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Abstract: One-dimensional solute transport modeling is fundamental to enhance understanding
of river mixing mechanisms, and is useful in predicting solute concentration variation and fate in
rivers. Motivated by the need of more adaptive and efficient model, an exact and efficient solution
for simulating breakthrough curves that vary with non-Fickian transport in natural streams was
presented, which was based on an existing implicit advection-dispersion equation that incorporates
the storage effect. The solution for the Gaussian approximation with a shape-free boundary condition
was derived using a routing procedure, and the storage effect was incorporated using a stochastic
concept with a memory function. The proposed solution was validated by comparison with analytical
and numerical solutions, and the results were efficient and exact. Its performance in simulating non-
Fickian transport in streams was validated using field tracer data, and good agreement was achieved
with 0.990 of R2. Despite the accurate reproduction of the overall breakthrough curves, considerable
errors in their late-time behaviors were found depending upon the memory function formulae. One
of the key results was that the proper formula for the memory function is inconsistent according to
the data and optimal parameters. Therefore, to gain a deeper understanding of non-Fickian transport
in natural streams, identifying the true memory function from the tracer data is required.

Keywords: non-Fickian transport; storage effect; explicit solution; memory function; tracer test;
breakthrough curve

1. Introduction

Solute transport models in natural streams enhance our understanding of contaminant
transport and mixing, enabling us to respond effectively to chemical accidents and analyze
biogeochemical cycling [1–4]. These models range from one-dimensional (1D) to three-
dimensional (3D), with 1D modeling being particularly useful for predicting the fate of
contaminants with low computational cost. In addition, their calibrated parameters provide
valuable insights into the characteristics of fluvial systems. Classical 1D models, e.g., 1D
advection-dispersion equation (ADE) [5], is fundamentally according to Fick’s law, which
assumes the mixing behavior of passive scalars in streams as they are transported by the
mean flow and dispersed by turbulence and shear velocities. However, in natural streams,
solutes transport can be delayed by storage zones, such as eddies, pools, vegetation,
artificial structures, and bed materials. This retention behavior often results in the distorted
tracer cloud shape with a long tail (e.g., Figure 1), and the skewed concentration-time
curve, called breakthrough curve [6,7]. In such occasions, an accurate prediction cannot be
achieved by only adopting conventional Fickian approaches.
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Figure 1. Skewed distribution of tracer cloud photographed at Gam Creek, South Korea (2019). 

The arrow indicates the flow direction. 
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change between the two zones was used to account for the storage effect [8]. The TSM 

describes the complex storage characteristics of natural rivers using the relative size of the 

storage area 𝜖 and a single-rate solute exchange rate coefficient 𝛼; the accuracy of the 
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Figure 1. Skewed distribution of tracer cloud photographed at Gam Creek, South Korea (2019). The
arrow indicates the flow direction.

To account for these non-Fickian mixing events owing to the storage effect, numerous
methods have been proposed, including a numerical model, a stochastic model, and an
analytical approach [8–12]. For example, the transient storage model (TSM) conceptually
incorporates the influence of storage zones by adding an additional sink-source term into
the ADE [8,13]. Specifically, it deals with a river section by dividing it into two zones:
the mainstream and storage zones, where the flow is very slow or stagnant. Linear mass
exchange between the two zones was used to account for the storage effect [8]. The TSM
describes the complex storage characteristics of natural rivers using the relative size of the
storage area ε and a single-rate solute exchange rate coefficient α; the accuracy of the TSM
significantly depends on these parameters [10]:

∂c
∂t

= −u
∂c
∂x

+
∂

∂x

(
DL

∂c
∂x

)
+ α(cs − c), (1a)

∂cs

∂t
=

α

ε
(c− cs), (1b)

where c and cs are the cross-sectional average concentrations in the flow and storage zones,
respectively; u is the reach-average flow velocity; DL is the longitudinal dispersion coeffi-
cient; x is the distance in the streamwise direction; and t is the time variable. The transient
parameters are often represented by the mean residence time Tm, defined by Tm = ε/α.
Nevertheless, because the TSM parameters cannot be directly measured, determining
the proper parameters remains challenging [14]. Moreover, it has been reported that the
exponential memory function of TSM often reproduces a poor tail distribution of trace
breakthrough curves in natural rivers [4,15].

