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Abstract: The assessment of seasonal streamflow forecasting is essential for appropriate water re-
source management. A suitable seasonal forecasting system requires the evaluation of both numerical
weather prediction (NWP) and hydrological models to represent the atmospheric and hydrological
processes and conditions in a specific region. In this paper, we evaluated the ECMWF-SEAS5 precipi-
tation product with four hydrological models to represent seasonal streamflow forecasts performed at
hydropower plants in the Legal Amazon region. The adopted models included GR4J, HYMOD, HBV,
and SMAP, which were calibrated on a daily scale for the period from 2014 to 2019 and validated
for the period from 2005 to 2013. The seasonal streamflow forecasts were obtained for the period
from 2017 to 2019 by considering a daily scale streamflow simulation comprising an ensemble with
51 members of forecasts, starting on the first day of every month up to 7 months ahead. For each
forecast, the corresponding monthly streamflow time series was estimated. A post-processing proce-
dure based on the adjustment of an autoregressive model for the residuals was applied to correct
the bias of seasonal streamflow forecasts. Hence, for the calibration and validation period, the results
show that the HBV model provides better results to represent the hydrological conditions at each
hydropower plant, presenting NSE and NSElog values greater than 0.8 and 0.9, respectively, during
the calibration stage. However, the SMAP model achieves a better performance with NSE values of up
to 0.5 for the raw forecasts. In addition, the bias correction displayed a significant improvement in
the forecasts for all hydrological models, specifically for the representation of streamflow during dry
periods, significantly reducing the variability of the residuals.

Keywords: hydrological model; ECMWF-SEAS5; hydropower plant; streamflow forecast

1. Introduction

Seasonal streamflow forecasting is very important for water resource management,
including flood and drought control, water supply, hydropower generation, and irriga-
tion [1–3]. According to Xu et al. (2014) [4], the use of forecast systems to predict future
inflows can improve the performance of hydropower plants in terms of power generation.
Hydropower production planning typically requires inflow forecasts for reservoirs at dif-
ferent lead times, being the seasonal forecasting (up to 6 months) necessary to establish
yearly strategies. In that way, the predicted streamflow scenarios are used as input in opti-
mization models to define policies for the optimal operation of the electric power system over
a specific time horizon [5,6]. On the other hand, Del Sole (2004) [7] stated that a system is
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called unpredictable if the forecast distribution is identical, or even worse, to the climatological
distribution. Hence, the definition of a seasonal meteorological forecasting system should
bring more information than the climatology in order to support water managers in their
decision-making process [8].

There are two main general approaches to defining a seasonal streamflow forecasting
system: data-driven or statistical methods and dynamical methods. Data-driven methods
aim to represent the spatial or/and temporal dependence between the given prediction,
i.e., future seasonal streamflow, with some correlated variables or predictors, without
any physical interpretation. Some common data-driven methods used for streamflow
simulation and forecasting include the application of machine learning methods [9,10],
such as support vector machines [11], regression-tree-based networks [12], and artificial
neural networks (ANN) [13]. Alternatively, Zhao et al. (2016) [14] applied a Bayesian
joint probability modeling approach to generate seasonal ensemble streamflow forecasts
in Australia. Moreover, Hadi and Tombul (2018) [15] combined ANNs and wavelets to
predict streamflows one month ahead in a river basin of Turkey.

On the other hand, dynamical methods rely on the use of numerical weather prediction
(NWP) models or past observations to drive hydrological models. An early example of this
approach for seasonal forecasting is the extended streamflow prediction (ESP) [16]. This
method forces hydrological models with the current initial conditions of a watershed and
past observed weather data to produce ensemble streamflow traces [17,18]. This approach
is employed under the assumption that the historical meteorological data are representative
of the region and have the same probability of occurrence in the future. Currently, this
method is also used as a benchmark for seasonal streamflow forecasting systems that adopt
more complex NWPs, such as general circulation models (GCMs), on a global scale, and
regional climate models (RCM), providing meteorological information for future conditions
in the atmosphere, which can be used as input in hydrological models for streamflow
forecasting [19].

