergreen FRST Forest-evergreen

FRSD Broadleaved
deciduous forest FRSD Forest-deciduous

PINE Needle-leaved
evergreen forest PINE Pine

FRST Mixed broadleaved and
needle-leaved forest FRST Forest-mixed

RNG1
Mosaic forest or shrubland

(50–70%)/grassland
(20–50%)

RNGB Range-brush

RNE1
Mosaic grassland

(50–70%)/forest or shrubland
(20–50%)

RNGE Range-grasses

FRST
Closed to open (>15%)

evergreen or deciduous,
shrubland (<5 m)

FRST Forest-mixed

RNGB Sparse (<15%) vegetation RNGB Range-brush

URBN
Artificial surfaces and

associated areas (urban
areas >50%)

URMD Residential

BSVG Bare areas BSVG Barren or sparsely
vegetated

WATB Water bodies WATR Water bodies

2.2.2. Model Design

The hydrologic cycle in the SWAT model is based on the water balance equation:

SWt = SW0 + ∑t
i=1

(
Rday − Qsurf − Wseep − Ea − Qgw

)
(1)

where SWt is the humidity of the soil (mm), SW0 is the base humidity of the soil (mm), t is
time (days), Rday is rainfall volume (mm), Qsurf is the value of surface runoff, Wseep is the
value of seepage of water from the soil into deeper layers, Ea is the value of evapotranspi-
ration (mm), and Qgw is the value of underground runoff (mm).

Subbasin and stream calculations are performed with the automatic delineation tool
incorporated in QSWAT 3 version 1.6.3. Land use map, soil classification map and slope
map are created for the Seybouse basin and introduced to the database concerning the
global land use and user soil options in the QSWAT 3 1.6.3.

2.2.3. Hydrologic Response Unit (HRU)

HRUs are specified subunits within each subbasin. They are lumped land areas with
overlapping unique combination of land use, soil, and slope classes. Each subbasin contains
at least one HRU and one main tributary.

HRUs are created using physically based data, i.e., land use data, soil type and soil
properties and digital elevation model for slope calculation (Figures 2–4). HRUs are created
by splitting individual subbasins apart, resulting in distinct combinations of land use, slope,
and soil classes within each subbasin that can represent a different number of HRUs. These
HRUs, found across subbasins, share comprehensive attributes like soil type, land use, and
slope. Calculations related to physical processes performed separately on these HRUs are
aggregated by summation through the outlet point for each corresponding subbasin. While
creating the HRUs, a threshold is used by defining the land use, soil, and slope classes
percentage in a subbasin. The first threshold is applied to land uses by its percentage in a
subbasin area that eliminates small land covers in each subbasin. Secondly, a percentage of
soil classes relative to land use area after first threshold eliminates the unimportant (in size)
soil occupations. The final threshold is the elimination of slope classes relative to the soil
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area by another percentage to eliminate minor slope classes [23]. The threshold information
can be addressed in Table 3.
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Table 3. Threshold definitions for land use, soil and slope classes used in formation of HRUs.

HRU Threshold Minimum % of Land Area

Land use by subbasin area 0
Soil class by land use area after 1st threshold 10

Slope class by soil class area after 2nd threshold 15

2.2.4. Swat Model Simulations

The main objective of the simulations is to calibrate and validate the model with
respect to existing discharge observations from ground stations to finally obtain a value of
groundwater recharge from the validated model. Therefore, meteorological data was used
as input and the only output variable was the river discharge. SWAT provides two methods
for surface runoff estimation: the Soil Conservation Service (SCS) curve number and the
Green-Ampt infiltration method. In the present study, the SCS curve number method is
preferred. The SCS method uses the following formula for runoff computation to estimate
runoff under varying land use and soil types [24]:

Qsur f =
(R day − Ia

)2(
Rday − Ia + S

) (2)

S = 25.4
(

1000
CN

− 10
)

(3)

where Qsur f is accumulated runoff (mm), Rday is daily rainfall depth, Ia is the initial
abstractions (mm), S is the retention parameter (mm) and CN is the curve number.