Subsequently, various conceptual models for non-Fickian solute transport in streams
have been proposed. Deng et al. [16] proposed the fractional advection-dispersion equation
(FADE) by expressing the variance term of the existing ADE in the form of F-order differenti-
ation, and numerically modeled it by finding F-values that are similar to actual phenomena.
Boano et al. [17] developed a continuous-time random walk (CTRW) model, which proba-
bilistically models the distance that a solute moves in a river at random. Several researchers
have proposed the solute transport in river (STIR) model, in which two different memory
functions are applied to consider various residence time scales from surface storage zones
to hyporheic exchange [18,19]. Other approaches, including the variable residence time
model [20] and, the modified advection-dispersion equation [21], also attempt to find
proper modeling to interpret the non-Fickian mixing. The primary goals in characterizing
non-Fickian solute transport in streams are to improve accuracy by comprehensively ac-
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counting for various residence time scales and minimizing uncertainty in the associated
parameters. Their formulae have a form of an implicit partial differential equation and are
often numerically resolved by discretizing the spatio-temporal domain [22]. Little studies
have suggested their explicit solutions, which is more deterministic and straightforward.

In this study, an exact and efficient solution for simulating concentration variations
via non-Fickian transport is presented. A solution based on the Gaussian approximation
for the shape-free boundary condition was derived using the routing procedure [20], and
the storage effect was incorporated using the stochastic concept of [18]. Hence, an explicit
formula for resolving non-Fickian transport was proposed, and the validity of the new
formula was demonstrated by comparing it with analytical and numerical solutions of
the transient storage model using synthetic data, and then its prediction accuracy was
validated using a field data. Furthermore, the validated formula was used to interpret the
tailing problem of the late-time behavior of the breakthrough curves.

2. Materials and Methods
2.1. Model Description
2.1.1. Formulation for Non-Fickian Tracer Transport

For an incompressible fluid, the mass-conservative Fick’s law implies that the transport
of a passive scalar, which is any substance being transported that does not affect the flow
of the media, is dominated by advection and diffusion, as shown in Equation (2):

∂c
∂t

+ u·∇c = ∇·(D∇c), (2)

where c(x, y, z, t) is the instantaneous concentration of the solute; u = (u, v, w) is the
velocity vector; and D is the isotropic diffusion coefficient. In a riverine environment,
because the shear effect from the advective velocity gradient significantly exceeds the
molecular or turbulent diffusion effect [23], the diffusive property of D is attributed to
the dispersion effect; hence, D here represents the dispersion coefficient. Unlike diffusion
kinematics, the dispersion phenomenon cannot be considered isotropic as the velocity
gradients in the vertical and transverse directions are greater than that in the longitudinal
direction on account of the riverbed boundary. Consequently, after the precedence of the
cross-sectional mixing, Equation (2) can be expressed as

∂c
∂t

+ u
∂c
∂x

= DL
∂2c
∂x2 . (3)

The analytical solutions for Equation (3), along with the restricted boundary conditions
(for example, a continuous source with a constant concentration or an instantaneous source
with a mass), were derived by [24]. However, these underlying premises are not feasible for
actual streams. To derive a more practical formulation of the solution in which a shape-free
breakthrough curve can be applied as an upstream boundary condition, the concept of a
routing procedure was employed [25]. The routing procedure was initially developed [5]
to predict the dispersion coefficient when the breakthrough curves at the upstream and
downstream boundaries were known. In other words, the routing procedure can be
used to predict the concentration at the downstream boundary from upstream boundary
concentration. The formulation of the routing model with respect to the concentration
variation over time is inferred as follows:

c(t; x) =
∫ t

0

c(τ; 0)u√
4πDLTc

exp

∣∣∣∣∣− (x− (t− τ)u)2

4DLTc

∣∣∣∣∣dτ, (4)

where Tc is the characteristic advection time defined by Tc = x/u. The derivation of the
routing model is premised on the frozen cloud assumption that the tracer cloud hardly
changes during the time required to pass the observation point. According to Equation (4),
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the variation in the breakthrough curve from c(t; 0) to c(t; x) can be predicted once the
parameters u and DL are determined.

