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Abstract: To overcome the difficulty that existing hydrological models cannot accurately simulate
hydrological processes with limited information in irrigated paddy areas in southern China, this
paper presents a prediction model combining the Ensemble Empirical Mode Decomposition (EEMD)
method and the Long Short-Term Memory (LSTM) network. Meteorological factors were set as
the multivariate input to the model. Rainfall, regarded as the main variable affecting runoff, was
decomposed and reconstructed into a combination of new series with stronger regularity by using the
EEMD and K-means algorithm. The LSTM was used to explore the data laws and then to simulate and
predict the runoff of the irrigated paddy areas. The Yangshudang (YSD) watershed of the Zhanghe
Irrigation System (ZIS) in Hubei Province, China was taken as the study area. Compared with
the other models, the results show that the EEMD-LSTM multivariate model had better simulation
performance, with an NSE above 0.85. Among them, the R2, NSE, RMSE and RAE of the EEMD-
LSTM(3) model were the best, and they were 0.85, 0.86, 1.106 and 0.35, respectively. The prediction
accuracy of peak flows was better than other models, as well as the performance of runoff prediction
in rainfall and nonrainfall events, while improving the NSE by 0.05, 0.24 and 0.24, respectively,
compared with the EEMD-LSTM(1) model. Overall, the EEMD-LSTM multivariations model is suited
for simulating and predicting the daily-scale rainfall–runoff process of irrigated paddy areas in
southern China. It can provide technical support and help decision making for efficient utilization
and management of water resources.

Keywords: runoff prediction; irrigated paddy areas; ensemble empirical mode decomposition; long
short-term memory network

1. Introduction

Runoff simulation and prediction is a fundamental problem in water resource alloca-
tion, management and planning. Accurate and reliable runoff simulation and prediction
are significant for water management in irrigated paddy areas and agricultural non-point-
source pollution prevention and control. However, the runoff formation process is relatively
complex and can be influenced by many factors, such as rainfall and topography, which
gives the runoff series the characteristics of nonlinearity and nonstationarity [1]. The runoff
yield and concentration of irrigated paddy areas are affected by human activities, especially
by agricultural management measures. In addition, there are also few stations and incom-
plete data in irrigated paddy areas, making runoff simulation and prediction in agricultural
irrigated areas more difficult to realize.

At present, process-driven models (conceptual and physically based) and data-driven
models (statistical-science-based) have made certain progress in the field of runoff sim-
ulation and prediction. Ajmal [2] conceptualized a CN-based ensembled approach by
amending the previously suggested formulation for enhanced watershed runoff prediction.

Water 2023, 15, 1704. https://doi.org/10.3390/w15091704 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15091704
https://doi.org/10.3390/w15091704
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w15091704
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15091704?type=check_update&version=1


Water 2023, 15, 1704 2 of 17

Kim [3] found rainfall spatial distribution has a significant effect on accurate runoff predic-
tion under midsize real field conditions. Among them, the distributed hydrological model
that can describe the temporal and spatial change process of the water cycle has been widely
used in the simulation of runoff yield and concentration in worldwide basins since it was
proposed. However, most traditional hydrological models are developed based on natural
basins, which are unsuitable for irrigated paddy areas with intense human activities [4].
Moreover, constructing a relative integrity process-driven model requires a large amount
of input data, such as climate, topography, land use, etc. The computational complexity
and parameters of uncertainty present the hydrological models with a significant challenge
in practical applications [5].

With the improvement of computational power and data availability, the development
of data-driven models has become more appealing. Artificial Intelligence algorithms
have been extensively used in recent years in the development of hydrological prediction
models [6,7]. Demirel et al. [8] found that an Artificial Neural Network (ANN) model
could predict peak discharge more efficiently than the soil and water assessment tool
(SWAT) model. Additionally, the data-driven model requires only a few time series, which
directly excavates the complex relationship between the predicted object and the observed
data through the black box model, reducing the difficulty of hydrological simulation and
prediction in data-deficient areas [9]. At present, data-driven models are mainly divided
into two categories. One is the traditional single-variation model based on the law of runoff
series itself [10]. The other is multivariations models of regression analysis and machine
learning through excavating the potential laws of hydrological and meteorological data and
considering hydrological, meteorological and other multivariate variables as predictors.
The latter has more knowledge of the physical mechanisms due to consideration of the
meteorological factors, and it could fully capture the complex correlation characteristics
between time series to obtain relatively high accuracy.