After model simulation, the model is checked via SWAT Error Checker for possible
inconveniences in hydrological cycle prior to calibration period. Model calibration can
accomodate these inconveniences, if any.
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For instance, surface runoff is found to be too low during the pre-calibration period to
be used as an index in the calibration period. This could be due to high evaporation and
transpiration present in the region or underestimation of surface runoff during simulation.
In any case, it seems that model design is meaningful, and calibration can be functional at
this point.

2.2.5. Calibration, Sensitivity, and Validation

Hydrological models face different levels of inaccuracies coming from different sources
of uncertainty. Major uncertainty sources are input forcings, model parameters, and model
structure. Processes-based distributed hydrological models provide a large variety of
parameters so that models can better represent the real-world hydrological systems. How-
ever, it is known that the more parameters a model is run with, the more uncertainty its
simulations would possess. Therefore, rigorous calibration, validation, and uncertainty
and sensitivity analyses steps are required.

The SWAT Calibration and Uncertainty Program (SWAT-CUP), a computer-based
software is widely used for calibration, validation, and sensitivity analysis purposes for
SWAT models [25]. The program provides uncertainty and sensitivity analyses for multi-
site calibration through different calibration algorithms such as the Sequential Uncertainty
Fitting version-2 (SUFI-2), Particle Swarm Optimization (PSO), Generalized Likelihood
Uncertainty Estimation (GLUE), Parameter Solution (ParaSol), Markov Chain Monte Carlo
(MCMC), that can be used for analyzing SWAT outputs based on different cost functions.
In this study, the SUFI-2 algorithm is used to calibrate the SWAT model. The calibration
algorithm, SUFI-2 is an iterative algorithm and projects all the model uncertainties to
a certain parameter range. The total uncertainty is determined by the 95% predictive
uncertainty (95PPU) calculated at the 2.5% and 97.5% levels of the cumulative distribution
of an output variable which disallows 5% of very inaccurate simulations. SUFI-2 assumes,
at first, a large parameter uncertainty. Therefore, the measured data initially falls within
the 95PPU. Then, the model decreases this uncertainty step by step while monitoring
the p-factor and the r-factor. In each step, previous parameter ranges are updated by
calculating the sensitivity matrix (i.e., Jacobian matrix), and equivalent of a Hessian matrix,
which is then followed by the covariance matrix calculation, 95% confidence intervals, and
correlation matrix. Parameters are later updated in such a way that the new ranges are
always smaller than the previous ranges and are centered on the best simulation.

Hydrological modelling of a basin does not occur in a unique way. It is always possible
to calibrate a model with different parameter sets which is explained by the equifinality
phenomenon in hydrology [26,27]. Therefore, acknowledging which parameters really
represent and affect the physical processes in a basin is essential. This can be done through
sensitivity analysis. Sensitivity analysis is the process of determining the change in model
output based on the changes in parameters space. Global sensitivity analysis is where the
uncertainty in outputs to the uncertainty in each input factor is examined over their entire
range of interest. It is considered to be global when all the input variables are modified
simultaneously [28]. A multiple regression analysis called the t-test is used for sensitivity
analysis in the SUFI-2 algorithm. T-stat is the ratio of the coefficient of a parameter to its
standard error. If the coefficient is higher than its standard error, then the parameter is likely
to be sensitive [29]. The p-value in t-tests is more decisive to understand if the parameter is
sensitive. A low p-value (<0.05) generally indicates the model response changes related to
the changes in parameter. A large p-value is associated with non-sensitive parameters.