Many studies have shown that the actual tracer transport does not follow Fickian
transport. Tracer transport in a stream is derived not only by advection and dispersion
but also by the additional delay effect, the so-called storage effect. The tracer cloud was
partially trapped in the stagnant or low-flow zones and released back into the main flow
after some residence time. Thus, non-Fickian transport can be characterized by quantifying
the mean residence time, which is representative of the entire tracer cloud. Herein, the
transfer function Φ is incorporated into Equation (4) as

c(t; x) =
∫ t

0

∫ τ2

0

c(τ1; 0)u√
4πDLTc

exp

∣∣∣∣∣− (x− (τ2 − τ1)u)
2

4DLTc

∣∣∣∣∣Φ(t− τ2)dτ1dτ2. (5)

The transfer function Φ is a function of time, and essentially
∫

Φdt = 1. The time
variable in Φ stands for the retention time so that Φ is a kind of probability density function
with respect to the net retention time. Therefore, finding a proper distribution or model for
Φ is the key to non-Fickian transport modeling [26]. In this study, the stochastic approach
proposed in [18,19] was used to formulate the transfer function. The generic configuration
of particle transport with trappings is shown in Figure 2. For a particle being transported
along the streamflow, the net retention time can be estimated by the number of trapping
events and the retention time at each trapping. Thus, the equation becomes

Φ(t) =
∞

∑
n=0

p(n)ϕn(t), (6)

where p is the probability density function with respect to the trapping number, ϕn is
the residence time distribution for n-times trapping, and n is the number of occurrences.
The trapping event can be interpreted as a finite sequence of random binary variables,
the so-called Bernoulli process [27], assuming that the probability of the trapping event is
identically distributed along the reach. Additionally, each trapping event is not affected by
its history, that is, it occurs independently, which is a requirement of the Bernoulli process.
In this respect, p can be approximated using the Poisson distribution, when the average
rate α is given, at which events occur, as

p(n) =
(αTc)

ne−αTc

n!
. (7)
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Hence, the solution of Equation (5) can be rearranged as

c(t; x) =
∫ t

0

∫ τ2

0

c(τ1; 0)u√
4πDLTc

exp

∣∣∣∣∣− (x− (τ2 − τ1)u)
2

4DLTc

∣∣∣∣∣ ∞

∑
n=1

(
(αTc)

ne−αTc

n!

)
ϕn(t− τ2)dτ1dτ2. (8)

The proposed solution can explicitly compute the breakthrough curve at x without
segmenting reaches. Compared to the numerical solution of the implicit equation (e.g., [28]),
this enables us to avoid potential numerical errors, resulting in a simpler and more accurate
solution with a lower computational cost. But, the numerical error could still exist from
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the process of integrating the temporally discrete data c(t; 0), and truncating the infinite
summation with increasing n.

The ϕn is the total residence time distribution when the trapping with ϕ occurs n-times.
The superposition of two ϕ can be computed using the convolution operator, defined by
ϕ(t) ∗ ϕ(t) ≡

∫ t
0 ϕ(τ)ϕ(t− τ)dτ, so that ϕn is defined in which the n of ϕ were convolved.