In recent years, the use of operational forecasting systems that coupled GCM or RCM
with hydrological models, at a basin scale, has increased, thanks to the improvement in
products, such as their accuracy and resolution [20,21]. World-scale seasonal forecasting
products are mainly provided by global climate centers, such as the United States National
Center for Environmental Prediction (NCEP), the UK Meteorological Office (UKMO), the
Australian Bureau of Meteorology, and the European Centre for Medium-Range Weather
Forecasts (ECMWF). The latter provides the Seasonal Forecasting System (SEAS), which
constitutes the state-of-the-art global modeling of seasonal climates and forecasts. The SEAS
is now in its fifth version and includes many improvements since its beginning in 1997, as
described by Johnson et al. (2019) [22]. Ferreira et al. (2022) [23] evaluated the ECMWF-
SEAS5 seasonal temperature and precipitation predictions over South America. The authors
showed that the system presented a better performance in regions such as northern South
America and northeastern Brazil, in which ECMWF-SEAS5 can reproduce the extreme
precipitation anomalies observed in the last decades well. In addition, they indicated the
need for improvement in the quality of the ECMWF-SEAS5 seasonal rainfall predictions for
specific domains in South America, particularly the prognostic forecasts made as of 2017.
Thus, there is still a need for regional studies in the literature that utilize ECMWF-SEAS5
to evaluate the representation of streamflow in tropical river basins through the use of
hydrological models.

Hydrological models are typically classified into empirical, conceptual, and physical
based, according to their parametrization and representation of the main hydrological
processes. Empirical models represent the system by an input–output relationship be-
tween the available data. This relationship can be represented by linear or non-linear
functions. Conceptual models use simplified mathematical conceptualizations of the wa-
tershed, representing the main hydrological process and fluxes by interconnected storage.
Finally, physical-based models employ the main scientific principles of energy and mass
conservation in water fluxes, taking into account the spatial heterogeneity conditions of



Water 2023, 15, 1695 3 of 20

the watershed into a grid resolution. The selection of each approach commonly relies on
data availability, the heterogeneity of the watershed, and the application of the model
itself [24]. Moreover, considering a unique hydrological model for all kinds of applications
in water resources can be tricky. For that reason, many studies focus on comparing the
performance of hydrological models with different levels of complexity [25]. In the case
of conceptual hydrological models, Staudinger et al. (2011) [26] used the Framework for
Understanding Structural Error (FUSE) to demonstrate that a single model structure could
present a poor performance to simulate low flow and recession behavior over different
seasons. Instead, they argued that combining different model structures could be a more
robust approach. Ghimire et al. (2020) [27] evaluated four hydrological models, including
GR4J, IHACRES-CWI, HEC-HMS, and SWAT, to simulate daily streamflow in the main
river basin of Myanmar. The authors concluded that all hydrological models are useful for
representing daily streamflow time series at the majority of selected stations for the period
from 2001 to 2014. Jiang et al. (2007) [28] used six monthly water balance models to investi-
gate the potential impacts of human-induced climate change on water availability in the
Dongjian basin, South China. Jaiswal et al. (2020) [29] compared the use of conceptual and
physical-based models to simulate the runoff in the Tandula basin of Chhattisgarh (India).
Darbandsari and Coulibaly (2020) [24] made a comparison of seven lumped hydrological
models in data-scarce watersheds using different precipitation-forcing datasets. The au-
thors highlighted the performance of the ACSMA and GR4J hydrological models. Finally,
Ávila et al. (2022) [30] compared four conceptual hydrological models (GR4J, HYMOD,
HBV, and SMAP) and one semi-distributed hydrological model (MGB-IPH) in the cali-
bration and validation stages to represent daily streamflow time series at six hydropower
plants in the Tocantins River Basin. The authors argued that conceptual models with more
simple structures can exhibit similar performance to the semi-distributed model.

