
Citation: Kiraga, S.; Peters, R.T.;

Molaei, B.; Evett, S.R.; Marek, G.

Reference Evapotranspiration

Estimation Using Genetic

Algorithm-Optimized Machine

Learning Models and Standardized

Penman–Monteith Equation in a

Highly Advective Environment.

Water 2024, 16, 12. https://doi.org/

10.3390/w16010012

Academic Editors: Songhao Shang,

Magdy Mohssen, Qianqian Zhang,

Dongqin Yin and Hamza Gabriel

Received: 29 October 2023

Revised: 8 December 2023

Accepted: 11 December 2023

Published: 20 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Reference Evapotranspiration Estimation Using Genetic
Algorithm-Optimized Machine Learning Models and
Standardized Penman–Monteith Equation in a Highly
Advective Environment
Shafik Kiraga 1, R. Troy Peters 1,* , Behnaz Molaei 2 , Steven R. Evett 3 and Gary Marek 3

1 Center for Precision and Automated Agricultural Systems, Irrigated Agriculture Research and Extension
Center, Washington State University, Prosser, WA 99350, USA; shafik.kiraga@wsu.edu

2 Department of Agricultural and Environmental Science, College of Agriculture, Tennessee State University,
Nashville, TN 37207, USA; bmolaei@tnstate.edu

3 United States Department of Agriculture-Agricultural Research Service Conservation and Production
Research Laboratory, Bushland, TX 79012, USA; steve.evett@usda.gov (S.R.E.); gary.marek@usda.gov (G.M.)

* Correspondence: troy_peters@wsu.edu

Abstract: Accurate estimation of reference evapotranspiration (ETr) is important for irrigation plan-
ning, water resource management, and preserving agricultural and forest habitats. The widely
used Penman–Monteith equation (ASCE-PM) estimates ETr across various timescales using ground
weather station data. However, discrepancies persist between estimated ETr and measured ETr

obtained from weighing lysimeters (ETr-lys), particularly in advective environments. This study
assessed different machine learning (ML) models in comparison to ASCE-PM for ETr estimation in
highly advective conditions. Various variable combinations, representing both radiation and aerody-
namic components, were organized for evaluation. Eleven datasets (DT) were created for the daily
timescale, while seven were established for hourly and quarter-hourly timescales. ML models were
optimized by a genetic algorithm (GA) and included support vector regression (GA-SVR), random
forest (GA-RF), artificial neural networks (GA-ANN), and extreme learning machines (GA-ELM).
Meteorological data and direct measurements of well-watered alfalfa grown under reference ET
conditions obtained from weighing lysimeters and a nearby weather station in Bushland, Texas
(1996–1998), were used for training and testing. Model performance was assessed using metrics such
as root mean square error (RMSE), mean absolute error (MAE), mean bias error (MBE), and coefficient
of determination (R2). ASCE-PM consistently underestimated alfalfa ET across all timescales (above
7.5 mm/day, 0.6 mm/h, and 0.2 mm/h daily, hourly, and quarter-hourly, respectively). On hourly
and quarter-hourly timescales, datasets predominantly composed of radiation components or a
blend of radiation and aerodynamic components demonstrated superior performance. Conversely,
datasets primarily composed of aerodynamic components exhibited enhanced performance on a
daily timescale. Overall, GA-ELM outperformed the other models and was thus recommended for
ETr estimation at all timescales. The findings emphasize the significance of ML models in accurately
estimating ETr across varying temporal resolutions, crucial for effective water management, water
resources, and agricultural planning.

Keywords: machine learning; genetic algorithm; advective environments; radiation components;
aerodynamic components; reference evapotranspiration

1. Introduction

Evapotranspiration (ET) is a significant factor in the hydrological cycle and is fre-
quently used to calculate hydrological losses through several important processes that
take place between the ground and the atmosphere. It is essential for the optimal design
of irrigation schedules [1], management of regional water resources [2], and estimation
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of different hydrological processes [3]. ET has a significant impact on several terrestrial
ecosystem processes as well as pertinent characteristics, such as soil water content and
energy balances [4]. Considerable progress in estimating ET and understanding the mech-
anisms of its ongoing variations in daily, annual, and inter-annual timescales has been
made through numerous studies, motivated by the early awareness of the importance of
water as an essential resource for life sustainability on earth. Despite the findings in these
studies, the complex and nonlinear processes that dominate evapotranspiration have made
its estimation a great challenge, partly due to several influencing factors, such as landform,
geomorphological, soil moisture, and vegetation traits [5–7]. In this context, the precise
estimation of ET is still of particular importance for careful water resource management.

An overview of the evolution of ET-estimating methods during the previous century
was discussed in Ref. [8], and these methods are often classified as direct and indirect. Direct
methods, such as lysimeters and micrometeorological techniques, demand special construc-
tion and high maintenance, which is expensive. Indirect methods, on the other hand, are
less expensive and time-saving and are in some contexts regarded as suitable alternatives
to the direct ones. The indirect methods are commonly classified into water-balance-based,
radiation-based, mass-transfer-based, and temperature-based models [9]. Because it consid-
ers both aerodynamic and thermodynamic factors, the FAO Penman–Monteith (FAO-PM)
model for calculating the ET of a reference short (grass) crop continues to be the most
extensively used indirect method for ETr estimation in a variety of regions and climates [10].
The Food and Agriculture Organization (FAO) approved the equation after determining
that it accounts for all the variables influencing evapotranspiration and fixes most of the
flaws in the other empirical techniques.

The Penman–Monteith Equation was slightly modified and standardized by the Amer-
ican Society of Civil Engineers (ASCE) for both tall crop (alfalfa) (ETrs) and short crop
(clipped grass) surfaces with similar parameterizations as the FAO-PM for computation of
the equation components after national and international discussions on the adoption of a
taller reference crop [11]. The result was the ASCE-PM equation, and it was formulated
to allow calculations for both daily and hourly or shorter time steps [12]. The complexity
involved in the calculations of all the required inputs in the ASCE-PM is a disadvantage for
its application, which could lead to significant errors [13]. Another drawback in using the
ASCE-PM is the difficulty in obtaining the extensive weather data needed and the absence
of adequate historical records for each study location, which are crucial aspects for calculat-
ing reliable ETr estimates [4]. This can be particularly challenging in developing countries,
where there are limited meteorological stations and a scarcity of weather data records.