A variety of formulations for ϕ has been proposed, e.g., exponential distribution ϕe [29],
log-normal distribution ϕl [4], power-law distribution ϕp [15,30], and advective pumping
model ϕp [31]. Among them, ϕe and ϕp defined by

ϕe =
1

Tm
e−

t
Tm , (9)

ϕp =
π

Tm

10.66 Tm
t +

(
t

Tm
+ 2
)2 . (10)

The proper distribution for ϕ can be selected according to the temporal- and spatial-
scale of the retention effect of the field. In this study, two empirical formulas were ap-
plied to the proposed solution. When considering ϕe, Equation (7) becomes equivalent to
Equation (1). In this study, to verify the proposed formula, the analytical and numerical
solutions of TSM, Equation (1), were also derived. According to the definition of ϕ, a
solution can be derived from the Laplace domain. The initial implicit formulation for the
non-Fickian transport incorporating the ϕ can be inferred as

∂

∂t
c(t; x) =

(
−u + DL

∂

∂x

)
∂

∂x
c(t; x)− α(c(t; x)− c(t; x) ∗ ϕ(t)). (11)

Equation (11) can be expressed in the Laplace domain as

[s + α(1− ϕ̃(s))]c̃(s; x) + U
∂

∂x
c̃(s; x)− DL

∂2

∂x2 c̃(s; x) = c̃(t = 0), (12)

where
c̃(s; x) =

∫ ∞

0
e−stcdt, (13)

where s denotes a Laplace variable. The analytical solution for Equation (12) was derived
following the work of [32] in the Laplace domain, resulting in

c̃(s; x) = c̃(s; 0)exp

u−
√

u2 − 4DL(αϕ̃(s)− α− s)

2DL

. (14)

The boundary condition c̃(s; 0) was set as the Laplace-transformed Heaviside function,
signifying that the tracer was introduced from time t1 to t2 at a constant concentration c0.

c̃(s; 0) =
c0

s
(
e−t1s − et2s) (15)

For the inversion of the Laplace transform, the precalculated approximation polyno-
mials are normally suggested such as [33]. However, because the order of the polynomials
cannot be easily increased in the inversion problem, a numerical inversion method based on
the Bromwich integral was used to compute Equation (14) [34]. In this study, the numerical
solution to Equation (1) was built following the work on the OTIS model [22].

2.1.2. Parameter Determination

Since the proposed solution includes the empirical parametric formulation for ϕ,
appropriate parameter determination is the key to the accuracy of the simulation. Herein,
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the optimal parameters were found in which the best fit of the breakthrough curve with
minimum errors was simulated. Mean squared error (MSE) εMSE, which is a commonly-
used metric to measure the quality of a model prediction, was used as a cost function for
optimization, defined by

εMSE =
1

Nobs
∑Nobs

j=1

(
cj

obs − cj
sim

)2
, (16)

where cj
obs and cj

sim are the observed and simulated cross-sectional average tracer concen-
trations, respectively, at the jth time step, and Nobs is the number of observations. The
sequential least squares programming (SLSQP) scheme was used as a multivariate optimiza-
tion scheme, in which the optimal parameters were determined using the quasi-Newton
method [35]. The optimal set of the four model parameters; u, DL, αt, and Tc, were con-
currently calibrated within reasonable ranges to find the best-fit breakthrough curve with
minimum εMSE.

