
Citation: Cui, L.; Chen, X.; An, J.; Yao,

C.; Su, Y.; Zhu, C.; Li, Y.

Spatiotemporal Variation

Characteristics of Droughts and Their

Connection to Climate Variability

and Human Activity in the Pearl

River Basin, South China. Water 2023,

15, 1720. https://doi.org/10.3390/

w15091720

Academic Editor: Renato Morbidelli

Received: 25 March 2023

Revised: 21 April 2023

Accepted: 26 April 2023

Published: 28 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Spatiotemporal Variation Characteristics of Droughts and Their
Connection to Climate Variability and Human Activity in the
Pearl River Basin, South China
Lilu Cui 1,† , Xiusheng Chen 1,†, Jiachun An 2,3,* , Chaolong Yao 4, Yong Su 5, Chengkang Zhu 1 and Yu Li 1

1 School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China;
cuililu@cdu.edu.cn (L.C.)

2 Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079, China
3 Hubei Luojia Laboratory, Wuhan 430079, China
4 College of Natural Resources and Environment, South China Agricultural University,

Guangzhou 510642, China
5 School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
* Correspondence: jcan@whu.edu.cn; Tel.: +86-150-7103-1810
† These authors contributed equally to this work.

Abstract: Droughts have damaging impacts on human society and ecological environments. There-
fore, studying the impacts of climate variability and human activity on droughts has very important
scientific value and social significance in order to understand drought warnings and weaken the
adverse impacts of droughts. In this study, we used a combined drought index based on five Grav-
ity Recovery and Climate Experiment (GRACE) and GRACE Follow-On solutions to characterize
droughts in the Pearl River basin (PRB) and its sub-basins during 2003 and 2020. Then, we accurately
quantified the impact of climate variability and human activity on droughts in the PRB and seven
sub-basins by combining the hydrometeorological climate index and in situ human activity data. The
results show that 14 droughts were identified in the PRB, particularly the North River basin with the
most drought months (52.78%). The El Niño-Southern Oscillation and the Indian Ocean Dipole were
found to have important impacts on droughts in the PRB. They affect the operation of the atmospheric
circulation, as well as the East Asia summer monsoon, resulting in a decrease in precipitation in the
PRB. This impact shows a significant east–west difference on the spatial scale. The middle and upper
reaches of the PRB were found to be dominated by SM, while the lower reaches were found to be
dominated by GW. Human activity was found to mainly exacerbate droughts in the PRB, but also
plays a significant role in reducing peak magnitude. The sub-basins with a higher proportion of
total water consumption experienced more droughts (more than 11), and vice versa. The Pearl River
Delta showed the highest drought intensification. Reservoir storage significantly reduces the drought
peak and severity, but the impact effect depends on its application and balance with the total water
consumption. Our study provides a reference for analyzing the drought characteristics, causes, and
impacts of sub-basins on a global scale.

Keywords: WSDI; Pearl River basin; climate variability; human activity; droughts

1. Introduction

A drought is a very destructive hydrometeorological disaster, which is an extreme
manifestation of the paradox between water supply and demand [1]. It can seriously
threaten the sustainable development of the social economy [2,3]. Since 2000, the number
and duration of global droughts have increased by 29%. Between 1998 and 2017, global
economic losses due to drought were high as USD 124 billion, and the number of people
affected by drought reached 1.4 billion [4]. Therefore, realizing the early warning signs
of drought is of great significance in order to reduce the adverse effects of droughts. The
premise of establishing a drought-based early warning model is to fully understand and
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master the formation and development mechanism of droughts, especially the impact of
various factors on droughts.

Drought research requires various hydrological data, such as data on precipitation
(PPT), soil moisture (SM), runoff, evapotranspiration (ET), etc. Although the ground
stations can directly obtain these hydrological data, the insufficient site leads to low data
coverage, and the method needs high costs [5]. Satellite remote sensing achieves all-weather
tracking and full coverage of data monitoring, but it obtains hydrological data indirectly.
Therefore, there are large uncertainties in the data [6,7]. The emergence of Gravity Recovery
and Climate Experiment (GRACE) and its Follow-On (GRACE-FO) satellites has provided
us with a geodetic approach that can be used to monitor all the terrestrial hydrological
data, including surface and subsurface data, and terrestrial water storage changes (TWSCs)
estimated by these data included the influence of natural factors and human activity [8,9].
Therefore, it has attracted significant attention among scientists from all over the world.
Moreover, some scholars have used them in terrestrial hydrological research, e.g., for the
Yangtze River basin [10,11] and the Amazon River basin [12,13], as well as in Africa [14,15]
and Australia [16,17].

A drought index is a quantitative indicator often used in drought research, and it
has the advantage of being easy to understand. Commonly used drought indices mainly
include the Palmer drought severity index (PDSI), the standardized PPT ET index (SPEI),
and the standardized PPT index (SPI) [18]. However, the above three drought indices are
only based on one or two pieces of hydrometeorological data, so it cannot fully reflect
the real situation of terrestrial hydrology [7,19,20]. The current causes of droughts are
not only natural factors, but also human activity. The traditional drought indices cannot
accurately reflect the impact of human activity, bringing great uncertainty within drought
assessments [21]. Moreover, GRACE has provided an effective solution to the above
problem. Sinha et al. [22] used GRACE TWSC data to construct a water storage deficit
index (WSDI), and applied it to drought monitoring in the Indian Continent during 2002
and 2015. Subsequently, the WSDI was used in drought research in the Yangtze River basin
and the Sao Francisco River basin, as well as China, and Turkey [7,23–25]. The WSDI has
become a preferable and effective tool for monitoring large-scale droughts.