Reference evapotranspiration depends on latitude, altitude, and several climatic vari-
ables, such as relative humidity, air temperature, soil temperature, wind speed, net radi-
ation, and dew point temperature [14]; several researchers have utilized a combination
of these different parameters to model ETo using machine learning models at daily and
monthly timescales to overcome the identified limitations and difficulties of traditional
methods [15]. CatBoost, generalized regression neural network (GRNN), and the random
forest (RF) models were evaluated for estimating daily ETo in the arid and semi-arid regions
of northern China, using limited meteorological data with eight different combinations
of inputs [16]. It was found that CatBoost demonstrated superior performance and was
identified as the most effective method for estimating ETo. The efficiency of extreme learn-
ing machines (ELM) was compared to the empirical Penman–Monteith equation and the
feedforward backpropagation (FFBP) in predicting ETo for three meteorological stations
in Iraq, utilizing meteorological data from thirteen years (2000–2013) as inputs [5]. They
concluded that the ELM model demonstrated efficiency, simplicity, high speed, and good
generalization performance for ETo estimation. Four different variants of an extreme learn-
ing machine (ELM) model optimized using bio-inspired search algorithms were evaluated
to estimate daily reference evapotranspiration (ETr) across various regions in China using
data from eight meteorological stations [1]. The results highlighted the effectiveness of bio-
inspired optimization algorithms, particularly the FPA and CSA algorithms, in enhancing
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the performance of the conventional ELM model for daily ETo prediction. Kernel-based
(Gaussian process regression (GPR), support vector regression (SVR)) and deep learning
methods (Broyden–Fletcher–Goldfarb–Shanno artificial neural network (BFGS-ANN)) were
compared to long short-term memory (LSTM) for estimation of monthly reference evapo-
transpiration using minimal meteorological parameters in ten different combinations [17].
The results showed that all four methods predicted ETo amounts with acceptable accuracy
and error levels.

Due to consistent climatic changes and the complexity of the evapotranspiration
process that leads to its high variability in time and space, in this study, modeling the
ETr was extended to quarter-hourly and hourly timescales. Meteorological data at high
temporal resolution has become easier to collect due to the recent advancements in the
development of automatic weather stations [18]. This, in turn, boosts the estimation of ETr
at such resolutions, which is commonly used for calibrating surface energy balance models
in the determination of geospatial evapotranspiration from drone imagery or satellite
images [19,20]. Therefore, assessing the performance of the ASCE-PM at timescales lower
than the daily interval is increasingly becoming necessary.

To the best of our knowledge, there are no studies that have evaluated the use of ML
models for the estimation of ETr at lower timescales, such as hourly or quarter-hourly
with varied meteorological input data. In addition, studies that evaluated ETr at a daily
timescale mostly considered parameters directly measured from weather stations. This
is desirable for the estimation of reference evapotranspiration in areas with incomplete
meteorological data [9]. However, the sensitivity of ETr to different meteorological variables
(directly measured or those calculated from directly measured) has been studied [21,22],
and they were all found to influence the energy budget of the surface [23]. Changes in
wind speed produced the largest decrease in ETr, followed by vapor pressure, net radiation,
and mean temperature [21]. Also, computed ETr was found to be most sensitive to net
radiation, followed by vapor pressure deficit and wind travel transfers; the contribution
of the aerodynamic and net radiation components to the ETr value varied throughout the
year [24]. The difference in the contribution of these components could be attributed to
the difference in climates [8]. Therefore, it is evident that for proper evapotranspiration
estimation, proper assessment of all meteorological parameters (directly measured or not)
is necessary. In this study, we combined directly measured weather parameters with
subsequently calculated parameters for ETr estimation using machine learning models.

Advantages of ML include the ability to use reduced data inputs, capturing non-
linearity in the data inputs, and utilizing the computing power of modern-day computer
systems to analyze big data. Collectively, these factors have made ML algorithms attractive
options for estimating ETr. The choice of the best possible algorithm and the choice of
adequately representative variables are among the challenging aspects of any ML task [25].
Moreover, the performance of ML algorithms strongly depends on the size and structure
of available data [25]. To improve performance, several bio-inspired algorithms, such as
GA, are coupled with ML models to find the optimal set of parameters during model
training [1,5]. This is because default optimization algorithms, such as backpropagation,
are often trapped in the local minima, several parameters influence its speed and robust-
ness, and its best parameters appear to vary from problem to problem [26]. Unlike the
backpropagation technique that always adjusts weights towards the descending direction
of the error function, GA is a parallel stochastic optimization algorithm good at global
searching. The drawback of GA is its slowness during model training due to its exploration
mechanism through reproduction, crossover, and mutation, as well as searching for optimal
solutions from random genes [27,28]. Nonetheless, GA provides multiple optimal solutions
from the search space, and has thus gained prominence in recent years. For evapotran-
spiration studies, ML models coupled with GA were found to perform better than the
corresponding single models [29–32]. Therefore, in this paper, GA was utilized to optimize
ML models and compared to standardized ASCE-PM for ETr estimation on daily, hourly,
and quarter-hourly timescales considering different input meteorological variables.
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2. Materials and Methods
2.1. Lysimetric and Weather Data Collection

A research study was set up for the actual estimation of alfalfa reference evapotranspi-
ration in Bushland, Texas, facility of the USDA Agricultural Research Service Conservation
and Production Research Laboratory, in 1996. Bushland has a semi-arid climate that is im-
pacted by local and regional advection events [33]. The site was subdivided into two square
fields, designated northeast (NE) and southeast (SE), each measuring ~5.0 ha. Monolithic
weighing lysimeters (NE and SE) with 3 m × 3 m surface dimensions and 2.4 m deep were
located at the center of each of the two fields. These were used for the direct measurement
of ETr-lys. The details about the study area and the lysimeter’s site in Bushland (35◦11′

N, 102◦6′ W, and 1170 m above MSL) can be found in Refs. [34,35]. Alfalfa was seeded in
the two fields, which were irrigated simultaneously by a Lindsay lateral move sprinkler
system to maintain a well-watered condition. Experiments were conducted for 4 years from
1996 through 1999 [36], but the data for the year 1999 were omitted in this study because
reference conditions for a tall reference crop (alfalfa) were not always met [10]. The leaf
area index (LAI), growth stage, and plant height were measured periodically between and
at each harvest in each field (Figure 1). The whole planting and agronomic management of
alfalfa crops during the four-year growing period were described in Ref. [36], and the data
and metadata are available in Ref. [37].
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Figure 1. Alfalfa harvesting patterns and days when alfalfa height and LAI measurements were
taken for growing seasons from 1996 to 1998.

The methodology for meteorological data acquisition was extensively described in
Refs. [35,36] and are available in Ref. [38]; therefore, only the measured variables and other
noteworthy points will be presented in this work. Meteorological measurements were
made at 5 s intervals and reported as quarter-hourly averages. This meteorological data,
including the mean air temperature at 2.0 m height, mean relative humidity at 1.8 m height,
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mean wind speed at 2.0 m height, and mean solar irradiance were necessary to obtain the
ETr calculated in this study.