2.2. Field Experiment

To acquire field data, tracer tests were conducted at Gam Creek, the first tributary of
the Nakdong River, located across the cities of Gimcheon and Gumi in Gyeongsangbuk-do,
South Korea, as shown in Figure 3. Gam Creek flows through a complex area of agricultural
land, industrial complexes, and residential areas, and is a potentially high-risk area for
hazardous chemical spills. Furthermore, as shown in Figure 3, the riverbed mainly consists
of sand and has many complex braided flow sections, as shown in Figure 3c,d. Notably,
sand dunes are formed in the entire section, which can increase the residence time of
the solute owing to the dynamic interaction between the hyporheic zone and the main
flow area [36–38]. The geomorphological features of Gam Creek indicate the existence of
flow stagnation zones and the storage effect; additionally, this river has been used as an
appropriate study site to verify the storage effect reproduced by the model, as detailed by
Kim et al. [7].
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In this study site, two tracer tests were conducted on 17 October 2019 and 4 June 2020,
under different discharge conditions of 12.86 m3/s and 2.17 m3/s [7], respectively. The
study site has a total reach length of 4.85 km, and is divided into three subreaches with
measurement sections. The length of the subreaches ranged from 800 to 2000 m, as shown
in Figure 3b. The hydraulic and geometric parameters of each subreach were estimated by
averaging the measured values obtained in the upstream and downstream measurement
sections, as listed in Table 1. In the measurement sections, cross-sectional velocity and
water depth were measured using an acoustic Doppler velocimeter (Sontek FlowTracker)
with a velocity accuracy of ±0.001–4.0 m/s [39]. The location and width of the sections
were measured using a real-time kinematic GPS (RTK-GPS) (Sokkia GRX1). Based on
these sectional measurements, the velocity magnitude of each subreach was calculated by
averaging the upstream and downstream sections. Furthermore, the bed slope (S0) was
calculated by dividing the bed elevation difference between the upstream and downstream
sections by the sub-reach length.

Table 1. Hydraulic and geometric parameters of each sub-reach in the two tracer tests.

Case Sub-Reach Length
(m)

Discharge
(m3/s)

Velocity
(m2/s)

Area
(m2)

Width
(m)

Depth
(m)

C1

SR1
(C1-S1–C1-S2) 1200

12.63

0.610 20.69 57.36 0.361

SR2
(C1-S2–C1-S3) 830 0.598 21.10 58.86 0.358

SR3
(C1-S3–C1-S4) 2000 0.553 22.83 53.00 0.431

C2

SR1
(C2-S1–C1-S2) 954

2.17

0.322 6.17 20.75 0.305

SR2
(C2-S2–C1-S3) 1798 0.317 6.06 15.45 0.388

SR3
(C2-S3–C1-S4) 1105 0.315 6.74 16.75 0.395

The tracer was injected at multiple horizontal points to accelerate complete mixing in
the transverse and vertical directions in the measurement sections. Moreover, the complete
mixing distance (Lc) was calculated using Equation (17), as proposed by Kilpatrick and
Wilson [40], to position the first sections farther than this distance.

Lc = 0.1
(

1
n

)2 UW2

εt
, (17)

where n is the number of horizontal injection points, U is the mean velocity, W is the width,
and εt is the transverse mixing coefficient, which was calculated from εt/HU∗ = 0.15 [24].
In this calculation, the shear velocity (U∗) was estimated as U∗ =

√
gHS0. Consequently,

the injection point for the tracer was set approximately 700 m upstream of the first sections
(C1-S1 and C2-S1) for both tests (Figure 3b).

The fluorescent tracer Rhodamine WT was used because of its high visibility and
conservative characteristics as a passive scalar [41]. To measure the downstream break-
through curves of the tracer, three to four YSI-600OMS sensors were deployed at each
measurement section. These sensors have an accuracy of ±5% or 1 ppb error and can
measure concentrations in the range of 0 to 200 ppb. Prior to the tracer test, the sensors
were calibrated using standard solutions of known concentrations within the measurable
range, and the sampling rate of all sensors was set to 4 s. To prevent the concentration
from exceeding the measurable range, 20 L of 2000 ppb Rhodamine WT were injected for
the tracer test. The measured breakthrough curves at several points at each section were
averaged to obtain the 1D breakthrough curves, and a moving-average filter was used to
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smooth the breakthrough curves. The detailed datasets observed in both experiments are
available in [7].