The SUFI-2 algorithm provides two statistical terms to quantify the fitness between the
observation and the simulation, which is expressed as 95PPU. These are called p-factor and
r-factor. p-factor is the percentage of the measured data covered by the 95 PPU simulation
results while r-factor is the width of the cover. The aim is to cover the maximum of the
observed data in 95PPU and decrease the width of the 95PPU band. In general, >70% of
p-factor and r-factor around 1 is considered as a good threshold for discharge data [18,19].
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Validation data should be completely different from the calibration data for a rigorous
and robust hydrological modelling practice. Therefore, data from four discharge observa-
tion stations were divided into two parts for the calibration and validation steps. All the
stations are used for both calibration and validation steps with respect to different time
periods (Table 4).

Table 4. Names and locations of the discharge observation stations used for model calibration
and validation.

Discharge Observation Station UTM Easting UTM Northing

Mirbeck 389,563.39 4,066,965.44
Oued Ressoul 374,818.87 4,060,178.06
Oued Malleh 383,958.91 4,035,417.7
Oued Charref 355,941.82 3,994,372.54

In this way, the model is validated, with the parameter set decided during the calibra-
tion, with data from different periods which are unknown to the model, i.e., as we would
have to do in a prediction case.

2.2.6. Cost Functions

• Nash—Sutcliffe (NS); is one of the most preferred evaluation criteria in literature.
It takes its maximum value (i.e., 1) when the ratio of the error variance of model
estimation to the variance of observed time series is zero [30].

NS = 1 − ∑k=n
k=1 (s(k)− q(k))2

∑k=n
k=1 (q(k)− q)2 (4)

where s(k) is estimated output, q(k) is observed output, q is mean observed output, n
is total number of time steps of variables, and k is discrete time.

• Coefficient of determination (R2); is defined as the proportion of the variation in the
dependent variable that is modelled from the independent variables. It measures how
well the simulated variable represents the observed variable.

R2 =
∑k=n

k=1 ((q(k)− q)(s(k)− s))2

∑k=n
k=1 ((q(k)− q))2∑k=n

k=1 ((s(k)− s))
2 (5)

where s(k) is estimated output, q(k) is observed output, q is mean observed output,
s is mean simulated output, n is total number of time steps of variables, and k is
discrete time.

• Percentage bias (PBIAS); is a measure of the difference between the amount of pro-
duced water by the basin and the amount of estimated water by the model. This
criterion considers water volume transfers explicitly. A lower value indicates a better
simulation. Positive values indicate that the model underestimates the observations
while negative values indicate the inverse.

PBIAS =
∑k=n

k=1 (q(k)− s(k))

∑k=n
k=1 q(k)

(6)

where s(k) is estimated output, q(k) is observed output, q is mean observed output, s is
mean simulated output, n total number of time steps of variables, and k is discrete time.

• Kling–Gupta efficiency criteria ( KGE); is a measure of the linear regression coefficient
between observed and simulated variables.

KGE = 1 −
√
(r − 1)2 + (a − 1)2 + (β − 1)2 (7)
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where a = σs
σq

, and β = µs
µq

and r is the linear regression coefficient between observed
and simulated variables, σs and σq are standard deviation, and µs and µq are means of
simulated and observed variables [31].

3. Results
3.1. Calibration and Validation Results

The SWAT model is calibrated with the database concerning the years between 1979
and 1986. The first two years are used for model training. Therefore, calibration results
cover the years from 1981 to 1986. Validation period was between 1987 and 1991. Two years
of training were also adapted for validation as in calibration but for the period between 1985
and 1986. Calibration with the SUFI-2 algorithm is an iterative approach. Each calibration
run is composed of 1000 iterations. The more parameters that the model is calibrated
with, the more iterations the model would require. In the case of the present study,
1000 iterations were needed to obtain a global sensitivity analysis. A global sensitivity
analysis is performed following a run in SWAT-CUP model to understand the relative
influence of the change in all parameters on the change of model output.