Furthermore, in recent years, in order to improve the prediction accuracy of ML al-
gorithms, research has been directed toward the development of deep learning models
(e.g., one-dimensional Convolutional Neural Networks and Long Short-Term Memory net-
works [11,12]) and ensemble or hybrid models [13,14]. Fu et al. [15] proposed a LSTM-based
deep learning model to simulate streamflow in the Kelantan River, Malaysia. They found
that the LSTM-based model showed high accuracy both in the prediction of smooth stream-
flow in the dry season and rapidly fluctuant streamflow in the rainy season, outperforming
traditional neural networks. Kidoo et al. [16] created a multivariations input GRU model
for the accurate prediction of water level by selecting meteorological data related to water
level height at Hangang Bridge Station. Recent research has tried to propose some hybrid
models to improve the accuracy and generalization of a model, such as LSTM-ALO [17],
LSTM-GA [18], LSTM-INFO [19] and so on.

However, the drawback of data-driven models is overfitting, in which noise within
the data negatively impacts the predictive performance of the model due to the lack of
understanding of physical hydrological processes when handling new data [20]. More-
over, the decomposition method has shown that through the decomposition process, each
subsequence of the original signal can reveal the signal’s distinct intrinsic features and
obtain more features for the predicted signals. The empirical mode decomposition (EMD)
technique has widely been used for decomposing original signals into their intrinsic mul-
tiscale features [21]. Tan [22] and Elias [23] each proposed a prediction model combining
the EEMD method and the ML algorithms. They decomposed the runoff signal or water
quality parameter datasets into more regular subseries and used them as input data for
the model, which effectively improved the model prediction accuracy. Zhang et al. [24]
proposed a depth prediction method of nonstationary time series based on multivariate
decomposition to solve the prediction problem of multivariate, nonlinear complex time
series and multiple factors affecting photovoltaic power generation. Ikram et al. [19] found
that optimization algorithms can be utilized to model other hydrological variables. They
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can also be used with decomposition techniques to capture noise in data to improve the
further prediction accuracy of the models.

It can be seen that, currently, there are few types of research about the combination
of the decomposition method with multivariations models considering meteorological
factors. Additionally, the current related research is mainly focused on natural watersheds.
Additional study needs to verify whether such models can be applied to the irrigated
paddy areas with limited data and that are severely affected by human activities. Therefore,
this paper proposes a runoff prediction model based on EEMD and LSTM in an attempt to
enhance existing prediction models. Firstly, we attempt to reconstruct the meteorological
data by using three methods (Pearson correlation coefficient method, EEMD and K-means).
Secondly, we attempt to use the meteorological data as multivariate input to the model
to predict runoff in irrigated paddy areas. This study can give a better solution for daily
runoff prediction in irrigated paddy areas with limited data and provide decision-making
support for the efficient utilization and management of water resources in irrigated paddy
areas by a runoff simulation and prediction method with higher accuracy.

2. Methods
2.1. Ensemble Empirical Mode Decomposition

The Ensemble Empirical Mode Decomposition (EEMD) was proposed by Wu and
Huang in 2004. The EEMD method is an improved method based on Empirical Mode
Decomposition (EMD) which can improve the efficiency of the signal decomposition
process and overcome the inherent shortcomings of mode mixing [25]. The specific steps of
the EEMD method are as follows:

1. Add N groups of standard normal white noise sequences ni(t) with mean 0 to the
original signal wi(t) and obtain a new signal sequence xi(t):

xi(t) = wi(t) + ni(t) (1)

2. The finite Intrinsic Mode Functions (IMFs) and a trend item (R) were obtained by
using the conventional EMD method:

xi(t) = Σn
j=1cij(t) + ri(t) (2)

where cij(t) represents the jth IMF which is obtained by the ith decomposition; ri(t)
is the trend item by the ith decomposition; and n is the number of IMF components.