3. Results and Discussion
3.1. Verification by Synthetic Data

To verify the proposed formula, Equation (8), its simulation was compared with
that of the analytical solution of Equation (14) under identical conditions. For both, the
exponential equation was employed for the empirical parametric formulation for ϕ. Given
the assumptions of Equation (14) including the Heaviside input function, a scenario was set
up: a conservative passive tracer with c0 initial concentration is introduced at the upstream
boundary of a prismatic channel for 30 s, and its breakthrough curves at 500, 1000, and 1500
m downstream of the inlet were predicted. The parameters related to the flow condition; u,
DL, Tm, and α, were configured as 10 m/s, 5 m2/s, 250 s, and 0.001 s−1, respectively, which
are typical values of each parameter. A comparison of the results from both equations
demonstrates their equivalence, with a determination coefficient (R2) of over 0.99 (see
Figure 4). The slight differences between them are attributed to the discrete c(t; 0) input
and the operation of multiconvolution in Equation (8).
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solution (Equation (14)). The y-axis indicates the concentration normalized by initial concentration c0.

In addition, the results of the proposed formula were compared with the numerical
solution of Equation (1) to emphasize the advantage of the analytical approach over
numerical analysis. Because the numerical approach resolves the implicit Equation (1) by
segmenting the spatial domain with a grid size, its computation result is dependent on
the grid size. Figure 5a shows a breakthrough curve comparison; undesired numerical
diffusion and numerical oscillation were observed owing to the large grid size. Figure 5b
shows that the numerical solution required almost nine times the computation time to yield
a result that was as exact as the proposed formula. It may require less computation time
than the proposed model when the grid size is large, but cannot yield exact results.
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3.2. Validation by Field Data

In this section, the proposed formula is used to simulate tracer transport in actual
streams. Simulations were conducted along six subreaches corresponding to the acquired
field datasets. The observed breakthrough curves were applied for c(t; 0) at the inlet
boundaries of each subreach. The optimal values for the empirical parameters of the
solution relevant to the flow characteristics of each subreach were determined, and are
listed in Table 2. Despite the significant difference in the flow rates between C1 and C2, both
revealed the largest DL and Tm in SR3. Because DL accelerates the Gaussian dispersion and
Tm enhances the tailing effect, SR3 is the most mixing-inducing environment among the
subreaches, which is attributed to its highly braided channel geometry, as seen in Figure 3d.

Table 2. Calibrated parameters for each case.

Simulation Case u
(m)

DL
(m2·s−1)

Tm
(s)

α
(10−4·s−1)

C1-SR1 0.605 0.56 604.94 3.76
C1-SR2 0.644 0.59 536.39 2.92
C1-SR3 0.355 4.89 2187.74 1.54
C2-SR1 0.465 0.17 201.39 5.57
C2-SR2 0.420 1.73 827.86 2.01
C2-SR3 0.315 6.94 5767.09 1.35

In each case, a parameter-calibrated equation was used to compute the breakthrough
curve downstream of the boundary. The validity of the simulated non-Fickian tracer
transport was demonstrated by comparing it with the observed breakthrough curves, as
plotted in Figure 6. In the two cases of the tracer test, distinct breakthrough curves were
observed on account of the differences in discharge and morphological changes between
the two tests conducted at different times. The breakthrough curves in C1 advected faster
than those in C2 because of the higher velocity and discharge, whereas the breakthrough
curves for C2 were more dispersed, as indicated by the higher calibrated DL in Table 2.
Furthermore, the breakthrough curves in both cases exhibit a notably skewed and long-
tailed shape, implying a high storage zone effect resulting from the complex braided
geometry or the hyporheic zone. The tailing parts of the curves in both cases also show
different shapes, as demonstrated by the log-transformed curves in Figure 6b,d. This figure
indicates that the tailing parts of both curves followed a power-law form, as reported in
previous studies [42,43]. However, the slopes of the tails differed owing to the varying
storage zone effect. In other words, interpreting the tails of breakthrough curves can
provide information about the stream. Despite this potential, the tailing part contained



Water 2023, 15, 1702 10 of 16

relatively high noise, because the lower sensing limit of the YSI sensor is highly sensitive
to interference from the optical scattering of suspended matter or turbulence. The noise
increased downstream toward the reach as the overall concentration decreased. As is
evident from these observed data, the breakthrough curves entail the complex flow and
mixing characteristics of the stream, as well as high noise. Therefore, a more precise model
is essential to interpret such non-Fickian phenomena from breakthrough curves.
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Figure 6. Breakthrough curves observed in the field test and computed by the proposed formula;
(a,c) are the breakthrough curves in C1 and C2, respectively, and (b,d) are their semi-logarithmic
plots, respectively; circle denotes the observation; and line denotes the simulated values.