2.2. Data Processing

Lysimeter and meteorology data were processed and analyzed under three different
timescales: quarter-hourly, hourly, and daily. Only the days when alfalfa height was at least
0.5 m were used in this study in accordance with reference conditions for a tall reference
crop (alfalfa) [10]. Also, days were not considered if irrigation or rainfall affected the
accuracy of the water balance calculations for measured ETr or if the crop was lodged or
badly watered. Figure 2 shows the Kc values for the days selected in this study. Note that
the Kc values were often >1, which indicates that alfalfa ET under reference conditions
exceeded the ASCE 2005 PM reference ET in the advective environment of Bushland.
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Figure 2. Kc values for the days when reference conditions were met for alfalfa growing period
(1996–1998).

ETr-lys values from the NE and SE lysimeters were averaged for each of the data points
to obtain the full ETr-lys dataset under the quarter-hourly timescale. The hourly ETr-lys
was computed as the sum of four (4) consecutive quarter-hourly readings, while the same
number of readings were averaged to obtain the mean hourly values of the meteorological
variables (air temperature, wind speed, solar radiation, relative humidity). On the daily
timescale, the daily ETr-lys was computed as the sum of all ninety-six (96) consecutive
quarter-hourly readings, while the meteorological variables were extracted as follows; the
maximum and minimum values of temperature and relative humidity were taken as the
maximum and minimum of the 15 min average values for a given day, respectively. The
ninety-six (96) consecutive quarter-hourly readings were averaged to obtain the mean daily
values of the meteorological variables (wind speed, solar radiation, temperature). This
resulted in daily meteorological data, including maximum temperature (Tmax), minimum
temperature (Tmin), mean wind speed (u2), maximum relative humidity (RHmax), minimum
relative humidity (RHmin), and mean solar radiation (Rs).
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2.3. Calculation of Parameters for Reference Evapotranspiration Estimation

Equation (1) presents the form of the ASCE-PM by Ref. [12] for different time steps.
The constants Cd and Cn for each of the timescales are shown in Table 1.

ETrs =
0.408∆(Rn −G) + γ Cn

T+273 u2(es − ea)

∆ + γ(1 + Cdu2)
(1)

where ETrs is the standardized reference crop evapotranspiration for a tall surface (mm d−1

for daily time steps or mm h−1 for hourly time steps); Rn is the net radiation at the crop
surface (MJ m−2 d−1 for daily time steps or MJ m−2 h−1 for hourly time steps); G is the
soil heat flux density at the soil surface at the daily (MJ m−2 d−1) and hourly (MJ m−2 h−1)
basis; T is the mean daily or hourly air temperature at 1.5 to 2.5 m height (◦C); u2 is the mean
daily wind speed at 2 m height (m s−1); es is the saturation vapor pressure at 1.5 to 2.5 m
height (kPa); ea is the mean actual vapor pressure at 1.5 to 2.5 m height (kPa); ∆ is the slope
of the saturation vapor pressure–temperature curve (kPa ◦C−1); γ is the psychrometric
constant (kPa ◦C−1); Cn is the numerator constant that changes with reference type and
calculation time step; and Cd is the denominator constant that changes with reference type
and calculation time step (s m−1).

Table 1. Parameters of the ASCE-PM at different timescales.

Version Time Step Cn Cd rs (m s−1)

ASCE-PM

Tall reference (0.5 m high)
Daily 1600 0.38 45
Hourly (daytime) 66 0.25 30
Hourly (nighttime) 66 1.7 200

The ASCE-PM reference evapotranspiration was calculated using REF-ET software
(Version 4.1.4.22) [39], which calculates ETo and ETr for grass and alfalfa as short and tall
reference crops, respectively, on different timescales. It can be used to calculate reference
evapotranspiration on monthly, daily, and hourly or less timescales, and it has been adopted
in several studies [40,41]. The calculated ETrs values from the software were compared to
the outputs of ML models at daily, hourly, and quarter-hourly timescales.

2.4. Machine Learning Algorithms and Optimization

Four ML models with different operation principles were used in this study to estimate
ETr: random forest (RF), extreme learning machine (ELM), support vector regression
(SVR), and artificial neural network (ANN). These models have gained prominence in
evapotranspiration studies in recent years [42,43]. ELM is different from ANN and SVR,
as it does not require iterative training, and its hidden layer parameters are randomly
selected [1]. It was first proposed by Ref. [44] and has received wide applicability due to
its fast convergence speed, strong generalization ability, and no local extrema [45]. RF is a
tree-based approach that manages high-dimension regression problems, where the final
decision results via a bagging procedure. The structure of each of these models is shown in
Figure 3, but a further detailed description of the definitions and principle of operation is
out of the scope of this paper; it has been extensively discussed elsewhere [46–49].
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2.4.1. Genetic Algorithm

The GA is a widely used optimization technique that has shown promise in agri-
cultural studies for fine-tuning the parameters of ML models [50]. It is an evolutionary
algorithm used to search for optimized solutions to the natural evolutionary process
through simulation [1]. Several evapotranspiration studies indicated that coupling GA
with machine learning models, such as ANN, SVR, and ELM, yields better results than the
single models [29–32]. An extensive overview of the implementation of a genetic algorithm
including potential integration with ML models was provided in Ref. [51]. In this study, its
integration with ML models is demonstrated in Figure 4. Across all models, the population
size, mutation probability, crossover probability, and the number of generations of the GA
were set to 50, 0.2, 0.3, and 5, respectively. Also, input features were normalized within the
range of [–1, 1] using the Mix and Max method [4].

For the SVR model, the radial basis function was used as the kernel function, and
the regularization parameter and kernel parameter (gamma) were optimized with them
ranging from 5 to 1000, and from 0.05 to 0.99, respectively.

For the RF models, the maximum depth of the tree (max_depth), the number of
features (max_features), the minimum number of samples required to be at a leaf node
(min_samples_leaf), the minimum number of samples required to split an internal node
(min_samples_split), and the number of trees in the forest (n_estimators) were optimized
ranging from 5 to 500, from 2 to 6, from 5 to 20, from 5 to 20, and from 1 to 500, respectively.

The weight matrix and bias vector of the ELM were randomly generated and the
activation function was set to sigmoid. The hidden units and the regularization parameters
were optimized from 5 to 1000 and from 0.02 to 0.9, respectively. Detailed descriptions of
the ELM parameters used in this study are extensively discussed in [44].



Water 2024, 16, 12 8 of 21

Water 2024, 16, x FOR PEER REVIEW 8 of 21 
 

 

both optimized ranging from 3 to 100, while the learning rate was optimized from 0.01 to 

0.3. Additional parameters were taken as the default values in the scikit-learn package. 

 

Figure 4. Flow diagram for tuning the hyperparameters of the machine learning models. 

2.4.2. k-Folds Cross Validation 

The k-fold cross-testing approach was used during this phase to train and test the 

models. The meteorological dataset was randomly divided into training and testing da-

tasets, each with 80% and 20% of the total data, respectively. The training dataset was then 

equally divided into five folds, of which four were utilized to train the models and one for 

model testing. To make sure that each fold was used at least once for model testing, the 

procedure was carried out five times. The performance of each of the model hyperparam-

eters was assessed by the resulting error. The errors of the five trials were averaged as the 

expected generalization error. The parameters that provided the minimum average error 

were returned as the tuned hyperparameters. 