Sensitivity analysis results present the least and most sensitive parameters to the
changes applied to the model parameters. Global sensitivity analysis and evaluation are
repeated several times, since after each run sensitivity analysis could give different results.
Final sensitivity analysis results of model parameters are given (Table 5). The six most
sensitive parameters were the ones with p-value equal to or lower than 0.05.

Table 5. Sensitivity analysis results.

Parameter Name t−Stat p-Value

r__SOL_K(2).sol__C −0.08 0.93
v__SURLAG.bsn 0.10 0.92

v__SOL_ALB(1).sol__C −0.17 0.85
v__SOL_ALB(1).sol__D 0.19 0.85

v__REVAPMN.gw −0.21 0.83
v__CH_K2.rte −0.26 0.79
v__EPCO.hru 0.24 0.81

r__SOL_AWC(2).sol__D 0.41 0.68
v__CH_N2.sub 0.43 0.67

v__ALPHA__BF.gw 0.43 0.67
r__PLAPS.sub −0.60 0.55

v__GW_REVAP.gw −0.63 0.53
v__SOL_BD().sol__C 0.67 0.66
r__SOL_K(2).sol__D −0.71 0.48
v__ALPHA_BNK.rte 0.63 0.53

r__SOL_AWC(2).sol__C 1.2 0.23
r__OV_N__.hru −1.23 0.22

r__SOL_AWC(1).sol__C −1.32 0.18
v__ESCO.hru 1.56 0.12

v__CH_N1.sub −1.65 0.098
v__GWQMN.gw −1.85 0.065

v__ GW_DELAY.gw −1.88 0.06
r__SOL_AWC(1).sol__D 1.97 0.05

r__SOL_K(1).sol__D −2.2 0.02
r__SOL_K(1).sol__C 2.6 0.009

v__CH_K1.sub 4.97 0.000001
v__SOL_BD().sol__D −7.04 0
v__RCHRG_DP.gw −9.9 0

r__CN2.mgt −42.7 0

These parameters are SCS curve number (CN2.mgt) deep aquifer percolation fraction
(RCHRG_DP.gw), soil bulk density for soil hydraulic group D (SOL_BD__D), effective
hydraulic conductivity in tributary channel alluvium (CH_K1.sub), saturated hydraulic
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conductivity of the first soil layer for soil hydraulic group C (SOL_K(1)__C), and saturated
hydraulic conductivity of the first soil layer for soil hydraulic group D (SOL_K(1)__D).
Although there were parameters with low sensitivity for each iteration, the model is still
calibrated with these parameters not to exclude the minor effects on the calibration and
the validation.

Some of the parameters are calibrated with respect to certain soil layers, indicated as
(1) for first soil layer and (2) for second soil layer; or soil hydraulic groups, indicated as
“__D” for soil hydraulic group D and “__C” for soil hydraulic group C, to better represent
the spatial variability of these parameters. Other parameters, e.g., groundwater parameters,
are run for whole HRUs. Different groundwater, soil and surface related parameters are
used in calibration periods following the sensitivity analysis. The calibrated parameters
are presented in Table 6.

Table 6. Final limit ranges and the fitted parameter values of the calibrated model.

Name Definition Min Max Fit

v__SOL_ALB(1).sol__D Moist soil albedo of the first
soil layer 0 0.4 0.01

v__SOL_ALB(1).sol__C Moist soil albedo of the first
soil layer 0 0.4 0.01

v__GWQMN.gw
Threshold water depth in the

shallow aquifer for return
flow (mm H2O)

0 5700 5020

v__GW_REVAP.gw Groundwater “revap” coefficient 0.01 0.5 0.24
v__GW_DELAY.gw Groundwater delay time (days) 0 100 92

v__REVAPMN.gw
Threshold water depth of shallow
aquifer for “Revap” or percolation

