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Abstract: This study established a WRF/WRF-Hydro coupled forecasting system for precipitation–
runoff forecasting in the Daqing River basin in northern China. To fully enhance the forecasting skill
of the coupled system, real-time updating was performed for both the WRF precipitation forecast and
WRF-Hydro forecasted runoff. Three-dimensional variational (3Dvar) multi-source data assimilation
was implemented using the WRF model by incorporating hourly weather radar reflectivity and
conventional meteorological observations to improve the accuracy of the forecasted precipitation. A
deep learning approach, i.e., long short-term memory (LSTM) networks, was adopted to improve
the accuracy of the WRF-Hydro forecasted flow. The results showed that hourly data assimilation
had a positive impact on the range and trends of the WRF precipitation forecasts. The quality of the
WRF precipitation outputs had a significant impact on the performance of WRF-Hydro in forecasting
the flow at the catchment outlet. With the runoff driven by precipitation forecasts being updated
by 3Dvar data assimilation, the error of flood peak flow was decreased by 3.02–57.42%, the error of
flood volume was decreased by 6.34–39.30%, and the Nash efficiency coefficient was increased by
0.15–0.52. The implementation of LSTM can effectively reduce the forecasting errors of the coupled
system, particularly those of the time-to-peak and peak flow volumes.

Keywords: WRF; WRF-Hydro; precipitation–runoff coupled forecasting; real-time updating; 3Dvar
data assimilation; deep learning

1. Introduction

Many researchers highlight the coupling of a mesoscale numerical weather predic-
tion model (e.g., the WRF model) with hydrological models as a useful tool for flood pre-
diction [1,2]. This is especially crucial for early warning purposes in unprotected water-
sheds [3]. Because of the instability of the atmosphere itself, numerical atmospheric models,
which are the current main means of precipitation forecasting, cannot accurately forecast
the specific occurrence time, location, and intensity of heavy precipitation processes. This
poses challenges to the forecasting and early warning of rainstorm-induced flood disasters.
Kryza et al. [4] used the WRF model to forecast short-term heavy precipitation in south-
western Poland. The results showed that none of the model configurations could accurately
reproduce local heavy precipitation. Hamill et al. [5] applied an ensemble forecasting system
to improve the WRF precipitation forecasting ability. Generally, although ensemble forecast-
ing can reflect the forecasting ability or reliability of the real atmosphere to a certain extent, it
cannot improve the physical mechanisms of models. Using data assimilation technology to
effectively correct errors in the global initial field and lateral boundary conditions of models
is key to fundamentally improving their numerical precipitation forecasting capabilities.
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Real-time assimilation of high-resolution meteorological observation data can effec-
tively promote the initialization of a numerical atmospheric model for the precipitation
process, particularly during severe convective weather, and is an important way of im-
proving the model’s precipitation forecasting ability. The most commonly used data
assimilation methods are the optimal interpolation method, three-dimensional variational
method (3Dvar) [6,7], four-dimensional variational method (4DVAR) [8,9], and the Kalman
filtering method [10]. Among these, 3Dvar has strong stability and high computing effi-
ciency; therefore, the frequency used is the highest [11]. A variational data analysis system
called the variational Doppler radar analysis system (VDRAS) was first developed by
Sun et al. [12]. Subsequently, Sun and Crook [13] used it for the initialization of short-term
forecasts during convective precipitation, and the three-dimensional variational method
technology began to be widely used. Lan et al. [14] concluded that 3Dvar impacts the
forecast quality by generating initial conditions that represent the state of the atmosphere
more accurately. They also showed that 3Dvar is unsuitable for short-term forecasting.
Under the right conditions, 3Dvar can increase the model performance after a 24 h runtime,
especially after 72 forecast hours. Neyestani et al. [15] applied 3Dvar to convective-scale
forecasts, which they investigated using WRF. They verified the 24 h convective-scale
precipitation forecasts from the WRF model with and without 3Dvar, and found that the
WRF-3Dvar model could forecast precipitation with superior accuracy over the simulation
domain, even for the downscaling run. These studies showed that 3Dvar plays an active
role in precipitation forecasting.

In recent years, with the development of remote sensing technologies, weather radar
has emerged as a new tool for observing disastrous weather owing to its ability to rapidly
detect the evolution of cloud and rain structures and obtain high-resolution instanta-
neous precipitation information [16]. An efficient multi-source data assimilation method
dominated by weather radar provides opportunities for further improving precipitation
forecasts. Weather radars can measure precipitation millions of times with a spatial resolu-
tion of several kilometers and a temporal resolution of several minutes [11]. Compared to
existing mesoscale observation platforms, this remarkable advantage due to the high tem-
poral and spatial resolutions has great potential for improving small-scale and short-term
precipitation forecasting. At present, many researchers have combined high-resolution
observational data with numerical models, which has played a positive role in promoting
the development of convective precipitation forecasting, improving the initial states of
numerical models, and mitigating instabilities caused by interpolation [17–19]. Sugimoto
et al. [11] pointed out that assimilating the radial velocity and reflectivity in a 3Dvar sys-
tem can improve the forecasting ability of the WRF model and applied it to short-term
precipitation forecasting. Lagasio et al. [20] evaluated the forecasting ability of the WRF
model after assimilating radar reflectivity data and conventional weather station data, and
confirmed the importance of rapid updating and intensive data assimilation for improving
quantitative precipitation forecasts as well as flash flood forecasts. To study the influence of
radar detection radial velocity and reflectivity data assimilation on precipitation forecasting,
Souza et al. [21] used the WRF model and its three-dimensional variational assimilation
system to test cyclic and acyclic assimilation processes under different initial conditions.
The results showed that radar data assimilation plays a fundamental role in improving the
performance of convective system simulations and has a positive impact on the short-term
forecasting of convective system-related precipitation. Cáceres et al. [22] adopted the WRF
and 3Dvar data assimilation to explore a suitable forecasting approach in northeastern
Spain. The WRF model combined with the 3DVAR data assimilation method was selected
by Zhu [23] to assimilate radar reflectivity and radial velocity data were selected to simu-
late rainfall, and it was validated with the Integrated Multi-satellitE Retrievals for GPM
precipitation data. The results showed that the hourly radar data assimilation can improve
the simulated precipitation, and the combination of GPM precipitation data and 3Dvar
is a reliable way to forecast stormwater. As a method to improve the accuracy of model
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prediction, data fusion and assimilation are attracting more and more attention, which
makes it possible to forecast floods in areas with complex topography and rainfall.