2.4.3. Arrangement of Datasets for Machine Learning Models 

The datasets for ML models were arranged to reflect the impacts of aerodynamic and 

radiation components on ETr (Figure 5). Aerodynamic components are represented by 

wind speed, relative humidity, and vapor pressure deficit (VPD), while radiation compo-

nents are represented by net radiation (Rn), solar irradiance (Rs), air temperature, vapor 

pressure–temperature curve (∆), and the relative cloudiness (Rs/Rso). 

Figure 4. Flow diagram for tuning the hyperparameters of the machine learning models.

The ANN model consisted of an input layer, a hidden layer, and the output layer. The Rec-
tified Linear Unit (ReLu) was taken as the activation function. The neg_mean_squared_error
and neg_mean_absolute_error of the scikit-learn package in Pyhtonv3.8 were used as the
loss functions. The number of neurons and hidden layers were both optimized ranging
from 3 to 100, while the learning rate was optimized from 0.01 to 0.3. Additional parameters
were taken as the default values in the scikit-learn package.

2.4.2. k-Folds Cross Validation

The k-fold cross-testing approach was used during this phase to train and test the
models. The meteorological dataset was randomly divided into training and testing
datasets, each with 80% and 20% of the total data, respectively. The training dataset was
then equally divided into five folds, of which four were utilized to train the models and
one for model testing. To make sure that each fold was used at least once for model
testing, the procedure was carried out five times. The performance of each of the model
hyperparameters was assessed by the resulting error. The errors of the five trials were
averaged as the expected generalization error. The parameters that provided the minimum
average error were returned as the tuned hyperparameters.

2.4.3. Arrangement of Datasets for Machine Learning Models

The datasets for ML models were arranged to reflect the impacts of aerodynamic and
radiation components on ETr (Figure 5). Aerodynamic components are represented by wind
speed, relative humidity, and vapor pressure deficit (VPD), while radiation components
are represented by net radiation (Rn), solar irradiance (Rs), air temperature, vapor pressure–
temperature curve (∆), and the relative cloudiness (Rs/Rso).
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Figure 5. Representation of radiation and aerodynamic components for ETr estimation.

Further considerations included the simplicity of measuring the weather parameters,
the ease of calculation of the intermediate parameters, and the completeness of the climatic
variables. Parameters u2, Rs, and the means, minimums, and maximums of temperature
and relative humidity can be directly measured by weather stations. Parameters that are
calculated from the directly measurable variables include the VPD, the Rs/Rso, the ∆, and
the Rn. The requirement for the calculation of all these parameters for ETr estimation
has been cited as one of the challenges of the ASCE-PM that could lead to significant
errors [13]. Such errors could be reduced by determining the most crucial parameters
that influence evapotranspiration for a given area through machine learning algorithms.
For this, eleven DTs were considered for the daily timescale, while seven input datasets
(DTs) were considered for the hourly and quarter-hourly timescales, as shown in Table 2.
On a daily timescale, DT3, DT5, and DT10 contain all or the majority of the aerodynamic
components, while DT1, DT4, DT7, and DT8 provide a good mix of both aerodynamic
and radiation components. The presence of aerodynamic components is reduced in DT6,
DT9, and DT11. Among these datasets, all the parameters in DT8 can be directly measured
from a weather station, followed by DT3 and DT4, which have additional parameters that
require computation. The need for computation is increased in DT1 and DT5. A similar
arrangement was followed at hourly and quarterly timescales, however, in this case, the
minimums and maximums of relative humidity and temperature were replaced by their
mean values. The calculation of all the parameters we included in our datasets is defined
and extensively explained in Ref. [12]. Rs/Rso represents relative cloudiness and can be
derived from pyranometer data and calculated Rso values [52]. The calculation of VPD
requires air temperature and relative humidity, while ∆ requires air temperature. The
net radiation indicates the amount of solar irradiance absorbed by vegetation, and it is
commonly calculated from the short and long-wave radiation components (Equation (2)) at
either a daily, hourly, or lower timescale.

Rn = Rns − Rnl (2)

where Rns and Rnl are net short-wave and net outgoing long wave radiation in MJ m−2

d−1/h−1, respectively.
The equation for Rns (Equation (3)) does not differ based on timescale, while that of

Rnl (Equations (4) and (5)) differs based on the timescale considered [12].

Rns: daily: and hourly (1− α)Rs (3)

Rnl: daily : σ fcd(0.34− 0.14
√

ea)

[
T4

K max + T4
K min

2

]
(4)

Rnl: hourly : σ fcd(0.34− 0.14
√

ea)T4
K hr (5)
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where α (0.23) is albedo [dimensionless], Rs is incoming solar radiation [MJ m−2 h−1/d−1],
σ (2.042 × 10−10) is Stefan–Boltzmann constant [MJ K−4m−2 h−1/d−1], fcd is a cloudiness
function [dimensionless] calculated from the relative solar radiation (Rs/Rso), ea is actual
vapor pressure [kPa], TKhr is mean absolute temperature during the hourly period [K], and
TK max and TK min are the maximum and minimum absolute temperatures during the 24-h
period [K], respectively.

Table 2. Parameter combinations at different timescales used for training machine learning models.

Daily

Factor DT1 DT2 DT3 DT4 DT5 DT6 DT7 DT8 DT9 DT10 DT11

VPD × × × × ×
∆ × × ×

Rn × × × ×
u2 × × × × × × × × ×

Rs/Rso × × × × × × ×
Tmean × × × ×

RHmean × × × × ×
RHmax ×

Rs × × × × ×
RHmin ×
Tmax × × × ×
Tmin × × × ×

Quarter-hourly and Hourly

VPD × × × ×
∆ × × ×

Rn × × × ×
u2 × × × × × × ×

Rs/Rso × × × ×
Rs × ×

Tmean × × × ×
RHmean × × × × ×

2.5. Evaluation Metrics

The competency of the ASCE-PM, GA-SVR, GA-ANN, GA-ELM, and GA-RF models
for estimating ETr-lys at daily, hourly, and quarter-hourly timescales was assessed by com-
paring the estimated ET from each model with the ET measured using the lysimeters and
quantified using four commonly used statistical indices, i.e., the coefficient of determination
(R2) [1], the mean bias error (MBE) [53], the mean absolute error (MAE), and the root mean
squared error (RMSE) [54], which can be expressed as follows:

R2: 1− [∑n
i=1 (yi − yi)(xi − xi)]

2

∑n
i=1(yi − yi)

2∑n
i=1 (xi − xi)]

2 (6)

RMSE:

√
∑n

i=1 (y i − xi)
2

n
(7)

MAE:
∑n

i=1 |y i − xi|
n

(8)
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MBE:
∑n

i=1 (y i − xi)

n
(9)

Note: yi denotes estimated ETr, and xi denotes the observed ETr.