(mm H2O/)
300 400 343

v__ESCO.bsn Soil evaporation
compensation factor 0.1 1 1

v__EPCO.bsn Plant uptake compensation factor 0.1 1 0.86

r__SOL_AWC(1).sol__D Available water capacity
(mm H2O/mm) 0 8 1.55

r__SOL_AWC(2).sol__D Available water capacity
(mm H2O/mm) 0 8 1.03

r__SOL_AWC(1).sol__C Available water capacity
(mm H2O/mm) 0 8 1.6

r__SOL_AWC(2).sol__C Available water capacity
(mm H2O/mm) 0 8 4.5

r__SOL_K(1).sol__D Saturated hydraulic
conductivity (mm/h) 0.1 2000 0.001

r__SOL_K(2).sol__D Saturated hydraulic
conductivity (mm/h) 0.1 2000 5.9

r__SOL_K(1).sol__C Saturated hydraulic
conductivity (mm/h) 0.1 2000 0.6

r__SOL_K(2).sol__C Saturated hydraulic
conductivity (mm/h) 0.1 2000 8.1

r__OV_N.hru Manning’s “n” value for
overland flow −0.3 0.3 −0.03

r__CN2.mgt Initial SCS runoff curve number −0.99 0.99 −0.94
v__ALPHA_BF.gw Baseflow alpha factor (days) 0 0.1 0.08

v__ALPHA_BNK.rte Baseflow alpha factor for bank
storage (days) 0 1 0.92

v__SURLAG.bsn Surface runoff lag coefficient 0.05 24 7.8

v__CH_K1.sub Effective hydraulic conductivity in
tributary channel alluvium (mm/h) 0 500 183

v__CH_K2.rte Effective hydraulic conductivity in
main channel alluvium (mm/h) 0 500 339

v__CH_N1.sub Manning’s “n” value for the
tributary channels 0.1 10 1.6
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Table 6. Cont.

Name Definition Min Max Fit

v__CH_N2.rte Manning’s “n” value for the
main channel 0.1 10 0.05

v__RCHRG_DP.gw Deep aquifer percolation fraction 0 1 0.001

v__SOL_BD.sol__C Moist bulk density (mg/m3 or
g/cm3)

0.8 2.5 2.2

v__SOL_BD.sol__D Moist bulk density (mg/m3 or
g/cm3)

0.8 2.5 0.81

r__PLAPS.sub Precipitation lapse rate
(mm H2O/km) −1000 1000 −0.05

Model calibration is performed with two iterative approaches: by replacing the param-
eter calibration ranges directly (indicated with v__parameter.name) and multiplying the
ranges with new range +1 (indicated by r__parameter.name). The latter is usually suggested
for the parameters where the spatial distribution of the parameter is important, and calibra-
tion should be done considering spatial variations in the basin. For instance, groundwater
parameters are replaced with new ranges at each iteration (i.e., v__parameter.name.gw)
such as groundwater evaporation factor, v_GW_REVAP.gw, and deep aquifer percolation
fraction, v__RCHRG_DP.gw, while surface runoff parameter ranges are multiplied with
“new ranges +1” such as r__CN2.mgt and r__OV_N.hru (Table 6).

Some of the parameters are calibrated with respect to certain soil layers, indicated as
(1) for first soil layer and (2) for second soil layer; or soil hydraulic groups, indicated as
“__D” for soil hydraulic group D and “__C” for soil hydraulic group C, to represent better
the spatial variability of these parameters. Other parameters, e.g., groundwater parameters,
are run for whole HRUs. Different underground, soil and surface related parameters are
calibrated following the sensitivity analysis (Table 6).

It is important to note that for a rigorous result evaluation, one should consider
using the calibrated parameter ranges rather than the final fit. The range indicates the
uncertainty levels on those variable estimations by giving an envelope of possible values
of the parameter. On the other hand, fitted parameter lacks the uncertainty information
related to that parameter.