Limited by the model structure, initial state and input data errors, and parameter
identification ability, existing runoff forecasting models involve uncertainties in real-time
applications as well as simulation and forecasting accuracy deviations. Model correction
can avoid the problem of amending the physical mechanism of the land surface hydrologi-
cal model. This happens by researching the source of error and correcting the forecasting
error according to deviations from the observations. With the development of computer
technology, artificial intelligence has been rapidly developing and is widely used in var-
ious fields, including hydrology. Artificial neural networks are one of the core artificial
intelligence technologies that make the real-time flood forecasting correction technology
more comprehensive. Among the many neural networks, recurrent neural networks (RNN)
transmit information through an unlimited number of updates, while remembering the
state characteristics of time-series data and having good performance in processing and
forecasting time-series data [24,25]. Based on an RNN, Hochreiter et al. [24] proposed a
long short-term memory (LSTM) neural network with memory units that makes memory
information on time series controllable and the LSTM more mature while simulating and
forecasting processes in time series. Kratzert et al. [26] trained an LSTM model based on
experiments on a large number of basins and found that the LSTM can forecast runoff from
meteorological observations, while the pre-trained memory can be transferred to different
basins and forecast runoff in cases with no measurements or with only few measured
values. Zhang et al. [27] explored the ability of an LSTM model to forecast sewage flow and
found significant advantages. In many studies on the application of LSTM to hydrology,
LSTM is mostly used for directly forecasting runoff and other characteristic quantities, and
there is lack of research on improving the runoff forecasting ability by combining it with
physical hydrological models.

Previous research has focused on using radar precipitation measurements or mesoscale
numerical weather prediction models for precipitation forecasting, and then driving hydro-
logical models for runoff forecasting. Traditional real-time correction techniques focus only
on runoff forecasting without considering real-time updating and correcting the forecasted
precipitation. In many studies on the application of LSTM in the hydrological field, LSTM
is mostly used to directly predict the characteristic variables of the runoff, lacking research
on improving the runoff forecasting ability by combining with the hydrological models.
In this study, a WRF/WRF-Hydro coupled system was established for precipitation and
runoff forecasting in mountainous catchments of northern China. A three-dimensional
variational data assimilation method was adopted based on the weather radar, supple-
mented with traditional meteorological monitoring data, to perform multi-source data
assimilation and improve the precipitation forecasting ability of the WRF model. Based
on the construction of error time series, LSTM was used to correct the forecasted runoff
from the WRF/WRF-Hydro coupled system, thereby further improving the accuracy of
the forecasted runoff. Through the dual factor correction of precipitation and runoff, the
forecasting ability of the coupling forecasting system can be effectively improved. The flow
chart of this study is shown in Figure 1.
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2. Study Area and Storm Events

The Daqinghe Basin, situated in the middle and upper regions of the Haihe Basin in
northern China, comprises tributaries that mainly originate from the Taihang Mountains or
surrounding foothills and are subject to a warm temperate continental monsoon climate.
The basin spans an area of 43,060 km2 and is susceptible to frequent flooding, primarily
caused by heavy precipitation during the flood season, which generates floods in upstream
mountainous areas and leads to disasters in downstream areas. However, human activity,
climate change, and inadequate protection measures have resulted in reduced vegetation
coverage, irregular forest vegetation structures, and diminished water conservation in the
upper reaches of the Daqinghe Basin. Owing to the seasonal characteristics of the Daqing
River, very little runoff is supplied by precipitation in the basin during the dry season, and
only when there is sufficient precipitation can runoff flow into the channel. In addition,
local groundwater overexploitation is severe, resulting in little to no baseflow.

In this study, the Fuping Basin in the southern branch of the Daqing River Basin and
the Zijingguan Basin in the northern branch of the Daqing River Basin were used as study
areas for conducting an atmosphere–hydrology coupling simulation with real-time updating.
The Fuping Basin is located at 113◦45′–114◦32′ E and 39◦22′–38◦47′ N, with a watershed
area of 2210 km2. The entire territory is mountainous and can be divided into deep and
shallow mountainous areas according to the terrain. The elevations of deep mountainous
areas are higher than 800 m, while those of the shallow mountainous areas are between
200 and 800 m. The Zijinguan Basin is located at 114◦28′–115◦11′ E and 39◦13′–39◦40′ N,
with a watershed area of 1760 km2. The two catchments are located in the Taihang mountain
section and the upper reaches of the Daqinghe basin, with the maximum and the minimum
elevation being 2286 m and 200 m above sea level. The elevation decreases from northwest
to southeast and changes greatly. The steep terrain leads to a short confluence time of the
flood, which together with high-intensity, short-duration precipitation is prone to cause
severe flood disasters. They are concentrated in areas with thin soil layer and low vegetation
coverage especially. Soil vadose zones are often in a state of water shortage. The runoff
generation process is accompanied by a mixed mechanism of infiltration capacity excess
and storage capacity excess. There were eight precipitation stations in the Fuping Basin and
11 precipitation stations in the Zijinguan Basin. The geographical location, topography, and
distribution of the precipitation stations in the study area are shown in Figure 2. The duration
and cumulative precipitation of 10 storm events are shown in Table 1. Duration, accumulated
precipitation, and maximum stream flow of 10 selected 24 h storm events. The average
annual precipitation in the basin is approximately 600 mm, with most of the precipitation
occurs from late May to early September.

Table 1. Duration, accumulated precipitation, and maximum stream flow of 10 selected 24 h
storm events.

Event ID Catchment Precipitation Duration Accumulated
Precipitation (mm)

Maximum Flow
(m3/s)

1 Fuping 29 July 2007 20:00–30 July 2007 20:00 63.38 29.7
2 Fuping 30 July 2012 10:00–31 July 2012 10:00 50.48 70.7
3 Fuping 1 September 2012 06:00–2 September 2012 06:00 40.30 13.7
4 Fuping 11 August 2013 07:00–12 August 2013 07:00 30.82 46.6
5 Fuping 25 July 2016 00:00–26 July 2016 00:00 12.84 1740.0
6 Zijingguan 22 May 2007 00:00–22 May 2007 24:00 39.52 4.1
7 Zijingguan 10 August 2008 00:00–10 August 2008 24:00 45.53 6.8
8 Zijingguan 21 July 2012 04:00–22 July 2012 04:00 172.17 2580.0
9 Zijingguan 6 June 2013 22:00–7 June 2013 22:00 52.06 9.8

10 Zijingguan 19 July 2016 00:00–20 July 2016 00:00 59.43 53.4
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The 24 h precipitation accumulation was computed using the Thiessen polygon
method, which averages the observations from rain gauges. Due to various limitations,
there is no optimal spatial interpolation method for spatial data interpolation. For different
spatial variables, the so-called optimal interpolation method is relative in different regions
and spatiotemporal scales. Therefore, the article adopts the Thiessen polygon method used
by researchers in the same watershed [28,29].

In this study, the evenness of storm events was quantitatively evaluated in the spatial
and temporal dimensions using the variation coefficient Cv.

Cv =

√√√√ 1
N

N

∑
j=1

(Xj

X
− 1
)

. (1)

In the spatial dimension, Xj is the accumulated 24 h precipitation at rain gauge j, X is
the average of Xj, and N is the number of rain gauges. In the temporal dimension, Xj is the
average hourly precipitation from all rain gauges at time j and N is the number of hours. A
higher Cv value corresponds to more uneven precipitation distribution.

Table 2 shows the Cv values of the four storm events in both spatial and temporal
dimensions.

Table 2. Precipitation evenness of the selected 24 h storm events in space and time.