3. Results and Discussion
3.1. Comparison of the Estimation Accuracy of the ASCE-PM and Machine Learning Models at a
Daily Timescale

The estimated ETr using ASCE-PM (ETrs) and that from ML models was compared
to that from weighing lysimeters (ETr-lys) on a daily timescale. Table 3 indicates that
DT3, DT4, and DT6 provided the best-performing estimators of ETr-lys across the different
ML models. However, Figure 6 illustrates that the ASCE-PM equation performed better
than these models (considering R2) but tended to underestimate ETr-lys (slope of 0.91,
MBE = −0.43 mm/day) for values from 7.5 mm day−1 and greater. Also, the residual
plot in Figure 7b shows that the largest errors occurred at approximately > 7.5 mm day −1

but, generally, the equation seems to persistently underestimate ETr-lys throughout all
estimates. Underestimation or overestimation of ETr-lys by the different variants of the
Penman–Monteith equation due to low and high evaporative demands has been reported
in earlier studies, and it was attributed to the difference in local climatic conditions and
lysimetric measurement errors. Due to the semi-arid climate and relatively large wind
speeds at Bushland [33], the slight deviations between ETrs and ETr-lys could be attributed
to the advective transport that adds energy, thus increasing the ETr-lys in the reference
alfalfa fields, in agreement with Ref. [55]. Such underestimations were reported from other
highly advective environments [56].

Table 3. Statistical indicators for machine learning ETr estimations at a daily timescale (fit linear
equations representing the slope and intercept for each respective model are presented in italics).

Daily

DT1 DT2 DT3 DT4 DT5 DT6

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

ANN
0.83 1.12 0.79 0.76 1.41 0.84 0.83 1.17 0.86 0.91 0.84 0.58 0.82 1.19 0.90 0.87 1.01 0.74

0.93x + 0.53 0.94x + 0.52 0.97x + 0.31 0.90x + 0.70 0.83x + 1.10 0.95x + 0.26

ELM
0.85 1.02 1.03 0.68 0.99 0.68 0.89 0.91 0.61 0.90 0.85 0.56 0.80 1.20 0.90 0.88 0.93 0.61

0.87x + 1.07 0.90x + 0.79 0.97x − 0.03 0.93x + 0.41 0.93x + 0.31 0.95x + 0.26

SVR
0.79 1.24 0.81 0.77 1.28 0.79 0.87 0.95 0.69 0.88 1.92 0.63 0.74 1.39 1.11 0.84 1.07 0.80

0.92x + 0.50 0.89x + 0.84 0.93x + 0.35 0.89x + 0.82 0.78x + 1.57 0.88x + 0.76

RF
0.83 1.06 0.92 0.86 0.99 0.98 0.85 1.12 1.04 0.89 0.83 0.73 0.81 1.21 1.14 0.85 0.90 0.83

0.82x + 1.22 0.97x + 0.24 1.01x + 0.34 0.98x + 0.37 0.74x + 2.15 0.97x + 0.45

DT7 DT8 DT9 DT10 DT11 ASCE-PM

ANN
0.83 1.21 0.86 0.89 0.93 0.70 0.62 1.67 1.30 0.77 1.31 0.85 0.83 1.27 0.99 0.94 0.75 0.57

0.99x + 0.17 0.94x + 0.34 0.63x + 2.76 0.86x + 0.98 0.83x + 1.43 0.91x + 0.30

ELM
0.83 1.09 0.79 0.88 0.92 0.69 0.63 1.63 1.31 0.81 1.17 0.73 0.81 1.17 0.91

0.96x + 0.31 0.85x + 1.09 0.68x + 2.46 0.92x + 0.56 0.83x + 1.50

SVR
0.81 1.18 0.82 0.87 0.98 0.68 0.43 2.03 1.51 0.73 1.39 0.90 0.66 1.57 1.08

0.92x + 0.71 0.88x + 0.81 0.435x + 4.42 0.85x + 1.15 0.65x + 3.02

RF
0.91 0.95 0.86 0.89 0.93 0.89 0.73 1.37 1.40 0.84 1.07 1.12 0.83 1.17 1.06

0.94x + 0.38 0.97x + 0.46 0.92x + 0.79 0.83x + 0.84 0.82x + 1.22



Water 2024, 16, 12 12 of 21Water 2024, 16, x FOR PEER REVIEW 12 of 21 
 

 

 

Figure 6. Relationship between ASCE, machine learning algorithms, and ETr-lys at daily timescale 

for days when reference conditions were met. (a) GA-ELM-DT3, (b) ASCE-PM, (c) GA-ANN-DT4, 

(d) GA-ELM-DT6. 

Values of RMSE and MAE for GA-ELM-DT4 and GA-ELM-DT5 confirm that the in-

clusion of ∆, VPD, and Rs/Rso in DT5 decreased the model accuracy from a MAE of 0.56 

mm/day and RMSE of 0.85 mm/day to a MAE of 0.90 mm/day and RMSE of 1.20 mm/day 

(Table 3). Removing ∆ in GA-ELM-DT3 and replacing it with Tmean and Rn reduced the MAE 

from 0.90 mm/day to 0.61 mm/day. A similar trend is observed in all the datasets where it 

was included (DT1, DT2). The effect of the inclusion of Rs/Rso (an indication of cloudiness) 

can also be assessed by looking at the values of MAE and RMSE for DT7 and DT8 in Table 

3. It is evident that across all models, the MAE and RMSE for DT7 ranged from 0.79 

mm/day to 0.86 mm/day and from 0.95 mm/day to 1.21 mm/day, respectively, which are 

larger than the range for DT8 (0.68 mm/day–0.89 mm/day and 0.92 mm/day–0.98 mm/day, 

respectively). Therefore, this suggests that ∆ and Rs/Rso might not be suitable for daily ETr-

lys estimation in the advective environment tested. 

It is observed from Table 3 that replacing the maximums and minimums of relative 

humidity and temperature with their mean values for DT6 and DT7 slightly improved the 

RMSE values. However, when the Rs/Rso was excluded as shown for DT8, the RMSE and 

MAE were improved. This means Rs/Rso might not be suitable as a direct input into ML 

models for daily ETr estimation for the conditions of this study. MAE and RMSE values 

for DT4 and DT8 indicate that Rn and Rs might have a similar effect on the daily ETr-lys 

estimation and can be used interchangeably. Hence, precautions should be taken into con-

sideration for deploying ML models in locations such as the Bushland, TX station when 

records of both Rn and Rs are missing. Among all the ML models tested, GA-ANN sub-

jected to DT4 produced the largest R2 value (0.91), while the GA-ELM applied to DT8 pro-

duced the slope closest to unity and the smallest offset. Figure 7a,c,d also reveals that re-

siduals for the GA-ELM and GA-ANN were persistently close to the zero line, which in-

dicates that these models can reduce underestimation or overestimation of ETr-lys. 