The main objectives of the present study are the evaluation of the ECMWF-SEAS5
dataset in large-scale tropical river basins located in Brazil and the comparison of different
conceptual hydrological modeling approaches to generate seasonal streamflow scenarios
up to seven months ahead. The results will help the operation and decision-making
of hydropower water reservoirs. The tested hydrological models are GR4J, HYMOD,
SMAP, and HBV, applied to six different hydropower plants in the Tocantins River Basin,
Brazil. A post-processing procedure proposed by Woldemeskel et al. (2018) [31] is applied
to correct the seasonal streamflow forecast. Deterministic and probabilistic metrics are
employed to evaluate the performance of each hydrological model. The remainder of
this paper is organized as follows: Section 2 presents the methodology, including the
description of the hydrological models, the input data, the performance metrics, and the
post-processing approach to correct seasonal streamflow forecasts. Section 3 describes the
case study and discusses the main results. Finally, Section 4 presents the main conclusions.

2. Methodology

The study compared four conceptual hydrological models (GR4J, HYMOD, HBV, and
SMAP) to generate seasonal streamflow forecasts at different hydropower plants located in
the Tocantins River Basin, using daily precipitation forecast data of the ECMWF-SEAS5 for
the period 2017–2019. A bias correction procedure was applied for precipitation forecasts
based on the delta method, considering the hindcasts of ECMWF-SEAS5. Furthermore, a
post-processing procedure was performed to correct the seasonal streamflow forecast for all
hydrological models. Figure 1 provides a general framework of the adopted methodology,
including the model inputs and main processes.
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Figure 1. Flow chart of the seasonal streamflow forecast procedure.

2.1. Hydrological Models

This section briefly describes each adopted hydrological model. Figure 2 shows
each model structure, and Table 1 summarizes the structural characteristics of each one,
including the number of parameters, the conceptual storage and flow type, and required
input data. The models were calibrated on a daily scale, using as input the observed total
daily precipitation and potential evapotranspiration. The Shuffled Complex Evolution
(SCE-UA) algorithm was adopted to estimate the parameters of each model using the
Nash–Sutcliffe coefficient (NSE) as the objective function [32]. Each sub-catchment was
calibrated in sequence from upstream to downstream, considering the hydropower plant
time series at its outlet, and its parameters were obtained for each hydrological model.
The calibration and validation stages were performed for the periods 2014–2019 and
2005–2013, respectively. The period from 2014–2019 was chosen for the calibration stage
because it represents the longest period of continuous daily observations in the Tocantins
River Basin. In addition, this selection allows for the adjustment of each parameter based
on the most recent hydrological conditions observed in the sub-catchments. Given that all
models have a lumped structure, we used a triangular weighting function for routing the
hydrograph between sub-watersheds. More details about each hydrological model can be
obtained in the provided references in each specific section.

Table 1. Characteristics of the model structure of the conceptual hydrologic models. P: Daily
precipitation; PET: Potential evapotranspiration; LMT: Long-term monthly temperature; LMPET:
Long-term monthly potential evapotranspiration.

Model Feature GR4J HYMOD HBV SMAP

Parameters 4 5 11 11

Input data P ; PET P ; PET P; T; LMT; LMPET P; PET

Conceptual storage Production soil storage Soil moisture layer Soil moisture layer Upper soil reservoir

Routing soil storage Quick flow reservoirs Upper-zone storage Second upper-soil
reservoir

Slow flow reservoir Lower-zone storage Lower soil reservoir
Ground storage

Type of flows Fast flow Surface flow Surface flow Surface flow
Slow flow Ground water flow Base flow Base flow
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Figure 2. Structure of the conceptual hydrological models.

2.1.1. HYMOD Model

The HYMOD (The HYdrological MODel) is a conceptual model with five parameters
that simulate the daily runoff conditions by the use of a rainfall excess model according
to the probability-distributed principle [33]. This probability-based equation considers
the basin’s maximum water storage capacity (Cmax) and the degree of spatial variability
within the basin (β) to calculate the cumulative rate of storage capacity. Then, the effective
precipitation is estimated according to the potential evapotranspiration (PET) and the soil
moisture capacity. Finally, a portion of the excess precipitation is separated according to the
α parameter and goes directly to the three identical quick-flow reservoirs to represent the
surface flow, whereas the rest of the precipitation volume (1− α) flows to the slow reservoir.
Each kind of reservoir has its corresponding residence time (Kq and Ks), composing the
total runoff.