Event ID 1 2 3 4 5 6 7 8 9 10

Spatial Cv 0.398 0.193 0.141 0.740 0.365 0.149 0.459 0.610 0.426 0.273
Temporal Cv 0.601 1.082 0.882 2.393 1.477 0.925 1.378 1.887 1.887 2.745

3. Data and Experimental Design
3.1. WRF Model Settings

To ensure that the spatial resolution of the nested grid set was as close as possible to
that of the radar data, a three-layer nested grid was used. Setting the outermost grid range
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was conducive for assimilating large-scale GTS data, making the model operation more
stable. The innermost grid covered the entire study area. The nesting ratio of the adjacent
nesting layers was set to 1:3, and the grid sizes were 1, 3, and 9 km. The inner and outer
grids provide two-way feedback in the WRF model. The grid center of the study area was
39◦26′00′ ′ N, 114◦46′00′ ′ E, and the innermost nested grid (Domain 3) was 145 × 115 km2.
The second-level nested grid (Domain 2) was 450 × 360 km2, covering the radar scanning
range, and the outermost nested grid (Domain 1) was 1260 × 1260 km2. The nested grid
and radar observation ranges in the study area are shown in Figure 3 and Table 3. The
WRF model nested grid settings are shown. The three nested areas in this study were
vertically divided into 40 layers. The top air pressure was 50 hPa [30], and the WRF model
integration time step was 6 s. The WRF model was set to output simulation results every
1 h. The precipitation output of the WRF model was used to drive the WRF-Hydro model.
Because the study basins are located in the mid-latitude region, the Lambert projection was
selected. The initial and lateral boundary conditions for forecasting were provided by the
1 × 1◦ Global Forecasting System (GFS). The GFS data are real-time data provided by the
National Environmental Forecasting Center (NCEP) and are updated every 6 h. Because
the GFS data are released in real time, they are often used as the initial driving force for
precipitation forecasting in the WRF model [31].
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Table 3. WRF model nested grid settings.

Nesting Grid Horizontal
Resolution (km)

Nested Grid
Area (km)

Number of
Grids

Downscaling
Ratio

Domain 1 9 1260 × 1260 140 × 140 /
Domain 2 3 450 × 360 150 × 120 1:3
Domain 3 1 145 × 115 145 × 115 1:3
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The simulation and forecasting capabilities of the model are highly dependent on the
parameterization scheme. The scheme selected in this study may be applicable to precipita-
tion processes in one region, but not to those in other regions [32]. Because it is difficult to
determine the most suitable scheme for future precipitation, the parameterization scheme
is usually determined in advance for practical applications [33]. In this study, the selection
of the physical parameterization scheme was based on the sensitivity test results of the
parameterization scheme for the same basin as that in Tian et al. [34,35]. The parameterization
details that had a significant impact on the precipitation used in the assimilation test are
listed in Table 4. Details of the parameterizations used in the assimilation experiments are
shown. Among them, the cumulus convection schemes for the 3 and 1 km grids were closed.

Table 4. Details of the parameterizations used in the assimilation experiments.

Number Parameterization Chosen Option

1 Microphysics scheme WSM6
2 Longwave radiation Rapid Radiative Transfer Model (RRTM)
3 Shortwave radiation Dudhia
4 Land surface scheme Noah
5 Planetary boundary layer Mellor–Yamada–Janjic (MYJ)
6 Cumulus convection Kain–Fritsch (KF)

3.2. The 3Dvar Data Assimilation of WRF

Data assimilation combines observational data with the background forecasting of the
mesoscale atmospheric model and their respective error statistics to improve the initial state
of the atmosphere. Variational data assimilation is realized by the iterative minimization of
specified functions. The initial state of the model is constantly adjusted by iteration, and
the difference between forecasting and observation is reduced according to the following
calculation correction:

J(x) = Jb(x) + Jo(x) (2)

Jb(x) =
1
2
(X− Xb)

T B−1(X− Xb) (3)

Jo(x) =
1
2
(H(X)−Y0)

T R−1(H(X)−Y0) (4)

The variational problem can be summarized by solving an analytical variable to make
a target functional that measures the distance between the analytical variable and the
background. The observation reaches the minimum; this occurs by finding the initial state
X of the model that minimizes J(x) (Equation (2)), which comprises the background compo-
nent Jb(x) (Equation (3)) and observation component Jo(x) (Equation (4)) [36], where Xb is
the background field, B is the background error covariance matrix, Y0 is the observation
vector, H is the observation operator projecting the model variable from the model space to
the observation space through y = H(x) for comparison with the observation results, R is
the observation error covariance matrix, R = E + F, E is the instrument observation error
covariance matrix, and F is the observation representative error covariance matrix.

The three-dimensional variational data assimilation method takes into account all
observed data simultaneously, while ignoring changes over time during the assimilation
process; hence, its operation is more efficient than that of the four-dimensional variational
data assimilation. Assimilation algorithms in mesoscale numerical atmospheric models
vary based on the observational data. For example, the 3Dvar assimilation system can
assimilate 19 types of data, including conventional and unconventional observational data.
When using the WRF model for precipitation forecasting, the most significant difference
between introducing and not introducing data assimilation was whether the background
was corrected and close to the real atmospheric state or not. The assimilation data used in
this study were high-resolution observational, radar, and conventional meteorological data.



Water 2023, 15, 1716 8 of 26

The 3Dvar assimilation system processes the radar reflectivity and GTS data differently,
primarily during the data preprocessing stage. GTS data assimilation follows a simpler
principle than radar data assimilation. The assimilation of GTS data is based on the
LITTLE_R format storage, and the ob.ascii file is obtained after running the file using
obsproc.exe, and 3Dvar can easily recognize the downloaded GTS data. However, the
principles of radar data assimilation are different. Radar reflectivity data are directly output
after radar signal processing, and 3Dvar converts the assimilation of the rainwater mixing
ratio (qr) into an assimilation of reflectivity based on the observation operator of the radar
reflectivity [13].

Z = 43.1 + 17.5 log(ρqr) (5)

where, ρ is the air density and Z is the radar reflectivity. This relation is derived analyti-
cally by assuming the Marshall–Palmer distribution of raindrop size. Simultaneously, the
pixel-based radar reflectivity is assimilated directly into 3Dvar by stating the latitude and
longitude of the pixel center and the height of the radar beam above that pixel.

Although weather radar data can provide high-resolution instantaneous precipitation
information, their coverage is limited compared to that of the GTS data; thus, they are
more suitable for assimilation at small and medium scales. In this study, radar data were
only assimilated in Domain 2, as the radar scanning radius used was 250 km, and its
coverage area was between the outermost and innermost nested grids, similar to that of
Domain 2. GTS data were complementary to the radar data, with wide coverage and low
spatial density. Therefore, the GTS data were assimilated into Domain 1. As GTS data were
updated every 6 h, in all assimilation schemes, GTS data were assimilated only at 6:00, 12:00,
18:00, and 24:00 after the beginning of precipitation, and radar data were assimilated every
hour. Details can be seen in Figure 4. In this study, CV3, which is the error covariance of the
global background constructed by the NCEP, was selected because of its wide applicability
and adaptability for numerical atmospheric forecasting in any region.
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3.3. Observations for 3Dvar Assimilation
3.3.1. Radar Reflectivity

This study utilized radar reflectivity data obtained from an S-band Doppler radar
located in Shijiazhuang City. The scanning area radius of the Shijiazhuang S-band radar
was 250 km and the effective scanning radius was 230 km, thereby completely covering the
Fuping and Zijingguan research areas. The radar completed a volume scan every 6 min,
scanning nine levels. The quality of the radar data was controlled before assimilation,
supported by the Integrated Meteorological Information Sharing Platform (CIMISS) of the
China Meteorological Administration, to remove interference factors, the basic parameters
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of which are shown in Table 5. The basic parameters of the Shijiazhuang radar, radar
location, and coverage area are shown in Figure 3.