Figure 6. Relationship between ASCE, machine learning algorithms, and ETr-lys at daily timescale
for days when reference conditions were met. (a) GA-ELM-DT3, (b) ASCE-PM, (c) GA-ANN-DT4,
(d) GA-ELM-DT6.

Water 2024, 16, x FOR PEER REVIEW 13 of 21 
 

 

 

Figure 7. Residual plots for ASCE and machine learning algorithms at a daily timescale. (a) GA-

ELM-DT3, (b) ASCE-PM, (c) GA-ANN-DT4, (d) GA-ELM-DT6. 

Overall, the results indicated that on a daily timescale, ML models can give better 

estimates of ETr-lys than the ASCE-PM under the tested conditions, and we can learn 

some things about the importance of the various input parameters on the accuracy of the 

equations. This is important since weather data are normally collected with missing data, 

which is sometimes estimated or imputed [58]. Therefore, the relevance of the parameters 

indicates how much effort should be expended to replace or estimate missing data based 

on the prevailing local conditions. For instance, if accurate estimates of ETr-lys can be ob-

tained without a particular parameter, no effort would be required to impute its missing 

values. 

Table 3. Statistical indicators for machine learning ETr estimations at a daily timescale (fit linear 

equations representing the slope and intercept for each respective model are presented in italics). 

Daily 

 DT1 DT2 DT3 DT4 DT5 DT6 

 R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

ANN 
0.83 1.12 0.79 0.76 1.41 0.84 0.83 1.17 0.86 0.91 0.84 0.58 0.82 1.19 0.90 0.87 1.01 0.74 

0.93x + 0.53 0.94x + 0.52 0.97x + 0.31 0.90x + 0.70 0.83x + 1.10 0.95x + 0.26 

ELM 
0.85 1.02 1.03 0.68 0.99 0.68 0.89 0.91 0.61 0.90 0.85 0.56 0.80 1.20 0.90 0.88 0.93 0.61 

0.87x + 1.07 0.90x + 0.79 0.97x − 0.03 0.93x + 0.41 0.93x + 0.31 0.95x + 0.26 

SVR 
0.79 1.24 0.81 0.77 1.28 0.79 0.87 0.95 0.69 0.88 1.92 0.63 0.74 1.39 1.11 0.84 1.07 0.80 

0.92x + 0.50 0.89x + 0.84 0.93x + 0.35 0.89x + 0.82 0.78x + 1.57 0.88x + 0.76 

RF 
0.83 1.06 0.92 0.86 0.99 0.98 0.85 1.12 1.04 0.89 0.83 0.73 0.81 1.21 1.14 0.85 0.90 0.83 

0.82x + 1.22 0.97x + 0.24 1.01x + 0.34 0.98x + 0.37 0.74x + 2.15 0.97x + 0.45 

 DT7 DT8 DT9 DT10 DT11 ASCE-PM 

ANN 
0.83 1.21 0.86 0.89 0.93 0.70 0.62 1.67 1.30 0.77 1.31 0.85 0.83 1.27 0.99 0.94 0.75 0.57 

0.99x + 0.17 0.94x + 0.34 0.63x + 2.76 0.86x + 0.98 0.83x + 1.43 0.91x + 0.30 

ELM 
0.83 1.09 0.79 0.88 0.92 0.69 0.63 1.63 1.31 0.81 1.17 0.73 0.81 1.17 0.91  

0.96x + 0.31 0.85x + 1.09 0.68x + 2.46 0.92x + 0.56 0.83x + 1.50  

SVR 
0.81 1.18 0.82 0.87 0.98 0.68 0.43 2.03 1.51 0.73 1.39 0.90 0.66 1.57 1.08  

0.92x + 0.71 0.88x + 0.81 0.435x + 4.42 0.85x + 1.15 0.65x + 3.02  

Figure 7. Residual plots for ASCE and machine learning algorithms at a daily timescale. (a) GA-ELM-
DT3, (b) ASCE-PM, (c) GA-ANN-DT4, (d) GA-ELM-DT6.
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Comparison of the ETr from ML models with the ETr-lys shows that the underesti-
mation was reduced, most significantly for GA-ELM, when applied to DT3 (slope = 0.97,
MBE = −0.25) and DT6 (slope = 0.95, MBE = −0.19) (Figure 6a,d). It also demonstrates that
GA-ELM can reduce the positive offset and slope, similar to Refs. [22,57], who found ELM
to be suitable for reference evapotranspiration estimation. The best-performing model (GA-
ANN-DT4, considering R2) had a smaller slope (0.90), although it reduced underestimation
(MBE = −0.15). According to RMSE values shown in Table 3, ASCE-PM performed better
than both the SVR and RF models for the majority of the datasets. These models performed
close to the ASCE-PM with RMSE values of 0.98 and 0.93 for the GA-SVR and GA-RF
models, respectively, for the DT8. However, the high positive offsets, 0.81 and 0.46 for the
GA-SVR and GA-RF, respectively, indicate the poor performance of the models as compared
to that of ASCE-PM (0.30). The statistical parameters shown in Table 3 give a clear idea
about the interaction of the meteorological variables used in estimating ETr-lys across the
different models. Based on these results, u2 was involved in all the best-performing datasets
(DT3, DT4, and DT6); therefore, it can be concluded that it is one of the most relevant esti-
mators for daily ETr-lys in this region and that accurate estimates of ETr-lys might not be
achieved without the inclusion of this parameter. Also, the inclusion of VPD and Rs/Rso
in DT3 led to improved slope and offset values compared to those of DT4 for GA-ELM,
GA-ANN, and GA-SVR. In DT6, when Rn was excluded from the inputs, it did not affect the
performance of the ML models. This result presents an opportunity for estimating ETr-lys
without the long Rn calculations and could suggest that in dry and advective environments,
radiation components might primarily contribute to pressure deficit through temperature
changes, but aerodynamic components play a major role in driving evapotranspiration.
This might affirm the relevancy of the inclusion of aerodynamic components in ML models
in advective environments for daily ETr-lys calculations.

Values of RMSE and MAE for GA-ELM-DT4 and GA-ELM-DT5 confirm that the
inclusion of ∆, VPD, and Rs/Rso in DT5 decreased the model accuracy from a MAE
of 0.56 mm/day and RMSE of 0.85 mm/day to a MAE of 0.90 mm/day and RMSE of
1.20 mm/day (Table 3). Removing ∆ in GA-ELM-DT3 and replacing it with Tmean and Rn
reduced the MAE from 0.90 mm/day to 0.61 mm/day. A similar trend is observed in all
the datasets where it was included (DT1, DT2). The effect of the inclusion of Rs/Rso (an
indication of cloudiness) can also be assessed by looking at the values of MAE and RMSE
for DT7 and DT8 in Table 3. It is evident that across all models, the MAE and RMSE for
DT7 ranged from 0.79 mm/day to 0.86 mm/day and from 0.95 mm/day to 1.21 mm/day,
respectively, which are larger than the range for DT8 (0.68 mm/day–0.89 mm/day and
0.92 mm/day–0.98 mm/day, respectively). Therefore, this suggests that ∆ and Rs/Rso
might not be suitable for daily ETr-lys estimation in the advective environment tested.