2.1.2. GR4J Model

GR4J (The Génie Rural à 4 paramètres Journalier) is a parsimonious model with four
parameters developed by Perrin et al. (2003) [34] that employs two reservoirs (production
and routing) and two unit hydrographs (HU1 and HU2) to represent the rainfall-runoff
conditions in a watershed [35–38]. At first, the model estimates the effective precipitation
(PE) based on PET, and part of the effective precipitation goes into the production storage
where the percolation occurs. The runoff is generated both by leakage of percolated water
and direct precipitation. Ninety percent of the runoff is routed by HU1 and the routing
store. The other 10% of the runoff is routed by UH2, and the total runoff is obtained by
adding these two runoff components.
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2.1.3. SMAP Model

The SMAP (Soil Moisture Accounting Procedure) model proposed by Lopes et al.
(1982) [39] considers a structure with three linear reservoirs to represent different layers
of the soil, employing the Soil ConservationService (SCS) method for the separation of
runoff. The Brazilian National Electrical System Operator (ONS) [40] proposed a new
version of this model, called the SMAP-ONS model, by introducing one additional linear
reservoir and other coefficients to adjust the temporal representation of the input data
and the recession curves for the base and superficial flows. The SMAP-ONS has been
applied in different Brazilian watersheds and combined with data-driven models to flood
conditions [41,42] and daily inflow forecasts for hydropower generation [43].

2.1.4. HBV Model

The HBV (Hydrologiska Byrans Vattenbalansavdelning) model is a conceptual snow–
rain water balance model proposed by Bergstrom (1992) [44]. The main input variables
of the HBV model are daily precipitation, daily mean temperature, and mean interannual
monthly evapotranspiration and temperature. The HBV model includes a soil routine, a
response routine, and a snow routine. This last one can represent the precipitation as rain
or snow, depending on the daily temperature. For regions where the mean temperature is
greater than the melting point, and snow does not occur, the snow routine can be excluded,
so the total precipitation goes directly to the soil routine. The total runoff is generated
by two runoff reservoirs that use linear and non-linear functions and represent the quick
flow (upper zone—UZ) and the base flow (lower zone—LZ). We adopted the HBV model
version presented by Aghakouchak and Habib (2010) [45].

2.2. ECMWF-SEAS5 Data

The European Centre for Medium-Range Weather Forecasts—System 5 (ECMWF-
SEAS5) consists of a 51-member ensemble starting on the first day of every month up
to 7 months ahead (214 days) [22]. This system also includes retrospective seasonal forecasts
from past decades (hindcast) with the aim of comparing and calibrating the forecasting
system to historical records. The hindcasts have a 25-member ensemble starting on the first
day of every month from 1993 to 2016. We considered the ECMWF-SEAS5 surface data of
daily total precipitation, covering the hindcast data from January 2000 to December 2016
and forecast data from January 2017 to December 2020, with a horizontal grid resolution of
1◦×1◦.

Similarly to other forecasting systems, the ECWMF-SEAS5 presents a random and
systematic error. To deal with the random error, the ECWMF-SEAS5 employs an ensemble
method, such as all members are initialized on the same date but with slightly different
initial state conditions. Those differences are generated in the atmospheric module, which
presents an initial undisturbed condition for the first member of the ensemble, and then,
for all other members, perturbations are applied to some fields to represent the uncertainty
of the atmosphere’s initial state [22].

Moreover, the systematic errors are presented through the difference between the
simulated atmospheric and oceanic states with the observed climatological conditions.
In this study, we used the delta method and the hindcasts of the ECMWF-SEAS5 to correct
the bias for the forecast period, assuming that the bias is constant over the forecast horizon.
First, we calculated the daily climatology of the hindcast Pclim(k) for the period 2000–2016.
Then, for a given position k = (lon, lat) on the grid, the corrected daily precipitation
members for a time t can be estimated using the delta method [46,47], such as:

Pcorrected(k, t) = Praw(k, t) · Pclim(k)

Praw(k)
(1)
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2.3. Post-Processing Procedure

We adopted the post-processing method proposed by Woldemeskel et al. (2018) [31]
to correct the streamflow forecasts. For this method, a statistical model is adjusted to the
normalized streamflow forecast residual (ηt) over a calibration period, such as:

η = Z(
∼
Qt)− Z(QF

t ) (2)

where
∼
Qt is the observed streamflow, QF

t is the median of the uncorrected streamflow fore-
cast ensemble, and Z is a transformation function, defined in this study as the logarithmic
(Log) transformation.