Table 5. Basic parameters of the Shijiazhuang radar.

Parameters Information

Location 38.5◦, 114.68◦

Administrative location Shijiazhuang
Antenna diameter 1.3 m

Emission frequency 2.7~3.0 GHz
Observation radius 250 km

Effective radius of observation 230 km
Spatial resolution 1 km

Sweep time 6 min
Beam angles 0.5◦, 1.5◦, 2.4◦, 3.4◦, 4.3◦, 6.0◦, 9.9◦, 14.6◦, 19.5◦

3.3.2. GTS Data

The GTS data utilized in this study were part of a real-time release of global observa-
tion data provided by the National Center for Atmospheric Research (NCAR) of the United
States, updated every six hours. This collection of near-ground and upper-air meteorologi-
cal observation data included variables such as air temperature, pressure, wind speed, and
humidity [37]. To ensure compatibility with 3Dvar, a shell script was employed to convert
the decoded data into a recognizable format, which was then assimilated concurrently
with the radar reflectivity data. During the assimilation process, GTS data were directly
interpolated into a background pattern and corrected using a specific algorithm.

3.4. WRF-Hydro Model Settings

The WRF/WRF-Hydro coupled system consists of two components, namely the WRF
model that forecasts precipitation and the WRF-Hydro model that forecasts runoff. In this
study, the input of the WRF-Hydro model was provided by the WRF precipitation forecast,
which assimilates radar reflectivity every hour and GTS every six hours Table 6. The basic
settings of the uncoupled WRF-Hydro modeling system show the basic settings adopted
for the WRF-Hydro model, which operated only within the innermost grid (Domain 3;
1 km resolution) of the WRF model, with a sub-grid resolution of 100 m.

Table 6. Basic settings of the uncoupled WRF-Hydro modeling system.

Subject Chosen Option

Nest identifier 3
Hydro output interval 1 h
Land surface scheme Noah

Regrinding (nest) Factor 10
soil column 2 m

Four soil layer thickness 10 cm, 30 cm, 60 cm, 100 cm
Subsurface routing Yes

Overland flow routing Yes
Channel routing Yes with diffusive wave

Baseflow bucket model No

Main parameter value

REFKDT = 2.5
MannN = 1.5

OVROUGHRTFAC = 0.1
RETDEPRTFAC = 1

During preparation for running the WRF-Hydro model, the key runoff generation and
concentration parameters of the model, including the runoff infiltration parameter (REFKDT),
channel Manning roughness parameter (MannN), surface retention depth scaling parameter
(RETDEPRTFAC), and overland flow roughness scaling parameter (OVROUGHRTFAC), were
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calibrated using the method of gradual parameter calibration [38,39]. Based on the sensitivity
analysis and automatic optimization in the study area, the final parameter values used in the
study were REFKDT = 2.5, MannN = 1.5, RETDEPRTFAC = 1, and OVROUGHRTFAC = 0.1.
The specific calibration process was described by Liu et al. [40].

3.5. Long Short-Term Memory (LSTM) Network

The LSTM network is a special cyclic neural network that allows previous input
information to be stored inside it, thereby affecting the output of the network. Compared
with traditional cyclic neural networks, LSTM adds memory cell units to the hidden layer,
which can better remember longer historical information. A schematic diagram of the
LSTM deep-learning model is shown in Figure 5.
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In general, the numbers of hidden layers and neurons in each layer can significantly
influence the learning and forecasting capabilities of the LSTM model. An excessive number
of hidden layers and an excessive number of neurons in each layer can lead to overfitting.
Overfitting occurs when the model network memorizes the characteristics of the training
data excessively, thereby resulting in an ideal performance during the training stage and large
errors during the forecasting stage. The number of hidden layers of the LSTM model selected
in this study was one [41,42], while the number of neurons was selected by a trial calculation
method. Through trials with different numbers, it was found that the number of neurons,
n = 32, minimized the mean square error of the model after multiple training sessions; hence,
this number was selected as the number of hidden neurons. This study forecasted the runoff
error for the next hour in units of hours by constructing an error sequence. Point-by-point
forecasting meant that we only forecasted a single point each time, plotted this point as a
forecast, and subsequently took the next data listed along with the full testing data. Finally,
the forecasted error series was added to the hydrological forecast results to complete the
real-time correction of the coupled hydrological forecast system.

3.6. Evaluation Indicators

The root mean square error (RMSE), mean bias error (MBE), and critical success index
(CSI) were used to evaluate the simulated precipitation of the WRF (see Equations (6)–(8)).
RMSE and MBE are the most widely used error metrics. RMSE is used to measure the
deviation between simulated and observed values. The lower the value of RMSE, the
more reliable the prediction, and RMSE should be more useful when major errors are
particularly undesirable [43]. MBE represents the average degree of deviation between
predicted and actual values, and is a quantitative indicator that can be used to represent the
accuracy of the prediction model. After the analysis of the indices, CSI/RMSE was used as
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the comprehensive evaluation index to explore the more intuitive responses of different
precipitation types to forecast errors at the temporal and spatial scales.

RMSE =

√√√√ 1
M

M

∑
i=1

(
Q′i −Qi

)2, (6)

MBE =
1
M

M

∑
i=1

(
Q′i −Qi

)
, (7)

CSI =
1
M

M

∑
i=1

Hi
Hi + Si + Ri

. (8)

In Equations (6) and (7), for the spatial dimension, Qi
′ and Qi denote the observed and

forecasted accumulated 24 h rainfall, respectively, at each rain gauge i. M is the number of
rain gauges, which is 8 for the Fuping catchment and 11 for the Zijingguan catchment. In
the temporal dimension, Qi

′ and Qi are the average areal precipitation of the observation
and forecast, respectively, at each time step i. Time M was 24, thereby representing the
number of time steps. The specific definitions are listed in Table 7. The meanings of
variables are depicted in Equations (6) and (7).

Table 7. Meanings of variables in Equations (6) and (7).

Letter For the Spatial Dimension For the Temporal Dimension

Qi
′ Observation of 24 h precipitation

accumulations at each rain gauge
Average areal precipitation of

observation

Qi
Forecasting of 24 h precipitation

accumulations at each rain gauge
Average areal precipitation of

forecasting
i Rain gauge ID Each time step

M Total numbers of rain gauges 24 h

CSI [44] denotes the percentage of correct simulations between forecast and observa-
tions, with 1 indicating a perfect score. The CSI calculation depends on whether it rains.
Because the essence of the WRF model simulation is to solve the equations, it is inevitable
that the precipitation calculation result will be close to zero. The CSI calculation was based
on a rain/no rain contingency table (Table 8).

Table 8. Rain/no rain contingency table for the WRF simulation against observations.