It is observed from Table 3 that replacing the maximums and minimums of relative
humidity and temperature with their mean values for DT6 and DT7 slightly improved
the RMSE values. However, when the Rs/Rso was excluded as shown for DT8, the RMSE
and MAE were improved. This means Rs/Rso might not be suitable as a direct input into
ML models for daily ETr estimation for the conditions of this study. MAE and RMSE
values for DT4 and DT8 indicate that Rn and Rs might have a similar effect on the daily
ETr-lys estimation and can be used interchangeably. Hence, precautions should be taken
into consideration for deploying ML models in locations such as the Bushland, TX station
when records of both Rn and Rs are missing. Among all the ML models tested, GA-ANN
subjected to DT4 produced the largest R2 value (0.91), while the GA-ELM applied to DT8
produced the slope closest to unity and the smallest offset. Figure 7a,c,d also reveals that
residuals for the GA-ELM and GA-ANN were persistently close to the zero line, which
indicates that these models can reduce underestimation or overestimation of ETr-lys.
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Overall, the results indicated that on a daily timescale, ML models can give better
estimates of ETr-lys than the ASCE-PM under the tested conditions, and we can learn
some things about the importance of the various input parameters on the accuracy of the
equations. This is important since weather data are normally collected with missing data,
which is sometimes estimated or imputed [58]. Therefore, the relevance of the parameters
indicates how much effort should be expended to replace or estimate missing data based on
the prevailing local conditions. For instance, if accurate estimates of ETr-lys can be obtained
without a particular parameter, no effort would be required to impute its missing values.

3.2. Comparison of the Estimation Accuracy of the ASCE-PM and Machine Learning Models at
Hourly and Quarter-Hourly Timescale

Table 4 gives the performance of the ML models across the different datasets for hourly
and quarter-hourly timescales. Residual plots for the best-performing ML models and
ASCE-PM are shown in Figure 8. Residuals for all ML models in Figure 8a,c,d indicate more
points close to the zero line as compared to the ASCE-PM plot (Figure 8b). The errors appear
to increase at about 0.6 mm/h. A similar trend is observed in Figure 9b, where the slope
of the straight line coincides sensibly with the bisector up to about 0.6 mm/h, indicating
the method’s success for that set of values. However, the method slightly underestimates
ETr-lys above this value, although the overall MBE was calculated as −0.008 mm/h. Our
results agree with the findings of other previous studies [56]. In contrast, some studies
have had results slightly different from ours, where grass reference (ETr) was evaluated
and compared with measurements from a lysimeter [59]. In that paper, the ASCE-PM
overestimated lysimeter measurements by 4% for values above 0.45 mm/h. The behavior
of the ASCE-PM might vary depending on the reference crop considered and the study
site [36].

Table 4. Statistical indicators for machine learning ETr-lys estimations at the hourly and quarter-
hourly timescales (fit linear equations representing the slope and intercept for each respective model
are presented in italics).

Hourly

DT1 DT2 DT3 DT4 DT5 DT6 DT7

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

ANN
0.94 0.09 0.06 0.94 0.09 0.06 0.96 0.08 0.05 0.96 0.08 0.05 0.89 0.12 0.08 0.94 0.09 0.06 0.96 0.07 0.04

0.90x − 0.010 1.03x + 0.020 0.91x + 0.030 0.99x − 0.010 0.82x + 0.030 0.99x + 0.050 1.02x + 0.010

ELM
0.97 0.06 0.04 0.97 0.06 0.04 0.97 0.06 0.04 0.97 0.06 0.04 0.93 0.10 0.06 0.97 0.06 0.04 0.97 0.06 0.04

0.98x + 0.011 0.98x + 0.010 0.98x + 0.009 0.98x + 0.011 0.98x + 0.010 0.95x + 0.255 0.98x + 0.011

SVR
0.97 0.07 0.04 0.97 0.06 0.04 0.97 0.06 0.04 0.97 0.06 0.04 0.93 0.10 0.06 0.97 0.06 0.04 0.97 0.07 0.04

0.98x + 0.012 0.98x + 0.009 0.98x + 0.009 0.984x + 0.012 0.94x + 0.023 0.98x + 0.011 0.98x + 0.011

RF
0.97 0.07 0.04 0.97 0.06 0.04 0.97 0.06 0.04 0.97 0.07 0.04 0.93 0.10 0.06 0.97 0.07 0.04 0.97 0.07 0.04

0.97x + 0.012 0.97x + 0.011 0.97x + 0.012 0.97x + 0.012 0.91x + 0.030 0.97x + 0.013 0.97x + 0.013

Quarter-Hourly

ANN
0.91 0.03 0.02 0.94 0.02 0.02 0.94 0.02 0.01 0.94 0.02 0.02 0.87 0.03 0.02 0.94 0.02 0.02 0.92 0.03 0.02

1.030x + 0.0066 1.004x + 0.0004 1.015x − 0.0004 0.944x + 0.0084 0.892x + 0.0115 0.881x + 0.0114 0.806x + 0.0089

ELM
0.95 0.02 0.01 0.96 0.02 0.01 0.96 0.02 0.01 0.95 0.02 0.01 0.91 0.03 0.02 0.96 0.02 0.01 0.95 0.02 0.01

0.956x + 0.0038 0.959x + 0.0034 0.959x + 0.0035 0.956x + 0.0038 0.906x + 0.008 0.960x + 0.0035 0.955x + 0.004

SVR
0.95 0.02 0.01 0.96 0.02 0.01 0.96 0.02 0.01 0.95 0.02 0.01 0.91 0.03 0.02 0.96 0.02 0.01 0.95 0.02 0.01

0.960x + 0.0034 0.969x + 0.0031 0.969x + 0.0032 0.959x + 0.0035 0.913x + 0.0067 0.969x + 0.0032 0.957x + 0.004

RF
0.96 0.02 0.01 0.96 0.02 0.01 0.96 0.02 0.01 0.96 0.02 0.01 0.92 0.03 0.02 0.96 0.02 0.01 0.95 0.02 0.01

0.957x + 0.0036 0.956x + 0.0037 0.953x + 0.0039 0.958x + 0.0036 0.915x + 0.0072 0.957x + 0.0037 0.955x + 0.004
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Figure 8. Residual plots for ASCE and machine learning algorithms at hourly timescale. (a) GA-ELM-
DT2, (b) ASCE-PM, (c) GA-ANN-DT3, (d) GA-ELM-DT7.