3. The EEMD decomposition results cj(t) are obtained by calculating the average value
of N groups of IMF and trend item:

cj(t) =
1
w

Σn
i=1cij(t) (3)

where cj(t) represents the jth IMF, and w denotes the number of times white noise
is added.

2.2. Long Short-Term Memory Network

The Long Short-Term Memory (LSTM) neural network was proposed by Hochereiter
and Schmidhuber [26] in 1997, and it is a special kind of Recurrent Neural Network (RNN).
The LSTM model can decide which pieces of new information to store in the current state
and what information to discard from the previous state through the setting of input gate,
output gate and forge gate. Thus, it solves the problems of gradient explosion and gradient
disappearance in the RNN model calculation process [27]. The specific operation method
and calculation formula of the LSTM model can be found in the literature [26].
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2.3. EEMD-LSTM Multivariations Model

The runoff of the irrigated paddy areas can be regarded as a typical nonlinear and
nonstationary signal. Therefore, the combination of the EEMD and LSTM models was
constructed to predict the runoff of the irrigated paddy areas in this study. With the novel
hybrid model, the input data were decomposed through the EEMD method into different
components to increase the prediction accuracy of the new model with a minimized
error margin. The detailed step-by-step procedures demonstrated in Figure 1 show the
three important key stages that precede the development of the novel hybrid EEMD-
LSTM model.

Figure 1. The flowchart of the EEMD-LSTM model.

Step 1. The Pearson correlation coefficient method was used to select the most cor-
related variable with runoff. Then, the original time series data of the main variable
were decomposed into several IMFs and R under different frequencies by applying the
EEMD algorithm. Therefore, the different-scale fluctuations or trends were decomposed
hierarchically from the original signal.

Step 2. To simplify the calculation volume of the subsequent model, the dimensionality
of the decomposed data was reduced by using the K-means clustering method. Based on the
clustering results, a new time series was reconstructed by superimposing the decomposed
IMFs and R, which reduced the computational complexity of the model. In the meantime,
by analyzing the prediction effect of different clustering numbers, the optimal clustering
tag along with other meteorological data and historical runoff data were normalized and
transferred into the LSTM network.

Step 3. The internal relationship and periodic rule between historical meteorological
data and runoff volume were established through LSTM. Lastly, a reverse normalization
operation was performed on the prediction values of the LSTM model to obtain the final
predicted values. The LSTM neural network included two layers of the LSTM and one layer
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of Dropout. The LSTM layers were used to learn from the input dataset. Because most of
the components after decomposition by the EEMD method had strong regularity, two layers
of the LSTM were chosen to ensure better prediction performance in a shorter training time.
The purpose of adding the Dropout layer later was to prevent overfitting of the model.
Finally, the predicted value of the runoff volume was calculated from the output value of
the Dropout layer by using a fully connected layer.

2.4. Predictive Evaluation Index

To quantify the performance of the EEMD-LSTM, four performance evaluation metrics
were introduced to evaluate prediction accuracy. The coefficient of determination R2 was
used to evaluate the model’s accuracy, which ranges from 0 to 1 (R2 closer to 1 represents
high model reliability). The Nash coefficient (NSE) is a widely used model evaluation
criterion for hydrological models. NSE is a dimensionless metric and a scaled version of
MSE, offering better physical interpretation [28]. The value range of the NSE was [−∞, 1].
The closer the value is to 1, the higher the degree of fit between the simulated and measured
values. Root mean square error (RMSE) was used to assess the stability of the model
outcomes. It provides the mean prediction error that is rather more sensitive, especially to
extreme original measured values. The Relative Absolute Error (RAE) is a way to measure
the performance of a predictive model. The corresponding formulas are as follows:

R2 = [
Σn

i=1(Qoi −Qo)(Qci −Qc)√
Σn

i=1(Qoi −Qo)2Σn
i=1(Qci −Qc)2

]2 (4)

NSE = 1−
Σn

i=1(Qoi −Qci)
2

Σn
i=1(Qoi −Qo)2

(5)

RMSE =

√
Σn

i=1(Qoi −Qci)2

n
(6)

RAE =
Σn

i=1|Qci −Qoi|
Σn

i=1|Qo −Qoi|
(7)

where Qoi, Qci, Qo, Qc and n are the observed discharge, computed discharge, mean
observed discharge, mean computed discharge and number of observations, respectively.