The Pearl River basin (PRB) is the largest river system in South China and the third
longest river in China. Its annual runoff is more than 330 million m3, ranking second
in China’s river systems [26]. GRACE data were applied to successfully detect severe
drought events in the PRB in 2011 [27], and PPT, ET, runoff, and climate variability were
found to play an important role in the drought propagation [28,29]. The El Niño-Southern
Oscillation (ENSO) alters the drought duration and severity by affecting PPT levels [30].
Except for natural factors, human activity has a certain interference effect on droughts.
Forest change has the ability to disturb regional climate states and thus contribute to
hydrological droughts. In Baker Creek and Yaak River basins, forest change has a greater
impact on droughts than climate change [31,32]. Reservoir storage also disrupts drought
duration and severity [30]. The above studies did not consider the divergence between
different sub-basins in the PRB, and precisely quantify the contribution of human activity to
droughts. In this study, we discuss the impact of climate variability and human activity on
each PRB sub-basin during the drought events from 2003 to 2021, and precisely quantified
the impact extent of human activity to drought duration and severity. We briefly introduced
the study area, data, and methods in Sections 2–4, respectively. Section 5 presents an
analysis of drought characteristics and its influencing factors in the PRB. The discussion
and conclusion are provided in Sections 6 and 7, respectively.

2. Study Area

The PRB (Figure 1), approximately located at 21◦ N–27◦ N and 102◦ E–116◦ E, covers
five provinces in South China and northeastern Vietnam, with a total area of 442,000 km2.
The terrain is high in the northwest and low in the southeast. The region has the subtropical
monsoon climate, with a mild and rainy climate. The annual average temperature is
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14~22 ◦C and the annual average PPT is 1200~2200 mm. PPT distribution obviously
decreases gradually from east to west. The spatial and temporal distribution of PPT is
uneven, and more than 80% of PPT is concentrated in the rainy season [33,34]. The sub-
basins of the PRB are the Nan-Bei Pan River basin (NBPRB), the Hongliu River basin (HRB),
the Yu River basin (YRB), the West River basin (WRB), the North River basin (NRB), the
East River basin (ERB), and the Pearl River Delta (PRD).
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3. Data
3.1. GRACE/GRACE-FO Data

At present, GRACE/GRACE-FO solutions are mainly published by three official
agencies, which are the Center for Space Research at the University of Texas at Austin
(CSR), the Helmholtz-Centre Potsdam-German Research Centre for Geosciences (GFZ),
and the Jet Propulsion Laboratory (JPL). GRACE/GRACE-FO solutions are divided into
spherical harmonic (SH) and Mascon solutions, and gridded TWSC data can be obtained
from them. Among them, only SH solutions require pretreatment. Firstly, first-order and
C20 term coefficients needed to be replaced [35,36]. Then, SH coefficients were processed
using a 250 km fan filter and a P3M8 polynomial filter. Finally, the scale factor method was
used to repair the signal [37]. Since GRACE and GRACE-FO data are exactly the same,
GRACE and GRACE-FO are collectively referred to as GRACE. For convenience, three
GRACE SH solutions and two Mascon solutions are termed as CSR-SH, GFZ-SH, JPL-SH,
CSR-M, and JPL-M, respectively.

3.2. Reconstructed TWSC Data

The data gap between GRACE and GRACE-FO missions (from July 2017 to May 2018)
was filled using the dataset of reconstructed TWSC data in China based on PPT (2002–2019),
derived from the National Tibetan Plateau Data Center. The dataset was calculated using
the CSR GRACE/GRACE-FO RL06 Mascon solution, China’s daily gridded PPT real-time
analysis system (version 1.0), and CN05.1 temperature data and other datasets, according
to the PPT reconstruction model [38,39].

3.3. Traditional Drought Index

We used the two traditional drought indices, the self-calibrating PSDI (SCPDSI) and
the SPEI, to evaluate the quality of WSDIs. The SCPDSI is an upgraded version of the PDSI,
which is more suitable for drought assessment on a global scale and calculated based on
PPT, temperature, and parameters relating to soil/surface characteristics [40]. The monthly
0.5◦ × 0.5◦ global gridded SCPDSI data were taken from the Climate Research Unit at
University of East Anglia. The SPEI was estimated based on PPT and potential ET. In
our study, the monthly SPEI gridded data with a spatial solution 0.25◦ × 0.25◦ had three
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different time scales (3, 6, and 12 months). The 3-month scale represents an agricultural
drought; the 6-month scale represents a hydrological drought; and the 12-month scale
represents a hydrogeological drought [41].

3.4. In Situ Hydrometeorological Data

In situ hydrometeorological data, including PPT, soil moisture (SM), runoff, and ET,
were derived from China Global Land Surface Reanalysis Products (CMA-RA/Land).
The products were provided by the China Meteorological Administration, with a spatial
solution of 0.5◦ × 0.5◦ and monthly temporal solutions.

3.5. Groundwater Data

Since groundwater (GW) also has a certain impact on regional drought, we discussed
GW as a factor of drought. In our study, the monthly 0.25◦ × 0.25◦ GW gridded data were
taken from the Global Land Data Assimilation System 2.1 Catchment Land Surface Model,
which is obtained by subtracting soil moisture, plant canopy surface water, and snow water
equivalent from terrestrial water storage.