Despite the highly skewed observed breakthrough curves, the overall accuracy of all
cases was substantial, with an average deterministic coefficient (R2) of 0.990 (Figure 7). In
addition to the main body of the tracer cloud around the peak, the tailing was well repro-
duced. In conclusion, the explicit formula proposed in this study is an efficient and effective
alternative for simulating non-Fickian tracer transport once appropriate parameters are
determined. Nonetheless, as shown in Figure 6, in some cases, the simulation results along
the tailings did not closely follow the attenuation of the observed tracer concentration. This
will be discussed further in the next section.
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3.3. Late-Time Behavior of the Breakthrough Curve

The late-time behavior of breakthrough curves is often crucial for interpreting the
deposition and accumulation of pollutants. It was previously observed that simulations
mostly underestimated the tailing effect. This aspect has already been found by, e.g., [44–46],
and is commonly attributed to the memory function ϕ. Due to the exponential ϕe so far
applied, the tracer concentration was more rapidly attenuated than the actual tracer, except
for C2-SR3. This corresponds to the arguments of existing studies (e.g., [16,33,47]), saying
that the exponential memory function is suitable for short residence time cases. As an
alternative, ϕp was also applied, which approximates the exact solution of the advective
pumping model. With the optimal parameters, it simulated the breakthrough curves, and
the results were compared to those with ϕe and Gaussian approximations. To closely
investigate the late-time behavior of the breakthrough curves, only the falling limb of
the breakthrough curves is plotted on a log-log scale, as shown in Figure 8. All cases
consistently show that the Gaussian approximation cannot reproduce the tailing effect
in the 1D transport analysis. In other words, these results emphasize the necessity of
non-Fickian transport modeling.
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The simulation results of Equation (8) were compared in terms of goodness-of-fit,
evaluated using the percentage log-scaled R2 only for the tails (see Figure 9). The results
with ϕp average outperformed those with ϕe in C1-SR1, C1-SR2, C2-SR1 by enhancing
the tailing effect. These results correspond to those in [18], who verified the use of the
advective pumping model. However, in C2-SR2 and C2-SR3, the tailing effects by ϕp
were somewhat overestimated. In particular, in C2-SR3, all simulations overestimated the
observed tails. This is seemingly because the tracer cloud was diluted with O(10 ppb) at
the peak concentration and exhibited excessive variance. In these cases, finding proper
parameters to distinguish the influence of the dispersion and tailing effects can be difficult,
and simulated breakthrough curves can easily be heavy-tailed compared to actual tracer
tails. Especially, the ϕe for C2-SR3 has 5767.09 s of Tm which is appreciably large despite
the relatively large DL. In this case, the Gaussian approximation exhibited the best-fit
tailing, indicating that the memory function is unnecessary. Overall, the suitability of the
distribution for the memory function is likely to be data-dependent, i.e., the comparative
advantage between ϕe and ϕp is unclear in these cases. Following the work of [18], using
both could be a proper way to reproduce a better-fitting breakthrough curve, as long as a
precaution on the overfitting problem is taken, inducing less generality.
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The determined optimal memory functions ϕe and ϕp were also compared in Figure 10.
The behavior of the distributions representing the probability density function with respect
to residence time was significantly different. Their expectations correspond to the parameter
Tm but are slightly different due to truncation errors. In terms of the ability of the memory
function to consider a wider range of residence time, ϕp outperformed ϕe. In other words,
ϕp can consider the larger residence time scale that generates the longer tails, as shown
in Figure 10. This aspect is important when considering the long-term residence time in,
e.g., hyporheic zones, for which the exponential memory function may not be appropriate.
However, in the SR3 of both cases, ϕe was more weighted to the larger time scale than
ϕp, because ϕp becomes equivalent to a power law distribution ϕp ∼ πTmt−2 when
t→ ∞ [18]. In these cases, the heavier tailing is showed with ϕe.