The residuals η are standardized in order to account for the seasonal variations in the
distribution, such as:

vt = (ηt − µ
m(t)
η )/σ

m(t)
η (3)

where µ
m(t)
η and σ

m(t)
η are the monthly mean and standard deviation of the residuals in the

calibration period for the month m(t).
Then, the standardized residuals vt can be described by a first-order autoregressive

(AR(1)) model with Gaussian innovations such as:

vt+1 = ρvt + yt+1 (4)

where ρ is the AR(1) coefficient and yt+1 ∼ N(0, σy) is the innovation.
To perform the post-processed streamflow forecasts for a given period and ensemble

member j, we calculated a sampled innovation yt+1,j → N(0, σy). Then, we estimated the
standardized residual vt+1,j (Equation (4)). Here vt,j is computed using Equation (3), and
ηt,j is computed using Equation (2), considering the observed and forecasted streamflow
from time step t-1.

Next, we computed the normalized residuals ηt+1,j as:

ηt+1,j = σ
m(t)
η vt+1,j + µ

m(t)
η (5)

Finally, the post-processed streamflow forecast is calculated as:

QPP
t+1,j = Z−1[Z(QF

t+1) + ηt+1,j] (6)

2.4. Performance Metrics

The Nash–Sutcliffe coefficient (NSE) tests the predictive power of hydrological models
and is used in this study as an objective function to calibrate the parameters of each
hydrological model. The NSE presents a value equal to 1 when the model achieves perfect
performance, whereas a value of 0 suggests that the model is as accurate as the mean of
observed data [48]. In addition, the NSElog metric, which considers the logarithmic of the
streamflows values, is useful for evaluating the representation of low flows. The NSE is
calculated by Equation (7) as:

NSE = 1− ∑T
t=1(Qsim(t)−Qobs(t))2

∑T
t=1(Qobs(t)−Qobs)2

(7)

where Qobs(t) is the observed streamflow at the tth time step; Qsim(t) is the simulated
streamflow at the tth time step; and Qobs is the mean of the observed data.

The percent bias (PBIAS) measures the average tendency of the simulated values
to be larger (positive PBIAS) or smaller (negative PBIAS) than their observed ones [49].
The PBIAS is estimated by Equation (8) as:

PBIAS =
∑T

t=1(Qsim(t)−Qobs(t))

∑T
t=1 Qobs(t)

(8)
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The multi-criteria distance (DM) represents the Euclidean distance between the inverse
of the NSE coefficient and the mean absolute percentage error (MAPE). This metric balances
the power prediction of the hydrological model between long- and shot-term conditions.
The DM metric is estimated by Equation (9) as:

DM =
√
(1− NSE)2 + MAPE2 (9)

where the MAPE value is calculated as:

MAPE =
T

∑
t=1

∣∣∣∣Qobs(t)−Qsim(t)
Qobs(t)

∣∣∣∣ (10)

The CRPS metric compares the difference between the cumulative distribution of the
observed and forecast values and summarizes the reliability, sharpness, and bias attributes
of the forecast [50].

CRPS =
1
N

N

∑
i=1

∫ ∞

−∞
[Fi(y)− Hi{y ≤ yo}]2dy (11)

where Fi is the cumulative distribution function of the forecast for year i; y is the forecast
value; yo is the observed value; and Hi{y ≤ yo} is the piecewise Heaviside step function.

Given that an objective interpretation of the forecast error can not be made using only
the CRPS, we also estimated the CRPSS, which compares the CRPS between the forecast
system (CRPS f est) and a benchmark (CRPSSre f ). In this case, we adopted the climatology
of flows at each hydropower plant as the benchmark, and the CRPSS is estimated as:

CRPSS = 1−
CRPS f est

CRPSSre f
(12)

Here, higher values of CRPSS indicate better performance and a value of 0 represents
the same performance as climatology.