3.6. Climate Teleconnection

Droughts have a certain teleconnection with global climate events [42]. Climate
change in China is vulnerable to sea surface temperature anomalies in the Pacific and
Indian Oceans [43]. The ENSO is a persistent anomalous sea surface temperature in the
equatorial Pacific that affects global and regional PPT levels and water cycles, especially in
Pacific coast regions [44,45]. Previous studies [30,46] indicate that PPT and TWSC in the
PRB are mainly influenced by the ENSO. PPT in the PRB is closely related to the Indian
Ocean Dipole (IOD) [47,48]. Therefore, it is necessary to study the impact of the ENSO and
the IOD on climate change in the PRB. In our study, the monthly Niño 3.4 index and the
Indian Ocean Dipole model index (DMI) during 2003 and 2020, respectively, were provided
by the National Oceanic and Atmospheric Administration, which has represents the state
of the ENSO and the IOD over time.

3.7. In Situ Human-Induced TWSC Data

In situ human-induced TWSC data were provided by the PRB Water Resources Bul-
letins, and the bulletins were published by the Pearl River Water Resources Commission of
the Ministry of Water Resources. These data comprise PPT, surface water, groundwater,
reservoir storage (RS), total water supply, total water consumption (TWC), etc., both in the
PRB and its sub-basins on an annual scale.

4. Methods
4.1. Data Fusion

Data fusion is mainly carried out in three steps: (1) the uncertainties of five TWSC
results of different GRACE solutions are estimated using the generalized three-cornered
hat method; (2) according to the uncertainties results, the weight of the five TWSC results
are determined; (3) the five TWSC results are fused based on the least squares method.
Technical details on the data fusion can be found in Refs. [49,50].

4.2. Natural-Induced TWSCs

To analyze the impact of human factors on the droughts in the PRB, we need to
evaluate the natural-induced TWSC (TWSCc). According to the water balance equation,
TWSCc is expressed as follows:

TWSCc = P− R− E (1)

where P is the PPT rate, E is the ET rate, and R is the runoff.
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4.3. WSDI

The expression of the WSDI is as follows [22]:

WSDi,j = TWSCi,j − TWSCclim
j (2)

where WSDi,j and TWSCi,j are the water storage deficit and GRACE TWSC for the jth
month in the year i, respectively; TWSCclim

j is the climatology of TWSC for the jth month.
In our study, the climatology of TWSC was calculated by averaging each month of GRACE
TWSC data during 2003 and 2020 in the PRB, which was used as the baseline for identifying
the WSD [51]. A negative WSDI represents the drought conditions, whose magnitude
indicates the drought intensity [22].

4.4. Definition and Characteristics of Drought Event

In our study, to determine the occurrence of a drought event in the PRB, the monthly
WSDI must be less than 0 for three consecutive months. The drought duration is the number
of months during the start and end month of the drought event; the peak magnitude indi-
cates the maximum monthly WSDI during the drought event; the drought area percentage
represents the ratio of the grid area with a WSDI less than 0 to the total area of the PRB.
The drought severity (S) is expressed as [52]:

S = M× D (3)

where M is the monthly average of the WSDI during the drought event and D is the
drought duration calculated up to the current month.

4.5. SPI

The SPI is estimated based on long-term PPT data and is widely used in regional
drought research [53]. Firstly, the probability density function of gamma distribution is
used for long-term PPT data. Then, the function is converted to a normal distribution to
obtain an SPI mean value at 0. The expression is as follows:

SPI = W − c0 + c1W + c2W2

1− d1W + d2W2 + d3W3 (4)

W =

{ √
−2 ln P, P ≤ 0.5√
−2 ln(1− P), P > 0.5

(5)

where P is the cumulative probability of PPT exceeding the threshold value. c0, c1, c2, d1,
d2, and d3 are constant, which are 2.52, 0.80, 0.01, 1.43, 0.19, and 0.0013, respectively [54].
In our study, the three different time scales of the SPI (SPI-3, SPI-6, and SPI-12) were
calculated. The above three SPIs represent meteorological drought, agricultural drought,
and hydrological drought [55].

4.6. Partial Least Squares Regression Model

The partial least squares regression model (PLSR) is a regression modeling method
that uses multiple dependent variables and multiple independent variables. It solves the
problem of multiple correlations between independent variables in the traditional least
squares regression model [56,57]. In our study, we took the WSDI as the dependent variable
and hydrogeological factors as independent variables to study the impact of different
hydrometeorological factors on droughts in the PRB.

Suppose Y and X = {X1, X2, · · · , Xn} are the WSDI and hydrometeorological factors,
respectively. Xi(i = 1, 2, · · · , n) represents different hydrometeorological factors, and n is
the number of hydrometeorological factors. The time series of Y and Xi can be expressed
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as
{

y1, y2, · · · , yp
}

and
{

xi1, xi2, · · · , xip
}

, and p is the length of the time series. Therefore,
X can be expressed as:

X =

x11 · · · x1n
...

. . .
...

xp1 · · · xpn

 (6)

Firstly, Y and X are normalized. Normalized X and Y are denoted as A and B,
respectively.

Then, the principal components of A and B are extracted, respectively [58]. Assuming
that the regression equation meets the accuracy requirements after the mth principal
component extraction and regression, the extracted principal components can basically
represent all independent variables.