Forecasting/Observation Yes (>0.01 mm) No

Yes hits (H) misreports (R)
No misses (S) /

The classified variables H, R, and S represent whether the forecasted and observed
values in a certain observation period or position are greater than 0.01. If both the forecasted
and observed values are greater than 0.01, i.e., precipitation is captured in the model, then
H + 1; if the forecasted value is greater than 0.01 and the observed value is less than or
equal to 0.01, i.e., the model misreports precipitation, then R + 1; if the forecasted value is
less than or equal to 0.01 and the observed value is greater than 0.01, i.e., the precipitation
is missed in the model, then S + 1. If both the forecasted and observed values are equal to
0.01, the model accurately forecasts a scenario without precipitation.

For the spatial dimension, the forecasted precipitation was compared with observations
at rain gauge locations to calculate the indices H, R, and S at time i. Subsequently, the values
of the indices at all times were averaged to obtain the CSI according to Equation (8). M is the
total number of iterations. In this study, time i was consistent with the output frequency of
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the model, which was 1 h. That is, CSI is the average value of H/(H + R + S) for each hour of
the 24 h precipitation duration. Similarly, for the temporal dimension, the indices in Table 7
were calculated based on time-series data obtained for the simulated and observed areal
precipitation at rain gauge i. The values of the indices at all rain gauges were then averaged
to produce the final CSI value, based on Equation (8). Here, M refers to the total number of
rain gauges rather than the simulation time.

The Nash efficiency coefficient (NSE), relative error of peak flow (Rf), relative error
of flood volume (Rv) and absolute error of peak time (T) were used to evaluate the runoff
simulated by the WRF-Hydro model (see Equations (6)–(8)). The NSE was used to verify
the reliability of the hydrological model simulation results. RMSE was used to measure
the deviation between the forecasted and observed values. Rf is the relative error of the
flood peak reflecting the credibility of the simulated flood peak, and Rv is the relative error
of the flood volume reflecting the credibility of the simulated flood volume. T is the time
difference between the actual and forecasted peak times, which was used to represent the
error in the peak time forecasting.

NSE = 1− ∑N
i=1
(

R′i − Ri
)2

∑N
i=1
(

Ri − R
)2 , (9)

Rv =
(

R′v − Rv
)
/Rv, (10)

R f =
(

R′f − R f

)
/R f , (11)

T = |T1 − T2|, (12)

where Ri
′ is the runoff forecast value of the ith hour in the flood process, Ri is the measured

runoff value in the ith hour during the flood process, N is the time step, R is the average
value of Ri, Rf

′ is the forecasted value of the peak flow of each flood, Rf is the measured
value of the peak flow of each flood, Rv

′ is the forecasted value of the flood volume of each
flood, and Rv is the measured value of flood volume of each flood. T1 is the actual peak
time; T2 is the forecast peak time.

4. Results
4.1. Real-Time Precipitation Forecasts Based on 3Dvar Data Assimilation

Figure 6 illustrates the real-time precipitation forecasting results of the WRF model
after the 3Dvar data assimilation. Cumulative precipitation was computed based on the
mean precipitation of each grid point within the study area. When the grid area inside
the basin boundary accounted for over 50% of the grid area, the precipitation value of the
grid points was included in the calculation of precipitation accumulation. The Thiessen
polygon method was used to average the precipitation gauge observations and calculate
the observed cumulative precipitation. In Figure 6, the observed accumulative curves are
represented by black solid lines, the precipitation forecasts after the 3Dvar assimilation
are represented by gray solid lines, and the original WRF precipitation forecasts without
assimilation are represented by blue solid lines. It was observed that the WRF model gener-
ally underestimated precipitation. However, after the assimilation, the WRF background
significantly improved and the accumulated rainfall amounts increased noticeably, thereby
approaching the observed values.
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Table 9 presents a comprehensive overview of the RMSE of the various events before
assimilation. The RMSE of Event_5 is the lowest (1.131), followed closely by that of
Event_3 (1.873), whereas that of Event_9 is the highest (4.717). Furthermore, Event_5 and
Event_3 exhibit the minimum absolute values of MBE, whereas Event_7 and Event_9 have
a relatively high absolute values of MBE. Notably, on the time scale, the uniformities of time
distribution for Event_3 and Event_6 are higher than those of Event_7 and Event_9, with
corresponding CVS values of 0.882, 0.925, 1.378, and 1.887. Notwithstanding, both Event_5
and Event_10 exhibit spatial distributions, but not spatial uniformities, with the RMSE and
MBE evaluation metrics being superior to those of spatially and temporally distributed
precipitation. Specifically, the forecasting results of Event_10 are lower than precipitation
with uniform spatial and temporal distribution, while the evaluated forecasting results of
Event_5 are better due to its relatively smaller cumulative precipitation, thereby leading
to a smaller deviation when calculating the indices. Despite this, the RMSE and MBE
index values of all storm events were considerably large before the data assimilation,
thereby rendering the WRF model incapable of accurately forecasting precipitation time
and intensity.
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Table 9. Evaluation indices for different storm events before/after the 3Dvar data assimilation.

Events Method
Indices

RMSE MBE CSI CSI/RMSE

1
Before data assimilation 2.3393 −1.9322 0.7519 0.3214
After data assimilation 1.7816 −1.4615 0.6820 0.3828

2
Before data assimilation 2.3752 −1.5909 0.5729 0.2412
After data assimilation 1.9468 1.3097 0.5791 0.2974

3
Before data assimilation 1.8730 −1.3950 0.6370 0.3400
After data assimilation 1.6500 1.1480 0.6670 0.4040

4
Before data assimilation 3.4189 −1.7446 0.1180 0.0345
After data assimilation 2.0987 −1.0273 0.1038 0.0495

5
Before data assimilation 1.1310 −0.7260 0.7230 0.6390
After data assimilation 0.7520 0.4770 0.7330 0.9750

6
Before data assimilation 2.4440 1.8770 0.5000 0.2050
After data assimilation 2.0240 1.5480 0.5300 0.2620

7
Before data assimilation 4.3540 3.1930 0.3360 0.0770
After data assimilation 3.5070 1.9080 0.3880 0.1110

8
Before data assimilation 8.5700 −5.8656 0.6601 0.0770
After data assimilation 5.9530 −4.0378 0.5449 0.0915

9
Before data assimilation 4.7170 −3.2480 0.2960 0.0630
After data assimilation 3.8860 2.1850 0.3060 0.0790

10
Before data assimilation 2.7730 −1.8260 0.7200 0.2600
After data assimilation 2.1660 1.6480 0.6820 0.3150

In contrast, after the data assimilation, the precipitation forecasting indices showed
significant improvements. For instance, the RMSE and MBE indices of Event_5 decreased
to 0.752 and 0.477, respectively, indicating a 33.51% improvement in deviation between
the RMSE and observation value after the assimilation. Similarly, the RMSE and MBE
indices of Event_6 decreased to 2.024 and 1.548, respectively, with a 23.52% improvement in
deviation after the assimilation. However, although the CSI indicators of some storm events
improved to varying degrees after the assimilation, several storm events still displayed
false alarm rates at different levels.