The ROC curve (receiver operating characteristic curve) is a graphic that assesses the
reliability of a forecast system by classifying the observed and forecasted values as discrete
outcomes (true or false) [51]. Given a classifier, there are four possible outcomes: true
positive, false positive, false negative, and true negative. A contingency table (Table 2) is
constructed to represent the possible set of instances.

Table 2. Two-by-two contingency table.

Forecasted Outcome
Observed Outcome

True False

True True positive (A) False positive (B)
False False negative (C) True negative (D)

Note: A, B, C, and D are the numbers of true positives, false negatives, false positives, and true negatives, respectively.

Based on Table 2, we can estimate the probability of detection (POD) and the probabil-
ity of false detection (POFD) as:

POD =
A

A + C
(13)

POFD =
B

B + D
(14)

While the POD examines the fraction of observed events that was predicted correctly,
the POFD evaluates the fraction of non-events that was incorrectly predicted. The value of
the POD and POFD produces the ROC curve, the area under the ROC curve (AUC) can
be used to summarize a ROC curve [52]. The value of the AUC ranges from 0 to 1, and a
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random guess procedure can have an AUC of 0.5, corresponding to the diagonal line in the
ROC curve.

3. Case Study
3.1. Overview and Data

The Tocantins River Basin is located in the North, Central-West, and Northeast regions
of Brazil and covers a drainage area of 306.200 km2 (Figure 3). This basin is characterized
by the presence of many water reservoirs used for many social and economic purposes
and is one of the most important drainage areas in terms of hydropower production for
the country [20,53,54]. In that way, short-term streamflow forecasts have been reported in
previous studies to evaluate the hydropower generation and water resources conditions in
this river basin [20,54], whereas seasonal streamflow forecasts have been less explored.

UHE
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Rivers

Sub-catchments

DEM (m)
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250 - 450

450 - 600
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2
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2

2
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2(63.695 km )

(126.995 km )

Figure 3. Location of the Tocantins River Basin and hydrological regimes at six hydropower plants. Black
line represents monthly mean streamflow. Red shaded areas represent the 10th and 90th quantiles.

The Tocantins River has an annual mean temperature of 26 °C and an annual precipita-
tion of 1.770 mm, approximately. The Köppen’s type climate classification indicates tropical
with dry winter conditions in this region [55], and the most predominant biomes are the
Brazilian Savanna and Cerrado, covering 97.8% of this drainage area [56]. The Tocantins
River Basin presents a well-defined seasonal condition. The wet period occurs from October
to April, and the dry period commonly occurs from May to September (Figure 3).

Observed daily rainfall data from 83 rain gauges were obtained from the Brazilian
National Agency of Waters (ANA) for the period 2010–2019. Climatological records of
10 climatic stations from the Brazilian National Institute of Meteorology (INMET) provided
data for temperature, humidity, sunshine, and wind speed, which were later used to
calculate the potential daily evapotranspiration by the Pennam–Monteith equation [57].
Finally, naturalized streamflow data for the six hydropower plants of Tocantins’ River were
provided by the Brazilian National Electrical System Operator (ONS).
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3.2. Results Analysis

Before analyzing the results of the streamflow simulations by all hydrological models,
we first evaluated the bias correction of the precipitation forecasts. For this study, we
adopted the delta method to correct the systematic error, considering the hindcast daily
climatology instead of the observed daily precipitation. This selection was made given the
scarcity of rain gauges with continuous daily precipitation data distributed in this river
basin. In order to validate the assumption, Figure 4 compares the hindcast and observed
daily climatology at one rain gauge in the Tocantins River Basin. The graphic shows that
the hindcast can well represent the periodic behavior of daily precipitation observed in
this region. In addition, the figure compares the cumulative precipitation between the
observed data, the hindcast daily climatology, the raw ensemble mean, and the corrected
ensemble mean for the period between 1 March 2017 and 30 September 2017. The results
show that for this period, the bias-corrected data exhibit a total precipitation volume close
to the observed data and the hindcast climatology. On the other hand, the raw precipitation
shows a drier condition for the same period.
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Figure 4. (a) Comparison of the hindcast and observed daily climatology; (b) Cumulative precipi-
tation between the observed data, the hindcast daily climatology, the raw ensemble mean, and the
corrected ensemble mean for the period between 1 March 2017 and 30 September 2017.