Finally, the regression equation of Y with respect to {X1, X2, · · · , Xn} can be obtained.
The variable importance of projection (VIP) from the PLSR model can accurately

quantify the impact of hydrometeorological factors on droughts. The expression of VIP is
as follows:

VIPj =

√√√√√√√
n

m
∑

i=1
Rd(Y, vi)w2

ij

m
∑

i=1
Rd(Y, vi)

(j = 1, 2, · · · , n) (7)

where VIPj is the VIP value of the jth hydrometeorological factor. vi(i = 1, 2, · · · , m)
represents the m principal components of Y, and wij(i = 1, 2, · · · , n; j = 1, 2, · · · , p) rep-
resents the weight of each element in the matrix after the matrix X is standardized.
Rd(Y, vi) = r2(Y, vi) and r(Y, vi) are the correlation coefficients between Y and vi, respec-
tively. When VIP is more than 0.8, the corresponding factor has a significant impact [59].

4.7. Correlation Coefficient and Delay Months

Suppose the two independent time series are x1 and x2, the correlation coefficient
between the above time series is expressed as [60]:

ρ(τ) =
σ12(τ)√

σ11σ22
(8)

where ρ(τ) is the correlation coefficient, τ is the delay factor, σ11 and σ22 are the variance
levels of x1 and x2, respectively. σ12 is the covariance of x1 and x2. |ρ(τ)| is the maximum
(|ρ(τ)| ≤ 1), which means that τ is the corresponding delay in months (|τ| ≤ 12).

5. Results
5.1. Spatiotemporal Distribution of the WSDI in the PRB

We fused the TWSC results from six GRACE solutions to improve the reliability of
TWSC results. Figure 2 shows that fused results are in good agreement with TWSC results
from six single solutions, and correlation coefficients between fused results and TWSC
results from six single solutions are larger than 0.95. The fused results (3.183 mm) offer
less uncertainty than the one of the results from six single solutions (CSR-SH, 13.596 mm;
GFZ-SH, 15.434 mm, JPL-SH, 12.711 mm; CSR-M, 33.570; JPL-M, 23.902).

Figure 3 compares the WSDI with seven traditional drought indices and presents the
corresponding scatter plots. The eight drought indices had similar change trends, and the
performance of the WSDI in detecting droughts in the PRB had a high consistency with
traditional drought indices. The WSDI had the highest correlation coefficient with the
SPEI-06 (0.6917) and the lowest score with SPI-03 (0.5318). The correlation coefficients of
SCPDSI, SPEI-03, SPEI-12, SPI-06, and SPI-12 were 0.5688, 0.5848, 06227, 0.6469, and 0.6120,
respectively. Overall, the WSDI agreed well with the SCPSDI, the SPEI, and the SPI in
drought monitoring in the PRB.
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5.2. Drought Characteristics in the PRB

In our study, the WSDI was used to monitor and characterize droughts in the PRB and
its sub-basins from 2003 to 2020 (Table 1 and Figure 4). The fourteen droughts occurred
in the PRB during the study period. Among them, the worst drought occurred from
November 2010 to July 2012, whose peak magnitude and drought severity values were
−0.6143 and −12.4149, respectively, which is also the longest one (21 months). During
this drought, the HRB was most affected (−14.6244). The seven droughts belonged to the
basin-wide one (nos. 1, 2, 3, 5, 7, 8, and 11). During the seven droughts, the most severely
affected sub-basins were the WRB (12.7318), the WRB (11.4342), the HRB (14.6244), the
WRB (5.3541), the NBPRB (9.5206), the HRB (15.7994), and the ERB (6.8657). During the
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study period, the WRB and the HRB suffered the most droughts (12). In non-basin-wide
droughts, the no. 10 drought (June 2014 to August 2014) only affected two sub-basins (the
NBPRB and the YRB). Four droughts mainly occurred in the middle and upper reaches,
while three ones mainly appeared in the lower reaches. Among the droughts that occurred
in the middle and upper reaches, the most affected sub-basins were all NBPRBs, while the
ones that occurred in the lower reaches were all ERBs during the droughts. Therefore, the
NBPRB, the WRB, the HRB, and the ERB were found to be the most drought-prone. With
14 droughts, the drought duration varied across sub-basins (Figure 4b). For example, in
the no. 8 drought (November 2011 to July 2012), the YRB had the longest drought months
(12 months), followed by the NRB (19 months), the HRB (18 months), the WRB (17 months),
the ERB (16 months), the NBPRB (15 months), and the PRD (15 months).
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Figure 5 shows that all the sub-basins experienced drought nearly or more than half the
time (43%). The NRB had the highest number of drought months (52.78%), while the ERB
and the PRD were basically in drought half the time (50.46% and 50.93%). The NRB, the ERB,
and the PRD belonged to the lower reaches. This suggests that the lower reaches are more
susceptible to droughts.
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Table 1. Summary table of drought events identified by the WSDI.