The CSI/RMSE index was used as a comprehensive measure to assess the forecasting
results. As shown in Table 9, the CSI/RMSE value of the accumulated precipitation for
each event improved after the data assimilation. For instance, in the absence of data
assimilation, the CSI/RMSE value of Event_3 is 0.340, while after the data assimilation, it is
0.404. Similarly, without data assimilation, the CSI/RMSE value of Event_10 is 0.260, while
after the data assimilation, it is 0.315. Following the data assimilation, the accumulated
precipitation of all 10 storm events increased. Specifically, the precipitations of Event_3,
Event_5, Event_6, Event_7, Event_9, and Event_10 increased by 18.86, 52.48, 28.00, 43.37,
25.49, and 21.27%, respectively. Thus, hourly data assimilation resulted in varying degrees
of improvement in the WRF precipitation forecasting ability. Notably, the forecasting
efficacy of Event_3, Event_5, Event_6, and Event_10 is significant, as reflected by the
improved CSI/RMSE values compared to those of Event_7 and Event_9. In addition, the
spatiotemporal variation coefficient Cv of precipitation in Table 2 suggests that Event_7
and Event_9 are more unevenly distributed in both space and time. This further indicates
that the model is more inclined to accurately forecast precipitation processes with uniform
spatial and temporal distributions.

4.2. Effect of Data Assimilation on Runoff through the WRF/WRF-Hydro Coupled System

The runoff forecasting results of the WRF-Hydro model are highly dependent on
the quality of the precipitation-driven data. To evaluate the effect of the 3Dvar data
assimilation on the runoff forecasting through the WRF/WRF-Hydro coupled system,
we compared the runoff forecast results from the WRF-Hydro model driven by the WRF
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precipitation forecasts before and after assimilation, as illustrated in Figure 7. These results
were compared with the runoff processes observed at the catchment outlet.
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The accuracy of the WRF-Hydro runoff forecast was closely linked to the precipitation-
driven data. The precipitation and runoff forecast results of the Zijingguan and Fuping
Basins driven by the WRF/WRF-Hydro coupled system forecast precipitation before and
after assimilation are compared in Figure 7. By using the forecast precipitation data after
the assimilation of radar and GTS data to drive the WRF-Hydro model, the runoff forecast
results become more consistent with the observed flow process compared to those before
the data assimilation. Specifically, the peak flows of the 10 flood processes before the data
assimilation were smaller than the observed ones, whereas the forecast values after the data
assimilation significantly increased. This improvement is attributed to the assimilation of
radar and GTS data, which leads to more accurate cumulative and hourly precipitation
intensities that closely resemble the observed precipitation values. Therefore, the runoff
forecast results improved after the data assimilation. However, the flood processes of
Event_3, Event_4, and Event_10 take a longer time to recede than those of Event_5, Event_6,
Event_7, Event_8, and Event_9. As can be seen in Figure 7, the WRF-Hydro model performs
better for flood processes with steep rise, steep fall, and fast receding, while there are larger
errors for flood processes with a base flow or that are slow receding in the early stage. In
addition, there are still uncertainties in the peak flow and peak time of the events with small
precipitation intensity, long duration, and slow water recession, resulting in a fluctuation
of the forecast runoff process, such as Event_3 and Event_4. Although data assimilation
technology provides more accurate input for the simulation and forecasting of hydrological
processes, runoff and precipitation are nonlinearly related. The complexity of the model
structure and parameter calibration process influence runoff forecasting. For instance, even
though Event_3 precipitation has the most uniform distribution in time and space, the
precipitation process after the assimilation changed, with a higher hourly peak precipitation
than that observed, thereby leading to more uneven precipitation intensity on the time
scale and the fluctuation of the flood process of Event_3 after data assimilation.

In general, the WRF/WRF-Hydro coupled system can well reproduce the hourly
runoff process of the basin during the study period. Considering that the WRF precipitation
forecast was far lower than the actual precipitation, the forecasted runoff was also lower
than the observed runoff at the catchment outlet. However, the assimilation of radar and
GTS data brings the overall WRF precipitation forecast closer to the actual precipitation,
which is significantly higher than the WRF precipitation forecast. The forecasted runoff
results are also far greater than the forecasted flow without assimilation, and the forecasted
flood peaks are closer to the observed peaks. To further demonstrate the impact of data
assimilation on runoff forecasting, Table 10 shows the NSE, Rf, Rv, and T values driven by
different forecasted precipitation values before and after data assimilation.
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Table 10. Evaluation indices of the WRF-Hydro runoff forecasts driven by WRF precipitation forecast
before and after 3Dvar assimilation.

Event ID
Forecast Flow before Assimilation Forecast Flow after Assimilation

NSE Rf (%) Rv (%) T (h) NSE Rf (%) Rv (%) T (h)

1 0.48 −8.17 −47.86 1 0.85 5.15 −18.52 1
2 0.18 −25.98 −60.37 0 0.70 −7.39 −37.46 2
3 0.25 −24.65 −46.99 8 0.51 13.41 −17.67 20
4 0.09 −47.21 −56.01 −3 0.39 −25.43 −49.67 1
5 0.46 −44.29 24.74 −1 0.71 6.38 −18.27 1
6 0.33 −62.98 −37.31 3 0.48 −7.22 −0.41 1
7 0.33 −17.91 −18.84 4 0.62 0.62 7.18 1
8 0.43 −70.43 −42.19 −1 0.76 −13.01 −5.37 2
9 0.03 −23.15 −71.14 −2 0.51 −16.16 −47.18 −2

10 0.10 −31.74 −68.63 1 0.56 −21.24 −29.33 −1
Mean value 0.27 −35.65 −42.46 1 0.61 −6.49 −21.67 3

Table 10 shows that after the assimilation of the 10 flood processes, Rf decreased by
3.02–57.42%, Rv decreased by 6.34–39.30%, and the NSE increased by 0.15–0.52; hence,
improvement is evident. In terms of Rf, the degrees of improvement are the most obvious
for Event_4, Event_5, Event_6 and Event_8, with Rf being improved by 21.78, 37.91, 55.76,
and 57.42%, respectively. Combined with the analysis of precipitation forecast improve-
ment through data assimilation, the RMSEs of the accumulated precipitation after data
assimilation for Event_4, Event_5, Event_6 and Event_8 are 1.48, 0.38, 0.42 and 2.62 lower
than that before data assimilation, and the CSI/RMSE values are 43.48, 52.58, 27.80, and
18.83% higher than those before data assimilation, respectively. Overall, the improvement
in precipitation was relatively large and significantly impacted the flood peak.

Nevertheless, the degree of improvement was nonlinear. Data assimilation improves
the accuracy of precipitation forecasts, thereby improving the runoff forecast results of land
surface hydrological models. The extent of improvement in the precipitation forecast by
data assimilation cannot determine the extent of improvement in the runoff forecast. For
example, the precipitation RMSE of Event_7 and Event_9 improved by 84.70 and 83.10%,
respectively, after assimilation. These were the greatest improvements among the 10 storms
events; however, the runoff forecast results did not significantly improve after assimilation.
After the data assimilation, Rf of Event_7 precipitation decreased by 17.30%, Rv decreased
by 11.65%, and the NSE increased by 0.29; Rf of Event_9 precipitation decreased by 6.99%,
Rv decreased by 23.95%, and the NSE increased by 0.48.