For the ML models GA-ELM-DT2, GA-ELM-DT3, and GA-ELM-DT7, the residuals
were close to zero and slopes (Figure 9a,c,d) close to unity, indicating that the models
performed quite well. It can be perceived from Table 4 that these models performed better
than the ASCE-PM, considering all statistical parameters. The MAE and RMSE for ASCE
were 0.36 and 0.24, respectively, lower than values for DT7, where all models performed
better than the ASCE, with ranges for MAE and RMSE being 0.04 mm/h–0.05 mm/h
and 0.06–0.07 mm/h, respectively. Considering the effect of the different variables on
the model’s performance, results for DT4 show that excluding ∆, VPD, and Rs/Rso led
to a reduction in the slope. However, when the data for the three variables were present
in DT5 and data for Rn and Tmean were absent, the slopes were still reduced across all
models. This indicates that Tmean and Rn could be major contributing factors as direct
inputs for hourly ETr estimation using ML models. The contribution of Rn to hourly ETr-lys
estimation can be further assessed by looking at the results for DT4 and DT7. The consistent
MAE, RMSE, and slope values for all the evaluated models indicate that Rs and Rn can
be used interchangeably as direct inputs to the ML models. In fact, when data for both
variables were absent in DT5, the worst estimates were observed from the ML models. The
performance of ML models on DT4 is encouraging and indicates a potential for estimating
hourly ETr with directly sensed meteorological data.
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Figure 9. Relationship between ASCE, machine learning algorithms, and ETr-lys at hourly timescale.
(a) GA-ELM-DT2, (b) ASCE-PM, (c) GA-ELM-DT3, (d) GA-ELM-DT7.

It can be perceived from both Figures 10a and 11a that the ASCE-PM produced
biased estimates at the quarter-hourly timescale (slope of 0.93, MBE = −0.0012 mm/h),
tending to underestimate ETr-lys. On the other hand, the residuals for the best-performing
models (Figure 10b,c) appear to be close to the zero line, and the R2 values in both cases
(Figure 11b,c) are larger than that for the ASCE-PM (Figure 11b).
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An improved performance can be observed from the best-performing ML models
(GA-ELM-DT2, GA-ELM-DT7) with residuals (Figure 10b,c) close to the zero line and slopes
(Figure 11b,c) close to unity. Additionally, all the other models tested (GA-SVR, GA-RF)
performed better than ASCE-PM, as shown by the statistical parameters in Table 4. The
MAE and RMSE for ASCE were 0.36 and 0.24, respectively, higher than values for all models
and across all datasets that ranged from 0.01 to 0.02 mm/h and from 0.02 to 0.03 mm/h,
respectively. The superiority of ML models for quarter-hourly ETr-lys estimation provides
an opportunity to use more high temporal resolution data for ETr-lys estimation.

Some relevant findings have emerged from the results shown above. The adopted
machine learning algorithms are a powerful tool for the prediction of reference evapotran-
spiration at lower timescales. Starting from the parameters that are directly sensed, as in
DT8, to a combination with parameters calculated from them, as in DT2, and other datasets,
it is possible to obtain prediction models characterized by very high accuracy. Mean tem-
perature, as well as net solar radiation, play a significant role in influencing the various
processes of the hydrological cycle. These parameters appear to be relevant for modeling
at hourly or quarter-hourly timescales; therefore, a data-driven model that considers the
above two factors most likely leads to satisfactory results. However, in the absence of net
radiation measurements or in case the resources for its long calculations are limiting, it is
still possible to build a reliable prediction model of ETr-lys with the aid of the machine
learning algorithms, based only on solar radiation, mean temperature, wind speed, and
relative humidity data. This would especially be desirable for remote sensing applications
in data-scarce environments. The use of climatic data that are not very recent may appear
to be a limitation of this study. However, the ability to interpret patterns in past climatic
data will be crucial to climatic forecasting, and ML models have been deemed necessary.

3.3. Transferability of the Developed Machine Learning Models

Developing models for reference evapotranspiration estimation requires an under-
standing of how the different features contribute to the model estimations. This is necessary,
especially for data-scarce environments, where the most dominant variables can be uti-
lized to provide real-time ETr-lys estimates through ML algorithms. Our investigation of
the different parameter combinations and contributions to ETr-lys estimation at different
timescales indicated that ML models can perform better than ASCE-PM while utilizing
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fewer data inputs to achieve reasonable results. If the estimated ETr-lys values are accept-
able representations of ETrs, then the improved accuracy on shorter timescales is especially
relevant for remote sensing of ET since daily or weekly ET is extrapolated from ETrs es-
timates from the small time window that the images were taken, and thus, improved
estimates on these shorter timescales could improve the overall accuracy of these methods.

However, the use of the models from this study could be limited to the study region
and to places that have similar climatic conditions. Areas with similar climatic conditions
might experience similar patterns of the meteorological parameters, producing similar
variability as our results. Still, it is necessary to create similar or novel ML models using
different parameter combinations to investigate their performance in other regions. More-
over, based on the target application, the timescale of the required data might be different
from region to region. The models developed here showed the potential of capturing
variability even at small timescales (quarter-hourly), which is a common temporal resolu-
tion for weather data collection in many regions. The necessity to test different models at
different timescales is paramount for a given region. In fact, different regions have been
found to suit different empirical models for ETr computation, primarily based on local
climatic conditions.

In the case that the models of the current study are transferred to other regions, proper
training of the models is required as well as paying extra attention to the underfitting
and overfitting phenomena commonly experienced during ML model training. Future
developments of this study will concern coupling the ML models, surface energy balance
models, and satellite imagery to improve the estimation of ETr. Increasing the spatial scale
of ETr estimation would be necessary to enhance water management and planning.

4. Conclusions

Machine learning models (GA-ELM, GA-SVR, GA-RF, and GA-ANN) were inves-
tigated in modeling lysimeter-measured reference evapotranspiration (ETr-lys) at daily,
hourly, and quarter-hourly timescales using various input combinations of radiation and
aerodynamic components for a highly advective environment. The results were compared
with those of the standardized Penman–Monteith Equation (ASCE-PM). Based on the
comparison results, it was observed that machine learning models yielded more accurate
ETr-lys estimates compared to ASCE-PM across all timescales. ASCE-PM consistently
underestimated ETr-lys at all timescales. Radiation components, as well as a combination
of radiation and aerodynamic model inputs, demonstrated superior performance at the
hourly and quarter-hourly timescales. Conversely, datasets primarily characterized by
aerodynamic components performed better at the daily timescale. The results indicate that
machine learning models can effectively replace ASCE-PM for ETr-lys estimation in highly
advective environments. Moreover, different climatic variables exert varying influence on
model performance at a given timescale based on local weather conditions. This approach
can be integrated to enhance the accuracy of ETr-lys estimation at hourly or quarter-hourly
timescales, which is crucial for precise geospatial ET estimation using land surface energy
balance models. Additionally, the same approach could be applied in similar advective
environments to evaluate the impact of meteorological parameters on ETr estimation. This
is imperative for ensuring precise ETr estimation for agricultural water management.
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