3. Example Analysis
3.1. Study Area

The YSD watershed (30°50′ N, 112°11′ E) in ZIS of the Hubei Province in China was
selected as the study area. It is a relatively closed area of about 43.3 km2 within the ZIS.
The research area and station distribution are shown in Figure 2. The meteorological data
from Tuanlin meteorological station in Jingmen City (annually from May 20 to September
10 during the 2000–2010 and 2016–2017 periods) was set as the input data of the model,
including daily precipitation, maximum temperature, minimum temperature, relative
humidity, wind speed and solar radiation. Flow monitoring data were obtained from the
YSD reservoir (annually from May 20 to September 10 during the 2000–2010 and 2016–2017
periods). The characteristics of the variables are shown in Table 1, and the runoff time
series is shown in the Figure 3. This violin plot shows that the most runoff was in the range
from 0 to 1 m3/s.
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Figure 2. The location of the Yangshudang watershed of the Zhanghe Irrigation System in Hubei
Province (where TL is the Tuanlin meteorological station and YSD reservoir is the Yangshudang
reservoir).

Figure 3. Violin plot of the observed runoff times series.
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Table 1. Characteristics of the meteorological and runoff time series datasets.

Runoff Relative
Humidity Rainfall Solar

Radiation
Maximum

Temperature
Minimum

Temperature Wind Speed

total 908 908 908 908 908 908 908
Mean 0.802 0.864 4.373 18.442 30.667 22.049 1.218

Std 2.029 0.076 13.16 7.727 3.872 3.595 1.02
min 0 0.22 0 10.065 17.0 2.3 0
max 27.57 0.986 166.6 32.15 38.10 31 6.8

3.2. Data Preprocessing

The existing correlations between each meteorological factor and runoff were analyzed
by Pearson’s correlation coefficient method. It showed that rainfall and runoff had the
best correlation in Table 2, so rainfall was selected as the main variable. The remaining
meteorological factors were input into the model as secondary variables.

Table 2. Correlation coefficient between runoff and meteorological factors.

Relative
Humidity Rainfall Solar

Radiation
Maximum

Temperature
Minimum

Temperature
Wind
Speed

Pearson 0.174 ** 0.640 ** −0.213 ** −0.181 ** 0.009 0.012
Note: ** represents a significance level of p < 0.05.

Rainfall data were decomposed by EEMD mode to 9 IMF components and a trend term
R. To reduce the amount of calculation in the subsequent model, the K-means algorithm was
used to cluster the 9 IMF components and a trend item R by selecting different clustering
numbers d. The decomposed 10 subsequences were classified into d groups according to
the clustering labels, and the subsequences within each group were superimposed to obtain
a new reconstructed sequence, denoted as K1–Kd. The simulation evaluation metrics for
various cluster numbers were shown in Table 3. According to Table 3, the model operation
efficiency and all evaluation indexes had the best results when the number of clusters
was 6.

Table 3. Prediction error and time required of different cluster numbers.

Clusters d R2 RMSE (m3/s) Time/(s)

2 0.31749 2.40670 495.52
3 0.79224 1.32785 395.51
4 0.78666 1.34554 396.17
5 0.81387 1.25682 403.93
6 0.85564 1.10683 440.31
7 0.83689 1.17653 445.97
8 0.81234 1.26196 540.86
9 0.85301 1.11689 615.22
10 0.83122 1.19678 617.01

The input and output data of the neural network were constructed by K1–K6, which
were reconstructed by clustering labels and subvariables in the way of a sliding window.
As shown in Figure 4, the relationship between the input and output was established to pre-
dict output values, which were based on the input of the given prediction set. The frequency
of the K1–K6 of rainfall data, which were decomposed and clustered, was more stable and
had more obvious periodicity than the original rainfall data, and the phenomenon of modal
mixing did not appear.
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Figure 4. Relationship between input variables and output variables based on EEMD.