Figure 5 presents the deterministic metrics obtained during the calibration and valida-
tion stages at each hydropower plant for all hydrological models. Based on the NSE and
the NSElog metrics, the results show that for the calibration period, all hydrological models
achieve satisfactory performance with values up to 0.5. In particular, the HBV model
displayed the best performance, with DM values close to 0.2 and a mean bias percentage
equal to 4%. For the validation period, the SMAP model exhibits the lower NSE values,
presented at the Estreito UHE, and also shows the poorest performance to represent low
flow values compared to the other hydrological models. For the validation period, all
models present negative PBIAS values, indicating that the observed values are overall
greater than the simulations. In addition, we remark on the performance of the GR4J
and HYMOD models, as they achieved a good performance in representing the seasonal
regimes in the Tocantins River Basin for both calibration and validation stages, despite
their simplicities when compared to other models.

After the calibration of all hydrological models, we executed the seasonal forecasts of the
ECMWF-SEAS5, considering a lead time of 214 days (7 months). In this study, we adopted the
monthly average streamflow for each forecast instead of working with a daily scale. The main
reason for this choice is that the Brazilian National Interconnected System (SIN) considers
monthly streamflow time series for the medium- and long-term planning of its electrical power
system [58,59]. Figure 6 compares the hydrographs of the observed streamflow, as well as the
corrected and uncorrected forecasts obtained by each hydrological model at the Estreito UHE.
In addition, we present the corresponding 90% and 50% CI interval for each case. It is worth
mentioning that to avoid overfitting for the corrected forecasts, we followed the moving-window
cross-validation framework proposed by [31]. The results show that the forecasts can represent the
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seasonal regimes observed in this region well. Furthermore, after the post-processing procedure,
the forecasts show a significant improvement in the representation of both the recession curve
and peak flows, specifically for the SMAP and HBV models. The simulated streamflow members
also reflect less uncertainty during the dry periods, given the strongly seasonal conditions in
this region, which is well represented by ECMWF-SEAS5. However, it is necessary to evaluate
if the recession curve during those periods is under- or overestimated in comparison with the
observed data.
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Figure 5. Results of the deterministic metrics in the calibration and validation stages.
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SEAS5 by all hydrological models for the period 2017–2019 at the Estreito UHE.
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Figures 7–10 display the error bars of the PBIAS, NSE, NSElog, and DM metrics,
respectively, for the entire period (2017–2019) as a function of the lead time (7 months),
considering the mean of the streamflow members. The figures compare the performance
of the uncorrected and corrected forecasts for all hydrological models. The results show
that PBIAS (Figure 7) exposed an enhancement in the systematic error for all hydrological
models, reducing the variability of the error bars by up to 10%. For the NSE metric, the
results show that the SMAP model presents a better performance for the uncorrected
forecasts, which decrease over the horizon time. Alternatively, the other models exhibit
negative NSE values. After the post-processing procedure, all hydrological models show a
significant improvement in the NSE metric with values greater than 0.7. The improvement
in the value of the deterministic metrics is also presented for the NSElog and DM metrics
after executing the post-processing procedure. In this case, the NSElog values for the
uncorrected forecasts are greater than 0.6, whereas the corrected forecasts present NSElog
values greater than 0.9, and the DM presents values close to 0.25 after the bias correction.
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Figure 7. Error bars (with a 95% confidence level) of the PBIAS obtained for each hydrological model
as a function of the lead time. The points represent the median.
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Figure 8. Error bars (with a 95% confidence level) of the NSE obtained for each hydrological model
as a function of the lead time. The points represent the median.
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Figure 9. Error bars (with a 95% confidence level) of the NSElog obtained for each hydrological
model as a function of the lead time. The points represent the median.
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Figure 10. Error bars (with a 95% confidence level) of the DM obtained for each hydrological model
as a function of the lead time. The points represent the median.