The analysis revealed that the WRF-Hydro runoff forecast accuracy mainly depends
on two aspects. On the one hand, the precipitation forecast accuracy of the WRF model
is related to the driving data and precipitation distribution type. On the other hand, for
precipitation with an uneven spatial-temporal distribution, an imperfect precipitation
forecast indirectly affects the flood forecast; however, this may be related to different flood
processes, such as flood process complexity, flood magnitude, soil water content, and
whether there is a base flow in the early stage. Therefore, data assimilation is not the only
factor affecting runoff forecasting, and even with improved rainfall forecasting, there is
room for improvement.

4.3. Real-Time Runoff Forecasts Updated by Using LSTM Deep Learning

Using the forecasted precipitation after the 3Dvar data assimilation, the LSTM model
was used to correct the forecast errors of the WRF/WRF-Hydro coupled system. The
real-time runoff forecast results with forecast lead time of 1, 2, 3, 6, 9, and 12 h for the
10 typical flood processes are shown in Figure 8.
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Figure 8 shows hydrographs of the forecasted results and actual observations of the
10 storm events with different forecast lead times. The LSTM model performed well in
the real-time correction of runoff forecasting, especially for a lead time of 1 h. For a lead
time of 3 h, the forecasting results of the runoff process were close to the actual values.
For a lead time greater than 6 h, the degree of improvement due to real-time correction
on runoff forecasting of the coupled system decreased markedly, while the forecasting
fluctuation increased; however, the peak flow and flood volume did not increase or decrease
significantly. This is because with the extension of the forecast lead time, the correlation
between the forecast errors decrease, and it is difficult for the LSTM model to accurately
learn the characteristics of the forecast errors of the coupled system.

Figure 9 illustrates the NSE statistics of the real-time runoff forecasts with different
lead times for the 10 storm events. Compared with the runoff forecasting results before
correction, the LSTM model significantly improved the accuracy of the runoff forecasting.
For the forecasting results with a lead time of 1 h, the NSE is greater than 0.70. With the
extension of the lead time, the ability of the real-time correction to improve the runoff
forecasting of the coupled system gradually declines. The NSE attenuation rate is calculated
according to the percentage change of the NSE values for different lead times compared
to those for a lead time of 1 h. With LSTM, for Event_1, the attenuation rate of the runoff
forecast is 5.10% for a lead time of 6 h and 10.20% for a lead time of 12 h; for Event_6,
the attenuation rate of the runoff forecast is 13.48% for a lead time of 6 h and 33.71% for
a lead time of 12 h. Runoff forecasts of the other events showed similar trends. As a
real-time correction method for runoff errors, the LSTM model was used to forecast the
value of the future time based on historical data. The forecasting results are closely related
to the historical data; therefore, if a strong correlation exists between the error series, the
error–correction effect is more significant.

Table 11 lists the evaluation indices for the real-time runoff forecasts with different
lead times updated by the LSTM. It can be seen that after introducing the LSTM model
into the WRF/WRF-Hydro coupled system, the forecasting accuracy of each flood is
significantly improved. Specifically, after adding the real-time correction, the fitting of the
discharge hydrograph is better, and the NSE is also greatly improved. The NSE values of
the forecasting correction results for a lead time of 1 h for all 10 storm events are between
0.75 and 0.99, and the average NSE is 0.90. The correlation between the peak flow and
flood volume is good, and the forecasting results are very close to the observations, which
shows that the introduction of the LSTM model can increase the flood forecast accuracy.
As the lead time increases to 12 h, the NSE is between −0.46 and 0.88, and the average
NSE is 0.16, while the correlation between the peak flow and flood volume is poor. Until a
lead time of 6 h, the forecast accuracy decreases slowly, while still having a good forecast
correction effect. When the lead time is greater than 6 h, the forecast accuracy decreases
rapidly, with Rf in all events except Event_10 being within the range of (−10%, 10%). The
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LSTM model for a lead time of 3 h has relatively high accuracy, with Rf in most events
being within the range of (−20%, 20%); however, there are exceptions, for example, for
Event_3 and Event_9, Rf of the forecasted values for a lead time of 3 h are 36.39 and 75.22%,
respectively. In general, Rf and Rv are low in the runoff forecast for lead times of 0–3 h.
However, because the forecast discharge hydrograph fluctuates greatly with the lead time
extension, the peak flow and flood volume do not show obvious trends with longer forecast
lead times.
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Table 11. Evaluation indices for real-time runoff forecasts with different lead times updated by LSTM.

Event
ID

Forecast
Lead Time NSE

Rf
(%) Rv (%) T (h) Event

ID
Forecast

Lead Time NSE Rf (%) Rv (%) T (h)

1

Before
LSTM

Updating
0.85 5.15 −18.52 1

6

Before
LSTM

Updating
0.48 −7.22 −0.41 1

1 h 0.99 5.78 −0.29 3 1 h 0.79 1.84 −8.06 1
2 h 0.97 14.4 0.71 2 2 h 0.53 3.73 −8.71 2
3 h 0.96 19.02 3.4 1 3 h 0.21 9.68 −4.6 3
6 h 0.93 16.2 2.55 1 6 h −0.07 88.8 7.01 5
9 h 0.9 6.12 0.25 2 9 h 0.17 −9.74 −23.98 3

12 h 0.88 8.72 −3.41 1 12 h −0.46 0 −11.81 4
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Table 11. Cont.

Event
ID

Forecast
Lead Time NSE

Rf
(%) Rv (%) T (h) Event

ID
Forecast

Lead Time NSE Rf (%) Rv (%) T (h)

2

Before
LSTM

Updating
0.70 −7.39 −37.46 2

7

Before
LSTM

Updating
0.62 0.62 7.18 1

1 h 0.90 7.41 −9.55 0 1 h 0.91 4.66 2.92 1
2 h 0.90 7.36 −8.71 1 2 h 0.84 −3.42 7.39 1
3 h 0.89 9.95 −8.29 8 3 h 0.7 −0.12 6.71 1
6 h 0.81 9.8 −12.42 10 6 h 0.73 4.21 6.44 1
9 h 0.67 −4.01 −17.66 11 9 h 0.62 4.32 1.99 1

12 h 0.5 −4.85 −18.47 2 12 h 0.54 4.48 4.85 1

3

Before
LSTM

Updating
0.51 13.41 −17.67 20

8

Before
LSTM

Updating
0.76 −13.01 −5.37 2

1 h 0.97 2.89 −0.56 10 1 h 0.89 4.38 1.94 1
2 h 0.91 26.21 0.22 28 2 h 0.8 15.9 −1.1 1
3 h 0.79 36.39 −1.55 27 3 h 0.78 15.85 5.2 1
6 h 0.36 63.73 −6.96 20 6 h 0.77 −11.86 −0.83 1
9 h 0.11 98.07 3.47 21 9 h 0.61 −16.58 0.46 2

12 h 0.17 110.88 25.14 18 12 h 0.59 −14.93 0.26 2

4

Before
LSTM

Updating
0.39 −25.43 −49.67 1

9

Before
LSTM

Updating
0.51 −16.16 −47.18 −2

1 h 0.87 5.08 −5.29 2 1 h 0.95 5.69 −0.07 0
2 h 0.78 19.15 −4.38 1 2 h 0.92 43.25 3.59 1
3 h 0.75 11.86 −4.38 0 3 h 0.77 75.22 7.37 2
6 h 0.61 9.16 −11.09 1 6 h 0.37 82.45 9.67 3
9 h 0.57 6.49 −15.17 0 9 h 0.05 68.81 11 2