3.3. Model Parameter Setting

Window sliding was used to process the time series after the integration process of
clustering. The time step was chosen as 2 d. The meteorological data of the first two
days of the week were used as the input features for constructing the neural network
(meteorological data within the time period T-2 d to <T), and the runoff data of the day
were used as the output labels of the neural network (i.e., runoff data at the time of T).
The total dataset of the model was updimensioned from [908, 7] to [908, 12] based on the six
new time series, which were obtained by decomposition and reconstruction of the filtered
main variables. The 2005–2010 data were used as the training set of the model (the size of
the model feature subdataset for the training period was [682, 11], and the size of the label
subdataset was [682, 1]) to the projected runoff data for a total of 226 points from 2016–2017.
In order to obtain the optimal model parameters and ensure prediction accuracy, the Grid
Search optimizer was selected to optimize the LSTM model parameters.

4. Results and Discussion
4.1. Suitability Analysis of the EEMD-LSTM Multivariations Model

In order to verify the accuracy of the multivariations LSTM model more over the
traditional single-variation LSTM model, the single-variation LSTM(1) [15] model (using
the runoff volume of the previous time period to predict the runoff volume of the next
moment) and the multivariations LSTM(2) [29], model (using the rainfall of the previous
time period to predict the runoff volume of the next moment) were selected as comparison
models. Moreover, the single-variation EEMD-LSTM(1) [16] model and the EEMD-LSTM
multivariations model (the EEMD-LSTM(2) model, which is a multivariations LSTM model
with the main variables reconstructed by EEMD decomposition, and the EEMD-LSTM(3)

model, which has the model input variables added to the remaining meteorological factors
as secondary variables for runoff prediction) were selected as comparison models to verify
the effectiveness of the EEMD method. The input and output settings of each model
are shown in Table 4. The observed and predicted runoff hydrographs are presented in
Figures 5 and 6, and the prediction accuracy is shown in Tables 5 and 6.
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Table 4. Comparison model input and output settings for differences.

Required Documents Preprocessing Input Features Output Labels

LSTM(1) Historical runoff None runoff runoff
LSTM(2) Historical rainfall, runoff None rainfall runoff

EEMD-LSTM(1) Historical runoff EEMD IMF1–IMFn, R IMF1–IMFn, R
EEMD-LSTM(2) Historical rainfall, runoff EEMD, K-means K1–Kd runoff
EEMD-LSTM(3) Historical meteorological factors, runoff EEMD, K-means K1–Kd, meteorological factors runoff

Figure 5. Performance of runoff simulations of single–variation models, (a) high–flow periods,
(b) low–flow periods.

Table 5. Comparison of simulation results of various models.

R2 NSE RMSE (m3/s) RAE

LSTM(1) 0.171 0.172 2.652 0.648
EEMD-LSTM(1) 0.591 0.612 1.863 0.838

From Figure 5 and Table 5, the runoff series which were simulated by the LSTM(1)

model show significant lags compared with the measured runoff, and all evaluation indexes
fail to meet the requirements. This indicates that the single-variation LSTM model could
not achieve effective prediction of complex and nonlinear daily runoff in irrigated paddy
areas based on a small number of training samples. The evaluation indexes which were
simulated by the EEMD-LSTM(1) model significantly improved compared with the single-
variation LSTM(1) model: the NSE increased from 0.17 to 0.61. However, it still failed to
meet the fitting requirements of the model [30]; the RMSE and RAE were 1.86 and 0.19,
respectively, which proved that there was a significant deviation between the predicted
discharge and the observed discharge of the model.
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Figure 6. Performance of runoff simulations of multi–variations models, (a) high–flow periods,
(b) low–flow periods.