3.2. Model Performance Evaluation

Model calibration and validation results are evaluated graphically and statistically as
explained in Section 2.2.6. For the calibration period, the model successfully managed to
reproduce overall discharge trends and simulated the flood peaks well, especially for the
Mirbeck station (Figure 5).
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Simulation results are relatively less efficient at the Malleh and Ressoul stations with
more underestimation of the main flood event recorded in 1984 winter (Figures 6 and 7).
However, the model perfectly reproduced most of the other discharge anomalies. However,
for the most upstream station, (i.e., Charref) the model performed good simulations with
an underestimation for only one flood episode (Figure 8).

Water 2024, 16, x FOR PEER REVIEW  13  of  20 
 

 

3.2. Model Performance Evaluation 

Model calibration and validation results are evaluated graphically and statistically as 

explained in Section 2.2.65. For the calibration period, the model successfully managed to 

reproduce overall discharge trends and simulated the flood peaks well, especially for the 

Mirbeck station (Figure 5). 

 

Figure 5. The simulated versus observed discharge for the calibration at Mirbeck station. 

Simulation results are relatively less efficient at the Malleh and Ressoul stations with 

more underestimation of the main flood event recorded in 1984 winter (Figures 6 and 7). 

However, the model perfectly reproduced most of the other discharge anomalies. How-

ever, for the most upstream station, (i.e., Charref) the model performed good simulations 

with an underestimation for only one flood episode (Figure 8).   

 

Figure 6. The simulated versus observed discharge for the calibration at Ressoul station. Figure 6. The simulated versus observed discharge for the calibration at Ressoul station.

Water 2024, 16, x FOR PEER REVIEW  14  of  20 
 

 

 

Figure 7. The simulated versus observed discharge for the calibration at Malleh station. 

 

Figure 8. The simulated versus observed discharge for the calibration at Charref station. 

We can observe that the model underestimates the flood peaks more in the validation 

period than in the calibration period (Figures 9–12). However, the model generally per-

forms reliable simulations for the validation period. 

 

Figure 9. The simulated versus observed discharge for the validation at Mirbeck station. 

Figure 7. The simulated versus observed discharge for the calibration at Malleh station.

Water 2024, 16, x FOR PEER REVIEW  14  of  20 
 

 

 

Figure 7. The simulated versus observed discharge for the calibration at Malleh station. 

 

Figure 8. The simulated versus observed discharge for the calibration at Charref station. 

We can observe that the model underestimates the flood peaks more in the validation 

period than in the calibration period (Figures 9–12). However, the model generally per-

forms reliable simulations for the validation period. 

 

Figure 9. The simulated versus observed discharge for the validation at Mirbeck station. 

Figure 8. The simulated versus observed discharge for the calibration at Charref station.



Water 2024, 16, 160 14 of 19

We can observe that the model underestimates the flood peaks more in the validation
period than in the calibration period (Figures 9–12). However, the model generally performs
reliable simulations for the validation period.
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The statistical results of model calibration and validation are given in Table 7 for four
hydrometric stations. The results showed reliable results overall varying mostly from
satisfactory to very good results for the calibration according to Table 8 [32,33]. For the
validation period, there were less satisfactory results at several stations.

Table 7. Statistical results of the model calibration and validation for four discharge stations.

Calibration Validation

Station R2 NS PBIAS KGE R2 NS PBIAS KGE

Mirbeck 0.7 0.7 20 0.7 0.6 0.6 30.7 0.6
Ressoul 0.6 0.5 37 0.3 0.8 0.4 53.5 0.15
Malleh 0.7 0.6 12 0.6 0.6 0.6 5.0 0.6
Charref 0.6 0.5 8 0.8 0.03 −0.12 17.3 0.07

Table 8. Evaluation ranges for calibration and validation results.