12 h 0.43 10.73 −17.57 1 12 h −0.04 58.28 7.28 8

5

Before
LSTM

Updating
0.71 6.38 −18.27 1

10

Before
LSTM

Updating
0.56 −21.24 −29.33 −1

1 h 0.75 −3.65 −30.58 1 1 h 0.95 29.28 4.18 0
2 h 0.63 2.42 −35.65 0 2 h 0.81 23.06 3.92 1
3 h −0.15 3.6 −34.2 1 3 h 0.74 −1.18 1.82 2
6 h −0.85 4.25 −31.93 4 6 h 0.56 −4.01 −11.08 24
9 h −1.08 4.45 −28.24 7 9 h 0.55 −4.22 −18.6 27

12 h −1.35 4.57 −26.28 10 12 h 0.38 −3.76 −25.08 11

5. Discussion

(1) Base flow
The comparison of the WRF precipitation forecast results driving the WRF-Hydro

forecast runoff before and after assimilation reveals that the WRF model that assimilates
GTS and radar reflectivity is more suitable for coupling with the land hydrological model
WRF-Hydro, and the WRF/WRF-Hydro coupled system based on data assimilation shows
better forecasting ability in reproducing the flood processes in the Daqing Basin. However,
some problems remain, such as base flow. Figure 7 shows that there are obvious base
flows in the early precipitation stages in Event_2, Event_4, Event_5, and Event_6. In this
study, the base flow module was closed because the bucket model assumes a one-way
direct connection between deep groundwater runoff and river channel, which easily causes
additional river inflow and is not suitable for short-term forecasting [45]. In semi-humid
and semi-arid regions, there are seasonal river channels, and groundwater recharge may
not reach the river network; therefore, the bucket model performs poorly in terms of base
flow [46]. In addition, in northern China, river water seeps into the soil aquifer for recharge,
which is not reflected in the current bucket model. Although the base flow module was
not used in this study, it can be used to adjust the proportion of the base flow in the river
flow [47]. The lack of a basic flow module also leads to relatively small flood peaks and
volumes. In combination with Table 10, under the same conditions, the NSE of Event_2
is 0.18 before assimilation and 0.70 after assimilation; the NSE of Event_4 is 0.09 before
assimilation and 0.39 after assimilation; the NSE of Event_5 is 0.46 before assimilation
and 0.71 after assimilation; and the NSE of Event_6 is 0.33 before assimilation and 0.48
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after assimilation. Although the lack of a basic flow module may lead to instability in the
model, improving the precipitation forecast results through data assimilation improves the
accuracy of the runoff forecast to a certain extent, indicating that the model is credible. This
can be optimized by combining a more practical and physically-based base flow model with
the WRF-Hydro model to forecast the deep groundwater recharge in the semi-humid and
semi-arid areas, or by extending the warm-up time and conducting long-term forecasting.

(2) LSTM correlation
Table 11 shows that with an increase in lead time, the LSTM model has a poor forecast-

ing effect on events with small peak flows and a better forecasting ability for those with
large peak flows. For example, for Event_6 involving a small peak flow, the NSE of the
LSTM for a lead time of 3 h is 0.21, the NSE for a lead time of 6 h is −0.07, and the NSE for
a lead time of 12 h is −0.46; for Event_8 involving a large peak flow, the NSE of the LSTM
for a lead time of 3 h is 0.78, the NSE for a lead time of 6 h is 0.77, and the NSE for a lead
time of 12 h is 0.59. There may be two reasons for these unsatisfactory forecasting results.
One is the poor correlation of historical runoff errors and the other is the small number of
training set samples; therefore, the evaluation indices are contingent. For example, prior to
the occurrence of rainfall in the statistical period, there have been many rainfall episodes in
Event_5. From 1 May to 24 July 2016, the area rainfall in the Fuping Basin was 340.52 mm,
and from 19 July to 22 July 2016, there was a flood process with high rainfall intensity
and long duration, with a flood peak of 581 m3/s. Therefore, at the time of occurrence
of Event_5, there was a large base flow in the basin, and the soil moisture was relatively
saturated, thereby being extremely prone to triggering floods. On 25 July 2016, the highest
flood peak reached 1740 m3/s. Therefore, during the period of precipitation generation,
the change of flow in Event_5 was affected by stronger factors other than precipitation,
such as the lateral flow of runoff, soil moisture or other confluence conditions. Data under
the influence of multiple factors led to unsatisfactory LSTM prediction. The NSE of runoff
forecasting for Event_5 for a lead time of 3 h is −0.15, the NSE of runoff forecasting for a
lead time of 6 h is −0.85, and the NSE of runoff forecasting for a lead time of 12 h is −1.35.

This study involves some limitations. For example, the prediction accuracy of the
utilized LSTM deep learning model must be improved when the prediction period exceeds
6 h. In the next step, LSTM can be combined with wavelet transform or BP neural network
methods to develop multiple-model joint optimization methods and improve the stability
and accuracy of the coupled prediction system. Simultaneously, when defining the LSTM
network architecture, the implementation of the multifactor input classification task can be
considered by setting the dimensions of the input data to different sizes.

6. Conclusions

Based on the numerical atmospheric model WRF and its land surface hydrological
model WRF-Hydro, this study constructed an atmosphere–hydrology coupled system for
precipitation–runoff forecasting. Hourly 3DVar data assimilation was adopted to improve
precipitation forecasting by the WRF model. On this basis, the improved precipitation
forecasts were subsequently used to drive the WRF-Hydro model. In combination with the
LSTM model for real-time updating, runoff forecasting based on the WRF/WRF-Hydro
coupled system was performed. The effect of data assimilation in improving the WRF
forecast precipitation as well as its effect in enhancing the forecast runoff through the
coupled system was evaluated. The performance of LSTM was also assessed in correcting
the forecast error of the runoff output from WRF-Hydro.

The results showed that it was difficult for the WRF model to accurately forecast the
exact time and intensity of precipitation. The CSI/RMSE range of the original forecasts
for the 10 storm events was 0.0345–0.6390, which improved to 0.0495–0.9750 after 3Dvar
data assimilation. Meanwhile, the runoff forecasting results are highly dependent on the
quality of the precipitation data. Data assimilation improved the runoff forecasting results
to varying degrees. The runoff error of the 10 storm events was reduced, with the relative
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error of peak flow (Rf) decreasing by 3.02–57.42%, the relative error of flood volume (Rv)
decreasing by 6.34–39.30%, and the NSE increasing by 0.15–0.52.

With the involvement of LSTM, the runoff forecasting accuracy could be significantly
improved. LSTM could accurately correct the forecast process of runoff for a lead time of
1 h. The NSE values of the 10 flood events were between 0.75 and 0.98, and the average NSE
was 0.90. Peak flow and flood volume were in good agreement with the observations. The
runoff forecast for a lead time of 3 h was relatively stable, with peak flow and flood volume
being generally reliable. However, for lead times greater than 6 h, the forecasting accuracy
decreased rapidly. With the help of 3Dvar assimilation and deep learning correction, storm
events with more uniform distributions and more consistent correlations in the historical
runoff errors can be better predicted by the WRF/WRF-Hydro coupled system.
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