No.
Time Span of

Drought Events
Duration
(Months)

WSDI Drought Area Percentage (%) Local
Meteorological
Data Validation

(Y/N)
Peak

Magnitude
Average

Magnitude Severity Peak
Magnitude

Average
Magnitude

Cumulative
Magnitude

1 200307–200406 12 −1.7852 −0.9388 −11.2652 100.00 87.60 1051.15 -
2 200410–200505 8 −1.6718 −1.2597 −10.0776 100.00 99.68 797.44 Y
3 200507–200605 11 −1.6282 −0.9810 −10.7907 100.00 94.38 1038.22 Y
4 200609–200705 9 −0.9943 −0.5177 −4.6590 100.00 90.28 812.50 Y
5 200710–200805 8 −1.3530 −0.7105 −5.6841 100.00 90.43 723.45 Y
6 200901–200906 6 −0.8185 −0.3814 −2.2884 100.00 70.20 421.17 Y
7 200909–201005 9 −1.8509 −1.1458 −10.3120 100.00 97.15 874.39 Y
8 201011–201207 21 −1.7394 −0.5912 −12.4149 100.00 88.03 1848.56 Y
9 201305–201310 6 −0.6143 −0.3546 −2.1276 79.49 61.50 368.97 Y

10 201406–201408 3 −0.7469 −0.4754 −1.4262 69.18 60.63 181.90 Y
11 201504–201508 5 −1.8096 −0.8534 −4.2668 100.00 82.13 410.65 Y
12 201706–201711 6 −1.0703 −0.6612 −3.9671 100.00 74.32 445.95 Y
13 201807–201809 3 −0.5566 −0.4366 −1.3099 84.81 70.24 210.71 Y
14 201911–202004 10 −1.0355 −0.4898 −4.8976 100.00 84.99 849.89 Y

5.3. Impact of Climate Variability on Droughts

Drought is closely related to hydrometeorological conditions. We selected PPT, runoff,
SM, GW, and ET as the drought-influencing factors in the PRB for analysis. Table 2 shows
that SM and GW had significant effects on the drought in the PRB, whose correlation coeffi-
cients and VIPs with the WSDI were 0.6477 and 2.4888 and 0.5607 and 1.8651, respectively.
However, the situation varied across sub-basins. The HRB, the WRB, and the YRB results
were consistent with those of the PRB. Although SM and GW still had significant effects in
the NRB, the ERB, and the PRD, and the correlation coefficients between the two and the
WSDI were less than 0.5. In the NBPRB, expect for SM and GW, ET had a significant effect
on the drought. In the upper reaches of the PRB (the NBPRB, the HRB, and Y the RB), SM
was the dominant factor in drought, while GW was the one in the lower reaches of the PRB
(the NRB, the ERB, and the PRD). In the WRB, the degree of influence of SM and GW was
found to be basically the same.

Table 2. The correlation coefficient (CC) and VIP between the WSDI and PPT, runoff, SM, GW, and
ET anomalies in the PRB.

Variance
PRB NBPRB HRB YRB WRB NRB ERB PRD

CC VIP CC VIP CC VIP CC VIP CC VIP CC VIP CC VIP CC VIP

WSDI vs. PPT 0.2603 0.4018 0.1024 0.1438 0.2871 0.4897 0.1640 0.2609 0.2338 0.3969 0.1689 0.3604 0.1627 0.4018 0.1660 0.4359
WSDI vs. runoff 0.2873 0.4896 0.1482 0.3012 0.2713 0.4366 0.2097 0.4263 0.2320 0.3906 0.1635 0.3375 0.1986 0.5984 0.1583 0.3965

WSDI vs. SM 0.6477 2.4888 0.4561 2.8542 0.6750 2.7032 0.5222 2.6439 0.5745 2.3963 0.4128 2.1528 0.3473 1.8299 0.3740 2.2119
WSDI vs. GW 0.5607 1.8651 0.2758 1.0434 0.5621 1.8745 0.4462 1.9302 0.5733 2.3859 0.4670 2.7546 0.4356 2.8784 0.4150 2.7229
WSDI vs. ET 0.3566 0.7543 0.3379 1.5667 0.2890 0.4955 0.2759 0.7377 0.2432 0.4294 0.7166 0.3940 0.1346 0.2751 0.1197 0.2265

Due to the delay in response, we calculated the maximum correlation coefficients and
the corresponding time delay months between the WSDI and PPT, runoff, SM, GW, and ET
anomalies (Figure 6). The spatial correlation distribution of PPT (Figure 6a) shows high
distribution characteristics in the middle and low distribution characteristics on both sides,
as well as high distribution characteristics in the north and low distribution characteristics
in the south. The maximum correlation coefficient was only 0.28, which means that the
direct relationship between PPT and the WSDI is not strong. The delay of PPT mainly
lasted 1~2 months in most regions (Figure 6b). The spatial distribution of correlation and
delay months of runoff was the same as that of PPT (Figure 6c,d). This suggests that PPT
and runoff have a close relationship (CC = 0.8682). However, the correlation coefficients of
runoff were less than PPT, and the maximum one was 0.25. The correlation between SM
and the WSDI was stronger than other factors, and the spatial distribution of correlation
of SM was the same as PPT (Figure 6e). This suggests that PPT has an important impact
on SM (CC = 0.5663). The delay SM basically lasted 0 months~1 month (Figure 6f). The
correlation of GW shows a significant high distribution in the east and low distribution in
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the west (Figure 6g). This shows that the regions with greater GW impacts are concentrated
in the lower reaches, which may be related to the relatively flat terrain in the region, given
that the flat terrain is conducive to the recharge and accumulation of GW. The delay of GW
almost lasted 0 months. ET had a similar distribution with SM, attributed to SM belong the
main source of ET (CC = 0.5274). ET had a strong correlation with the WSDI in the western
regions of the NBPRB. Because the eastern NBPRB belongs to the Yunnan-Guizhou Plateau,
this region has sufficient sunshine.
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With global warming, extreme climates occur frequently, altering the regional climate.
Therefore, we studied the teleconnection between the ENSO, the IOD, and droughts in the
PRB. The ENSO and the IOD had a positive correlation with PPT in the PRB (CC = 0.2862
and 0.2112). Yuan et al. [61] showed that the western Pacific subtropical high is stronger and
more southward in the ENSO year, so the rising movement in South China is strengthened,
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convection develops, and PPT is increased. Xiao et al. [62] indicated that when the IOD
is in a positive phase, North China and the Jiang-Huai River basin are dry and less rainy
during the flood reason, and the coastal regions of South China are rainy belts. The ENSO
has a greater correlation with PPT than the IOD. This is attributed to the PRB being closer
to the Pacific Ocean.