Table 6. Comparison of simulation results of various models.

R2 NSE RMSE (m3/s) RAE

LSTM(2) 0.388 0.396 2.278 0.596
EEMD-LSTM(2) 0.850 0.853 1.125 0.355
EEMD-LSTM(3) 0.856 0.858 1.106 0.355

According to Table 6 and Figure 7, the multivariate prediction models provided a
better fit between predicted and observed values than the single-variable models. The R2

and NSE of the EEMD-LSTM(3) model were improved by 0.26 and 0.25, respectively, to 0.85
and 0.86, while the RMSE and RAE decreased by 0.76 and 0.48, respectively, compared
with the EEMD-LSTM(1) model. By comparing the simulation effects of each model during
low-flow periods in Figures 5b and 6b, the predicted runoff trend of the EEMD- LSTM
multivariations model was better than other models, but it has the same problem of
underestimating the peak flow, as shown in Figures 5a and 6a. In addition, the difference
of each evaluation index, which between the EEMD-LSTM(2) and EEMD-LSTM(3) models
is within 0.02, indicates that the rainfall was determined as the main variable and the
decomposed one. The addition of other secondary variables did not improve the overall
simulation accuracy of the model.

According to the Taylor diagram in Figure 8, it can be seen that the simulation per-
formance of the EEMD-LSTM multivariations models, namely the EEMD-LSTM(2) and
EEMD-LSTM(3) models, was significantly better than other models, where the EEMD-
LSTM(3) model is slightly better than the EEMD-LSTM(2) model in terms of correlation
coefficient R. The results indicate that the EEMD-LSTM(3) model is closer to the observed
data. The EEMD-LSTM(2) model was closer to 1 in STDratio than the EEMD-LSTM(3)

model, indicating that the EEMD-LSTM(3) model is more concentrated than the EEMD-
LSTM(3) model in terms of overall dispersion.
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Figure 7. Comparison of evaluation indicators.

Figure 8. Taylor diagram of various models.

In conclusion, the EEMD-LSTM model had a better ability for runoff prediction than
the traditional LSTM model. The R2 and NSE of the EEMD-LSTM(3) model were the best at
0.85 and 0.86, respectively, compared with the other models. The LSTM(1), EEMD-LSTM(1)

and LSTM(2) models were unable to achieve effective prediction of the daily runoff in the
irrigated paddy areas with a small number of training samples. Additionally, the LSTM(1)

model had a lag phenomenon of the predicted values relative to the measured values due to
the low fitting degree. The LSTM(2) model failed to correctly establish the complex rainfall–
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runoff relationship in the irrigated paddy areas with few training samples, so the simulated
peak was significantly different from the observed one. This further indicated that the
model does not have proper prediction ability without data preprocessing techniques [31],
while the decomposition method could significantly improve prediction accuracy.

4.2. Peak Performance Evaluation

The accurate prediction of peaks was usually a challenge in data-driven models. Given
the importance of peak flows in flood management, the peak data from two years of the
validation period were extracted, as well as the prediction accuracy of peak flow values
using the EEMD-LSTM(1), EEMD-LSTM(2) and EEMD-LSTM(3) models. Results are shown
in Figure 9 and Table 7.

Figure 9. Predicting peak discharges of various models.

Table 7. Comparison of simulation results of various models.

R2 NSE RMSE (m3/s) RAE

EEMD-LSTM(1) 0.832 0.832 1.763 0.455
EEMD-LSTM(2) 0.883 0.887 1.466 0.336
EEMD-LSTM(3) 0.881 0.884 1.485 0.332

As seen in Figure 9 and Table 7, three models could simulate the peak well, among
which the EEMD-LSTM(2) model had the best simulation effect. Still, the difference in the
evaluation indexes between the EEMD-LSTM(2) model and the EEMD-LSTM(3) model
was minute, and both R2 and NSE can reach 0.88. Moreover, combined with Figure 6a,
it can be seen that at the maximum peak formed by torrential rain, with the addition of
other meteorological factors, the EEMD -LSTM(3) model can predict the flood flow more
accurately than the EEMD-LSTM(2) model.