Note that the tailing effect is reproduced not only by the memory function, but also by
p(n) according to Equation (7). Therefore, the net retention time function Φ, in which those
two functions are combined by Equation (5), were also compared in Figure 11. What is
noteworthy is that the Φ function has values at t = 0. It is because of the zero-contribution
of the p. Given that Φ represents the net residence time in the stagnant zone, for which
the tracer particles are stopped during the whole transport time in the sub-reach, Φ(t = 0)
indicates the portion of the tracer that was not affected by the streambed boundary. This
parameter represents the manner in which a given stream reaches a non-Fickian transport-
inducing environment. In comparison to the net residence time scale, these are dependent
not only on the subreach, but also on the shape of the memory function. For example,
in C1-SR2, Φ(t = 0) is similar, but Φe has more contribution of much smaller residence
time scale according to its distribution. Basically, the Φe has a shape that has maximum
contribution at t = 0, and gradually attenuates as net residence time increases. As the
tracer transport is more delayed, i.e., the more temporal gap between flow velocity and
tracer advective velocity occurs, the Φ is shifted toward a larger net residence time scale.
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In this respect, the Φe could not be proper to reproduce the net residence time of the tracer.
This supports the results of previous studies, which maintained the discrepancy between
the exponential memory function and tracer behavior in streams. In this respect, Φp is
more compatible for a wide range of residence time scale.
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More importantly, significant differences in the late-time behavior of the breakthrough
curves between the simulations and observations were generated at less than O(1 mg/m3).
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This concentration range is error-prone because the fluorescence-acquired data become
excessively sensitive to other unknown influences, such as turbulence. These errors can
negatively affect the optimization problem. The inconsistent results in determining the
best distribution for the memory function can be attributed to dependence on the data and
parameters. Even though it is commonly stated that ϕe is less proper for large residence
time cases, a better result in simulating the breakthrough curve tail was shown in C2-SR3
case, by applying relatively large Tm. In other words, devising globally appropriate models
for memory functions is challenging owing to data dependence. Nonetheless, the proposed
formula required specifying the parametric memory function for operation, which remains
an unsolved problem. It is more important to identify the true memory function from tracer
data, for example, by employing deconvolution techniques [48], than to suggest memory
function models by fitting the breakthrough curves.

4. Conclusions

In this study, an efficient solution was presented for predicting breakthrough curves
in streams. The following conclusions were made:

1. The proposed formula was validated by comparison with analytical and numerical
solutions, and the results were exact. Its performance in simulating non-Fickian
transport in streams was also validatesd using field tracer data, and good agreement
was achieved.

2. Despite the accurate results of reproducing the overall breakthrough curves, signif-
icant differences in their late-time behaviors were found according to the memory
function modeling. This indicates that the best-fit breakthrough curve does not imply
the accurate storage effect modeling.

3. The tailing effect was discussed by comparing the optimal memory functions and
net residence time functions. The key role of residence time-dependent functions
is to enable us to quantitatively identify the storage effect, which is fundamental
for a deeper understanding of non-Fickian tracer transport in streams. Hence, in-
sight in characterizing non-Fickian mixing in can be provided from the memory
function modeling.

4. According to the data and optimal parameters, the proper formula for the memory
function was inconsistent. The exponential memory function had a structural limit in
generating a heavy-tailed breakthrough curve.

The proposed formula requires specifying the parametric memory function for opera-
tion, which remains an unsolved problem. Therefore, our next goal is to identify the true
memory function from tracer data using deconvolution techniques rather than finding the
best-fitting models for the breakthrough curves.
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