Criteria Very Good Good Satisfactory Unsatisfactory

R2 0.75 ≤ R2 ≤ 1 0.65 ≤ R2 < 0.75 0.50 ≤ R2 < 0.65 R2 < 0.5
NS 0.75 ≤ NS ≤ 1 0.65 ≤ NS < 0.75 0.50 ≤ NS < 0.65 NS < 0.5

KGE 0.9 ≤ KGE < 1 0.75 ≤ KGE < 0.9 0.5 ≤ KGE < 0.65 KGE < 0.5
PBIAS |PBIAS| < 10 10 ≤ |PBIAS| < 15 15 ≤ |PBIAS| < 25 25 ≤ |PBIAS|

The model simulated discharges with satisfactory to good statistical results at Mirbeck
station both for calibration and validation. That is an indicator for good representation of
water balance in the watershed during low or high flows. Only the PBIAS score degraded
significantly and showed unsatisfactory results for validation. Calibration results obtained
at the other stations (e.g., Malleh, Ressoul, and Charref) are also reliable for the rest
of the watershed apart from relatively lower performance at the Ressoul station with
unsatisfactory scores for KGE and PBIAS (Table 7). Both calibration and validation scores
were satisfactory for Malleh stations and likewise for Mirbeck. However, it can be noted
that simulation performances decreased for the validation period for Ressoul and Charref
stations. For Ressoul station, the performance scores were unsatisfactory except for R2. For
Charref station, the performance scores were unsatisfactory except PBIAS.

Once the model calibration and validation are performed, the SWAT model is rerun
for the whole period with the calibrated parameters to calculate the amount of total aquifer
recharge and deep aquifer recharge. The results show that annual average total and deep
aquifer recharge values are 345 mm and 38 mm. Re-evaporation from shallow aquifer by
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the soil and plants is 292.3 mm while aquifer discharge to the river through return flow is
37 mm annually (Table 9). Net annual average infiltration is approximately 150 mm which
is equivalent to 15% of the net annual average rainfall. Whereas the evapotranspiration
is 61% and the river flow is 12% of the net annual average, which is consistent with the
findings of other studies in the same basin [13,34,35].

Table 9. Water balance results with the validated model.

Basin Values Annual Averages (mm)

Precipitation 1037.1
Snowfall 6.61

Snowmelt 6.59
Surface runoff 9.21

Lateral soil flow 74.2
Groundwater discharge 36.7
Percolation out of soil 347.7
Total aquifer recharge 345
Deep aquifer recharge 38

Re-evaporation 392.3
Evapotranspiration 627

The results demonstrated that a modest amount of rainfall becomes surface runoff.
Moreover, the groundwaters feed the rivers only with an amount equal to 3.5% of annual
rainfall. On the other hand, evapotranspiration and re-evapotranspiration from shallow
aquifers is quite dominant in the water budget of the watershed. Moreover, only 38 mm of
water infiltrates deeper aquifers.

4. Discussion

Calibrating the model with discharge data obtained from four hydrometric stations
corresponding to four sub basins was a challenging task (i.e., subbasins 2, 8, 51, and 60).
Since the different hydrological responses are created at different stations, the model had
to reproduce different discharge regimes with the same rainfall data recorded in physical
stations in different parts of such a vast watershed. For instance, high flows and low
flows were observed in different downstream tributaries (e.g., Mirbeck and Oued Ressoul,
respectively) during the same period of the year.

Statistically speaking, performance evaluation scores were accumulated mostly in the
reliable limits, varying from satisfactory to good results. Even though the model validation
performance is less than that of calibration, the deviation was affordable. Considering that
the model is calibrated with some of the most extreme events recorded in the region, model
validation performance was acceptable in simulating mostly moderate to low flows with
fewer significant high flow episodes.

Simulated hydrographs showed that the calibrated model could reproduce the ob-
served discharge trends. This is the case for most of the low flows and peaks. Moreover,
average volume bias error remained at satisfactory levels. This is an important indicator
for process-based semi distributed models for satisfactory calibration especially when the
model is calibrated and validated for multiple hydrometric stations in the same watershed.