4.3. Runoff Prediction in Rainfall and Nonrainfall Events

In the event of rainfall, because the ridges of paddy fields have the function of storage,
even though rainfall is present during the growth stage of paddy fields, runoff yield and
concentration are low or none. In the event of nonrainfall, due to the requirements of rice
growth and irrigation systems, the paddy field maintains a certain depth of water layer.
When rice does not need water, such as during the ripening stage, all the water in the
field will be drained, thus creating a special phenomenon of “produce runoff without any
rainfall”, which is different from the natural watershed. Therefore, in order to investigate
the fit of the model for rainfall and nonrainfall events, runoff data were extracted for rainfall
and nonrainfall dates, respectively, which were used to evaluate the accuracy of the models.
Results are shown in Figures 10 and 11 and Tables 8 and 9.
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Figure 10. Runoff prediction of various models in rainfall events.

Table 8. Comparison of simulation results of various models.

R2 NSE RMSE (m3/s) RAE

EEMD-LSTM(1) 0.641 0.641 2.727 0.838
EEMD-LSTM(2) 0.879 0.881 1.580 0.355
EEMD-LSTM(3) 0.874 0.876 1.618 0.354

According to Table 8, the R2 and NSE of the EEMD-LSTM(2)and EEMD-LSTM(3)

models were both improved by more than 0.2 compared with the EEMD-LSTM(1) model.
Among them, the EEMD-LSTM(2) model had the best result, with an NSE of 0.88, but its
improvement over the EEMD-LSTM(3) model was not significant. As shown in Figure 10,
the prediction values of the EEMD-LSTM(1) model were scattered at any level of rainfall,
which indicates that it was difficult to make accurate predictions of the daily-scale runoff
by relying on the regularity of runoff itself under the condition of a small number of
training samples. With the input of rainfall data, EEMD-LSTM(2) and EEMD-LSTM(3)

multivariations models have more physical significance and can better simulate the rainfall–
runoff process. Moreover, because the EEMD-LSTM(2) model was fully driven by rainfall
data, its performance of simulation under the condition of rainfall events was better than
the EEMD-LSTM(3) model.

Figure 11. Runoff prediction of various models in non–rainy events.

Table 9. Comparison of simulation results of various models.

R2 NSE RMSE (m3/s) RAE

EEMD-LSTM(1) −0.039 0.380 1.208 1.478
EEMD-LSTM(2) 0.542 0.555 0.801 0.450
EEMD-LSTM(3) 0.612 0.623 0.737 0.437

As shown in Figure 11, most of the predicted values which were simulated by the
EEMD-LSTM(1) model deviated significantly from the observed data in the nonrainfall
events, which was an essential reason for the poor overall performance of the EEMD-
LSTM(1) model. Due to the minimal training samples and the high nonlinearity and
nonstationarity of the runoff, the EEMD-LSTM(1) model was unable to accurately predict
IMF1. stationary The runoff subseries IMF1, which is based on the EEMD decomposition,
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represents the most unsystematic and disordered part of the daily flow data. The value
of IMF1 was very small but significantly affected the accuracy of the prediction [32,33].
As can be seen from Table 9, the EEMD-LSTM multivariate models were all better than the
EEMD-LSTM(1) model in the nonrainfall events, among which the EEMD-LSTM(3) model
had the best simulation effect. The R2 of the EEMD-LSTM(3) model was improved by 0.65
and 0.07, the NSE was improved by 0.24 and 0.07, the RMSE was reduced by 0.47 and
0.06 and the RAE was reduced by 1.04 and 0.13, respectively, compared with the EEMD-
LSTM(1) and EEMD-LSTM(2) models. This shows that adding other meteorological factors
could give the model data support and constrain calculations by the physical mechanism of
the nonrainfall event, which could effectively improve the ability to the prediction of daily
runoff in irrigated paddy areas. This is also in line with the recent results by Kratzert [9],
which show adding physical constraints to LSTM models might improve simulations.