Figure 7 shows the maximum correlation coefficients and the corresponding time
delay months between the ENSO and PPT, SM, and the WSDI. The correlations between the
ENSO and PPT show high distribution characteristics in the west and low characteristics
in the east (Figure 7a). The strongest one occurred in the WRB (0.3334) and the weakest
one appeared in the PRD (0.1450). This shows that the ENSO has a greater impact on
PPT in the middle and upper reaches than in the lower reaches. Based on the response
time of PPT to the ENSO, the closer to the ocean, the faster the response (Figure 7b). The
correlation between SM and the ENSO shows high values in the southwest and low values
in the northeast (Figure 7c), and the maximum and minimum ones (0.3404 and 0.1737)
appeared in the WRB and the YRB, respectively. SM instantly responded to the ENSO in
most regions, and the response time in individual regions reached 11 months (Figure 7d).
The spatial distribution of SM was quite significantly different from that of PPT. This may
have been affected by human activity, such as agricultural irrigation, reservoir regulation,
human water discharge, etc. The spatial distribution of the WSDI was consistent with
that of PPT (Figure 7e). This indicates that PPT is the main meteorological factor affecting
the occurrence of drought in the PRB. The basin most affected by the ENSO was the YRB
(0.3181), while the basin with the smallest effect was the ERB (0.01). The response of
the WSDI to the ENSO was slow in the northeast and fast in the southwest (Figure 7f).
Because the ERB, the NRB, and the PRD belong to the densely populated and economically
developed regions of the PRB, human activity may be the main reason for the differences
in the responses of PPT and the WSDI to the ENSO.
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Figure 8 estimates the maximum correlation coefficients and the corresponding time
delay months between the DMI and PPT, SM, and the WSDI. Comparing Figure 8a,e, the
spatial distribution of correlations between PPT and the WSDI were similar, i.e., indicating
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the high distribution characteristics in the northeast and the low distribution characteristics
in the southwest. This explains that the impact of the IOD relates to distance in the Indian
Ocean, which is the same as that of the ENSO. The response times of PPT and the WSDI
to the IOD were significantly different (Figure 8b,f). The correlations between the DMI
and SM were high in the west and low in the east, and the low correlations were mainly
concentrated in the ERB, the NRB, and the PRD. The reason is the same as for the ENSO.
Figure 8d shows that SM responses to the IOD were faster in the east and slower in the
west.
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5.4. Impact of Human Activity on Droughts

Since the impact of human activity on droughts is difficult to estimate, we used
indirect methods for evaluation purposes. We used natural-induced TWSCs to monitor and
characterize the droughts in the PRB (Table A1). Figure 9 compares the characteristics of
droughts caused by natural factors and actual occurrences (drought-nature and drought-
GRACE) in the PRB and its sub-basins. Comparing Tables 1 and A1, the number of drought
natures (11) was significantly less than the number of drought GRACE indices (14) in the
PRB. This shows that three droughts were caused by human activity. Expect for the ERB,
the above situation existed in each sub-basin, and the NBPRB had the most human-induced
droughts (3). Figure 9a shows that drought duration extensions appeared in 81.82% of
droughts (9) due to human activity. The longest increase in drought duration reached
10 months (no. 8), and the average value was 4 months. The highest increase rate in
drought duration was 125% (no. 7) and the average value was 75.37%. The duration of
one drought (no. 13) was shortened by 3 months due to human activity, while there was
one drought (no. 6) whose duration did not change due to human activity. As shown
in Figure 9, due to human activity, the drought with the longest prolonged drought (18
months) occurred in the YRB. The greatest increase in the average drought duration was
found in the NBPRB and the ERB (both 6.5 months), and the smallest one was found in
the NRB (3.3 months). The drought with the greatest increase rate of the drought duration
appeared in the YRB (600.00%). The greatest average increase rate in drought duration
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was found in the NBPRB (186.31%) and the smallest one was found in the NRB (81.75%).
Across the study regions, time extension was the main effect of human activity on drought
duration, but duration was also shortened in sporadic droughts.