Model calibration for Mirbeck station was more crucial since it is the closest station
to the basin outlet. The best calibration results are obtained at this station which shows
that the model could represent the hydrological cycle in the watershed and reproduce the
discharge observed in the main channel despite the existence of extreme events.

Simulations were performed using estimated long-term rainfalls from a weather
forecast system and observed in-situ discharge data. When the simulation accuracies in
calibration and validation steps are considered, it is a significant output that model was
capable of reproducing observed output data with estimated input data for four stations at
once. Moreover, observed rainfalls in the basin showed good correlation with estimated
ones, confirming that CFRS estimated rainfalls can represent the real rainfall fields well in
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the Seybouse basin. This can be an insight for future studies to use rainfall estimates for
hydrological or hydrogeological studies. Moreover, the model is calibrated and validated
with discharge data covering the period between 1979 and 1991. Unfortunately, there
was no available discharge data beyond 1991. Other studies also mentioned the data
unavailability and used periods of data for model calibration for different stations [36].
In this work, on the other hand, the model is calibrated with the same period of data for
all stations.

Several studies suggested increase and shifts in average annual rainfalls after the 90s
and drought conditions focused only on the central part of the basin [37]. Even though
the data used in this study do not cover recent warmer decades with relatively higher
evaporation losses [36,38], the process-based model based on rigorous calibration and
validation practices is considered capable of performing accurate simulations also with
more recent data. The model’s relatively good performance over the 1979–1991 period
provides the basis for a new data collection campaign to test the model against climatic
conditions impacted by global warming in more recent years.

Proposing a reliable water balance model would allow future works to compute river
discharge or groundwater recharge to feed groundwater hydrodynamic models for water
resource management alternatives for nearby residences, agricultural lands, and industry.
Water balance calculations obtained by the calibrated model shows consistent results. Water
balance, annual rainfall and evapotranspiration values correspond to the values found
in the literature [34,35]. Moreover, estimated water uptake from shallow aquifers and
percolation to deeper aquifer present reasonable amounts. Therefore, the estimated water
amount infiltrating into the aquifers can be used to feed the hydrodynamic model to assess
the groundwater fluctuations as mentioned earlier as an objective of the project.

5. Conclusions

This work presents an example of hydrological modelling practices with an open-
source tool, i.e., SWAT, in a semi-arid southern Mediterranean, Seybouse, basin. Seybouse
basin is marked with inaccurate and scarce hydro-meteorological data. Despite the data
availability issues, water scarcity underscores the importance of water resource manage-
ment applications and rigorous hydrological modelling practices. The objective of this
study is to calibrate the model with different hydrometric stations to simulate different dis-
charge trends in different locations of the basin to eventually obtain groundwater recharge
estimation. The estimated groundwater recharge is an important result to feed future
groundwater models as an input variable to apply groundwater resource management
scenarios.

To provide a rigorously calibrated and validated hydrological model, estimated long-
term rainfall data, considering the data unavailability, are used to calibrate observed
discharge data for four hydrometric stations in SWAT model. Provided hydrographs and
statistical results showed that the model could produce reliable simulations for all the
hydrometric stations. Model calibration results show that model could simulate discharge
with NS ≥ 0.5, R2 ≥ 0.6, KGE ≥ 0.6 in average and PBIAS < 37 which represent overall
satisfactory to good results. Although the validation results are relatively less accurate,
they still represent satisfactory results for at least two out of four stations (Tables 8 and 9).
Therefore, model calibration and validation results are overall satisfactory to assure water
budget calculation accuracy which provides estimated groundwater recharge. This could be
used to feed a hydrodynamic model of the basin which will be the next step in this project.

Data unavailability issues and the model’s relatively good performance suggest that
further data acquisition campaigns would be necessary to test model simulation accuracy
under the ongoing global warming changes. Further applications could include performing
hydrological simulations with different hydrological model types such as statistic-based
hydrological models e.g., neural networks, to compare with the process-based hydrologi-
cal models.
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