5. Discussion

A clear understanding of the future state of any runoff, through accurate predictive
modeling, is critical to the efficient utilization and management of water resources in irri-
gated paddy areas, which is also a critical element for sustainable water use and improved
agricultural practices, or making a risk assessment [34] to reduce the potential risk of flood-
ing [35]. These tasks have largely been accomplished through significant research aiming
to develop statistical, physical, and more recently, dependable deep learning predictive
methods to help policymakers in their day-to-day decision making. The current research
integrates a predictive method (i.e., LSTM and GRU models) with a data analysis algorithm
(i.e., EEMD and Variational Mode Decomposition, VMD) for improved performance accu-
racy. A comparison of the efficiency of the new hybrid EEMD-LSTM prediction model was
performed against other similar hybrid models, such as the conventional LSTM model and
EEMD-LSTM single-variation models. The result indicates a higher prediction accuracy
of our proposed model. The performance gain is due to the application of the EEMD
algorithm by our proposed novel hybrid EEMD-LSTM prediction model to effectively
perform the decomposition of the original signals to obtain its constituent separate essential
subsequences. The study was capable of predicting runoff to an acceptable degree of testing
accuracy. The results achieved demonstrate that the EEMD algorithm is a strong data
analysis tool that can identify the significant features within predictor variables, which
is required to model the hydrological state of a river system. This notion is consistent
with the quality of the hydrological datasets that could potentially influence the predictive
merits of any hydrological model [35].

In this study, it was noted that the incorporation of meteorological data derived
improved hybrid deep learning approaches developed for runoff prediction, and this per-
formance was better than the conventional machine learning models. The performance
of the models in this study also concurs with that of previous research. Madonia [15]
proposed a multivariate and multistage medium- and long-term streamflow prediction
model that achieved good application (the RMSE = 19.249 and NSE = 0.985) in the Swat
River Watershed, Pakistan. Ahmed [36] aggregates the significant antecedent lag memory
of climate mode indices, rainfall and the monthly factor based on the periodicity as the pre-
dictor variables to attain significantly accurate stream water level forecasts with relatively
low relative errors (RMAE = 0.882%).

6. Conclusions

1. This study proposed a prediction model of the daily runoff in irrigated paddy areas
based on the EEMD-LSTM. Meteorological factors were used as the multivariations
inputs, and the relationship between meteorological factors and runoff data was
learned through LSTM, which solved the problem that traditional prediction methods
have difficulty predicting the daily runoff in irrigated paddy areas accurately.

2. By comparing the single-variation and multivariations prediction models with input
data, whether decomposed by the EEMD method or not, the results show that the
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EEMD-LSTM multivariations model performed better than other models in simulating
and predicting the daily-scale rainfall–runoff process in the irrigated paddy areas.
Among them, the EEMD-LSTM(3) model had the best simulation effect, with an
NSE of 0.86. The results demonstrate that the prediction results of the input data
decomposed by the EEMD method exhibited better statistical performance than those
of the original data, and the multivariations models could better solve the problem of
having too little data to predict the daily runoff.

3. The EEMD-LSTM(2)and EEMD-LSTM(3) models performed well in predicting peak
flow and rainfall events. Among them, the EEMD-LSTM(3) model significantly
outperformed the other models in predicting nonrainfall events. It demonstrated that
adding adequate meteorological factor data as the input could give the LSTM model
certain constraints, making it more physically meaningful and effectively improving
the prediction accuracy.

The effects of climate change, which make both floods and low-flow periods more
frequent and severe, increase the need for reliable forecasting models [9,37]. Darianne
et al. [38] proposed a model with a substantial seasonality index, which improved the
test NSE to 0.51 and provided more accurate results than the basic model. However,
the observations collected in this paper are mainly from the summer season, and the time
series collected are short. At a later stage, we will extend the runoff time series to expand
the time frame for annual observations and then explore the importance and uncertainty
of hydrological prediction under climate change. In addition, the model is not trained in
stages for the different growth stages of rice, which can be used to improve the accuracy of
the model in future studies.
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