In the PRB (Figure 9b), the peak magnitude of 81.82% of droughts (9) increased. The
largest increase in the peak magnitude was 0.6386 (no. 5), and the maximum growth rate
was 133.89% (no. 12) and the minimum growth rate was 3.29% (no. 1). There were two
droughts with declines in the peak magnitude, and the reduction rates were 5.10% and
16.21%. However, there are large differences in the results affected by human activity
between the sub-basin and the PRB. Except for the WRB and the PRD, at least 50% of
drought peaks were weakened in the other five sub-basins. In the NBPRB and the HRB, the
peak magnitudes of 55.56% droughts were cut. Droughts with the largest peak reductions
occurred in the HRB (91.13%). The seven sub-basins were sorted in ascending order of the
average peak magnitude reduction levels, and their arrangement was as follows: the NRB
(39.29%), the HRB (37.01%), the WRB (35.37%), the NBPRB (26.71%), the ERB (26.24%),
the PRD (20.84%), and the YRB (15.13%). Combining the probability and procedures of
peak magnitude reduction, the HRB was found to be the sub-basin with the largest peak
magnitude reduction. Human activity had an effect on reducing the peak magnitude and
the ability to exacerbate them. According to statistics, the PRD had the highest probability
of the exacerbated peak magnitude (70%). The average peak magnitude intensification
levels in each sub-basin were as follows: the NBPRB (349.58%), the YRB (118.05%), the
HRB (105.75%), the WRB (36.59%), the NRB (56.20%), the ERB (53.40%), and the PRD
(140.52%). Although the average level in the NBPRB was greater than that in the PRD, only
two droughts in the NBPRB had peak magnitude intensification. In the PRD, there were
seven occurrences of this situation. Therefore, the PRD was found to be a sub-basin with
the largest peak magnitude intensification.

Except for drought duration and peak magnitude, human activity had a significant
impact on drought severity. Figure 9c shows that 90.91% of droughts experienced increased
severity in the PRB, and the average growth rate reached 163.77%. The maximum and
minimum growth rates were 397.50% (no. 12) and 16.96% (no. 6), respectively. Only one
drought occurred with reduced severity (44.65%). Only the HRB, the WRB, the NRB, and
the ERB had reduced drought severity, and there were one, one, two, and one droughts in
the sub-basins, respectively. The vast majority of droughts increased in drought severity.
Among them, the greatest increasing rate was 1928.68% (the NBPRB), while the smallest
one was 13.92% (the NRB). The seven sub-basins were sorted in ascending order of the
average level of drought severity intensification, and their arrangement was as follows:
the NBPRB (385.37%), the YRB (326.16%), the PRD (283.75%), the HRB (252.62%), the NRB
(205.59%), the WRB (151.78%), and the ERB (148.54%).

Margariti et al. [63] indicated that human activity can affect drought via water storage
and consumption. The water storage was mainly RS, while the water consumption includes
industry, agriculture, and domestic water use. In our study, the above water consump-
tions were considered as a factor, called TWC. Figure 10a shows that TWC (56.30%) was
significantly greater than RS (43.70%) during 2003–2013, and the greater proportion of
TWC was found in 2013 (72.04%). Since 2011, TWC shows a continuous downward trend,
which may be attributed to China’s energy conservation and emission reduction policies
implemented since 2010 [64]. However, the average proportion of TWC still reached 51.02%
during 2011–2022. TWC mainly plays a role in exacerbating the drought, so human activity
mainly aggravates droughts in the PRB, which is consistent with the analysis results shown
in Figure 9a–c.
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The purpose of RS is not only flood control and drought relief, but also water supply
and power generation, so RS has both positive and negative effects on droughts. Due to
human activity, the drought severity of no. 13 in the PRB decreased by 44.65% (Figure 9c).
This shows that RS played a role in mitigating drought in this case and offset the negation
effect of TWC. Previous studies indicate [65,66] that when terrestrial water storage is
abundant, the reservoir increases the water storage capacity, and when the drought occurs,
stored water is released to alleviate the drought. During the study period, RS showed an
increasing trend, from 23.23 billion cm3 to 70.65 billion cm3. However, the drought did
not appear to significantly ease. On the one hand, this is because the proportion of RS
was always smaller than that of TWC; on the other hand, RS was not all used for drought
protection.

Figure 10f shows that the average proportion of RS in the PRD was the smallest (7.29%);
thus, drought exacerbations caused by human activity were the most severe (drought
duration, peak magnitude, and drought severity). Figure 10b,c show that the NBPRB
and the HRB had the greater proportion of RS (63.20%) and the greatest reservoir storage
(12.09 billion m3). Although there was no significant performance in terms of drought
duration and severity, the above two sub-basins were found to be the most effective in the
terms of peak magnitude reduction. This suggests that relying solely on RS to mitigate the
effects of drought is not feasible in the PRB, and various measures must be integrated to
reduce the adverse impacts of drought on the social economy.
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and green lines represent RS and TWC as a percentage of human-induced TWSC.

6. Discussion

The PRB belongs to the Subtropical Monsoon Climate Zone, and the Indian Ocean
and the South China Sea are the main sources of water vapor transportation in the region.
Therefore, the East Asian Summer Monsoon (EASM) and the Indian Summer Monsoon
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(ISM), which originate from the Pacific and Indian Oceans, respectively, are bound to
affect climate anomalies in the PRB. Huang et al. [67] indicate that the spatiotemporal
evolution characteristics of PPT in the PRB are significantly coupled with anomalous
changes in the sea surface temperature (SST) in the Pacific and Indian Oceans at the equator.
Previous studies [68–70] show that the ENSO affects anomalous changes in atmospheric
circulation by affecting the Walker and Hadley circulations. During the El Niño event,
Walker circulation weakens and Hadley circulation increases, which causes the EASM to
weaken, and PPT is mainly concentrated in South China. When a positive IOD appears,
the equatorial region of the Indian Ocean is anomalously easterly, and there is an obvious
westerly response from the eastern Bay of Bengal to the Indochina Peninsula, which
strengthens the ISM. However, there is a significant westerly wind response in the western
Pacific region, which weakens the water vapor transportation from the tropical ocean.
This causes the PPT belt to recede to South China. In most cases, the ENSO and the IOD
are concomitant [53]. At this time, there is an obvious easterly response from the eastern
Bay of Bengal to the Indochina Peninsula. This hinders the northward movement of the
high-altitude easterly belt. As a result, the southwest monsoon in East Asia continues to
weaken, and the water vapor cannot be transported to North China, so a large amount of
water vapor stays in South China [68]. Therefore, during El Niño and positive IOD events,
the PRB is prone to floods and vice versa; thus, it is prone to droughts. In our study, PPT is
more affected by the ENSO, which is consistent with the results of Huang et al. [30] and
Deng et al. [46].

With rapid increases in the population and the industrialization process, people
endlessly demand a large amount of water from nature, which breaks the water balance
in nature, disrupts the terrestrial water cycle, and increases the intensity and frequency
of extreme droughts. As shown in Figure 10, the YRB (57.56%), the WRB (81.12%), the
NRB (72.26%), and the PRD (92.71%) are all regions with a large proportion of TWC.
Therefore, the above four sub-basins experienced relatively more droughts (more than
11) during the study period. The NBPRB (36.80%) and the ERB (38.05%) were found to
have a smaller proportion of TWC, so the drought numbers in these two sub-basins were
less than 10. This shows that the TWC exacerbates droughts, which has good agreement
with the findings of Wang et al. [71] centered around the fact that irrigation projects and
agricultural production in the PRB increased the risk of droughts. In addition, RS can
change the spatiotemporal distribution of a TWSC region, which may affect the peak
magnitude, severity, and duration of droughts. Yang et al. [72] indicate that if RS is large
and the proportion of TWC is small, the droughts will be alleviated, and the opposite will
aggravate the droughts. Zhang et al. [65] suggest that RS plays a role in smoothing runoff
change, effectively reducing the drought severity, but prolonging the drought duration.

Our results comprehensively quantify the extent to which climate variability and
human activity have influenced the drought in the PRB, especially a precise quantification
of the impact of RS and TWSC on drought characteristics. We used an indirect method to
quantify the impact of human activity on droughts, which has definite uncertainty. In the
follow-up research, it is hoped that high-precision monthly human activity data can be
obtained to accurately quantify the impact of human activity on droughts.

7. Conclusions

In our study, a combined drought index based on GRACE and GRACE-FO solutions
was used to analyze the drought characteristics and influencing factors in the PRB and its
sub-basins during 2003 and 2020. We also combined multiple hydroclimate data, climate
indexes, and human activity data to study the impact of climate variability and human
activity on droughts. Our conclusions are as follows:

(1) Although 14 droughts occurred in the PRB, not all droughts are basin-wide. Among
them, the worst drought occurred from Nov 2010 to July 2012. There are significant
differences in the drought characteristics of each sub-basin. The NRB is the basin that
was affected by droughts for the longest durations.
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(2) The middle and upper reaches of the PRB were mainly dominated by SM, while the
lower reaches were mainly dominated by GW. The ENSO had a greater impact on
PPT in the PRB than the IOD. The impacts of the ENSO and the IOD on PPT present
significant spatial east–west differences.

(3) In the PRB, human activity leads to longer drought durations and more severe drought,
but can weaken the peak magnitude. The PRD is the basin most affected by human
activity. Due to TWC, the drought frequency increased. RS can play a role in reducing
the peak magnitude and drought severity, but this depends on the use of a reservoir.

Our study helps to establish a connection mechanism between climate variability,
human activity, and regional droughts, which is of great scientific value and social signifi-
cance for the realization of early warning signs of regional droughts and the assessment of
drought impacts.
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Appendix A

Table A1. Summary table of drought events identified by the WSDI based on natural TWSC.

No. Time Span of
Drought Events

Duration
(Months)

WSDI Drought Area Percentage (%)

Peak
Magnitude

Average
Magnitude Severity Peak

Magnitude
Average

Magnitude
Cumulative
Manitude

1 200302–200312 11 −1.7283 −0.4644 −5.1088 100.00 79.25 871.72
2 200408–200501 6 −1.0604 −0.5037 −3.0220 100.00 86.00 516.02
3 200507–200511 5 −1.4033 −0.6229 −3.1146 99.36 88.49 442.46
4 200709–200711 3 −0.7144 −0.4736 −1.4208 100.00 84.12 252.35
5 200802–200804 3 −0.3451 −0.2004 −0.6011 98.07 79.02 237.06
6 200812–200902 3 −0.6211 −0.4518 −1.3555 100.00 97.61 292.84
7 200904–200906 3 −0.4907 −0.3164 −0.9491 78.13 67.72 203.16
8 200908–200911 4 −1.5915 −0.7640 −3.0561 98.69 86.89 347.55
9 201101–201108 8 −1.8329 −0.7901 −6.3209 100.00 80.04 640.30

10 201208–201210 3 −1.0076 −0.4514 −1.3541 95.45 73.29 219.86
11 201212–201302 3 −0.5513 −0.2662 −0.7985 99.36 79.14 237.41
12 201502–201504 3 −0.8139 −0.5444 −1.6332 98.73 87.61 262.82
13 201612–201702 3 −0.4576 −0.2658 −0.7974 98.73 80.93 242.79
14 201802–201807 6 −0.6643 −0.3944 −2.3667 99.34 73.35 440.13
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