Figure 11 shows the relationships between the forecasted streamflow and the corre-
sponding relative error for all hydrological models at three hydropower plants to examine
the homoscedasticity condition of the residuals for the entire period. The relative error is
calculated as the difference between the simulated and observed streamflow divided by the
mean of the observed streamflow time series. In this case, the selected UHEs are located in
the upper- (Serra da Mesa), middle- (Cana Brava), and downstream (Estreito) regions in
order to present the error propagation through the river basin. Even though the residuals
still present heteroscedasticity, being greater for wet periods and peak flows, the results
show a significant reduction in the forecasted residuals after the bias correction, specifically
for the Serra da Mesa UHE. In addition, the SMAP model presents fewer differences in the
obtained residuals between the corrected and uncorrected forecasts.
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Figure 11. Plots of relative error versus forecasted streamflow at three hydropower plants. Red
dots represent the error of the uncorrected forecasts, whereas black dots represent the errors of the
corrected forecasts.
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Figure 12 shows the error bars of the CRPSS for all hydrological models along the 7-
month horizon time. The figure describes the performance of the CRPSS for the periods that
initiate with wet and dry conditions, as well as for the entire forecast period (all months).
For the uncorrected forecasts, the results show that the dry months present greater bias
with the observed data in comparison with the wet months. After the post-processing
procedure, the bias-corrected forecast data present a significant improvement in the skill for
the entire forecasted period after the first month. For the raws forecasts (uncorrected), the
CRPSS shows that the SMAP model represents the seasonal variability of all hydropower
plants compared to the climatology with more reliability, whereas GR4J exposed lower
performance. This improvement is also displayed when evaluating the forecasts that initiate
during the dry months, indicating less uncertainty in the prediction of streamflow data.
On the other hand, the CRPSS values obtained for the wet months do not present greater
differences between the corrected and uncorrected forecasts, with the exception of the third
prediction month. The differences exposed in the CRPSS between those two periods are
related to the strongly seasonal conditions in this region, making the dry periods exhibit
less variability compared to wet periods. Therefore, the recession curves of the hydrograph
are similar for different years.
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Figure 12. Error bars of the continuous ranked probability skill score (CRPSS) as a function of the
lead time for each hydrological model. The points and error bars denote the medians and the 95%
confidence levels (CLs).
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Figure 13 presents the ROC curves obtained from the seasonal forecasts at the Lajeado
UHE. In this case, we measure the accuracy of each model to represent the occurrence
of different thresholds defined by the quantiles Q90, Q75, Q50, Q25, and Q10 of the
monthly permanence curve. The results indicate that all hydrological models present better
accuracies to represent the occurrence of streamflow equal to Q50 and Q75, respectively.
The HBV exposed the lower accuracy to represent lower flows (Q90), whereas the GR4J and
HYMOD models presented similar performances to represent high flows (Q10). Finally,
based on this metric, the SMAP model indicates a more reliable performance to represent
seasonal forecasts at this hydropower plant.

A broad analysis is presented in Figure 14, considering the AUC, which summarizes
the ROC diagram into one numerical value and allows for an easier comparison of forecast
systems. In this case, values close to 1 indicate better discrimination between events
and non-events [60]. We compared the AUC for the corrected and uncorrected forecasts
considering the thresholds Q90, Q75, Q25, and Q10. For this case, we excluded the median
of the distribution represented by Q50. The results show that a greater improvement is
presented after the bias correction procedure in the representation of low flows (Q90 and
Q75). For high flows (Q10), the results exhibit better accuracy, especially for the hydropower
located in the lower river basin.
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Figure 13. ROC curves for the Lajeado inflows with different thresholds (Q90, Q75, Q50, Q25, and
Q10). The black line represents the random guess prediction.
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Figure 14. Comparison of the AUC for the corrected and uncorrected forecasts for all hydrological
models, considering Q90, Q75, Q25, and Q10 as thresholds.

4. Conclusions

This study evaluated the performance of the ECMWF-SEAS5 global precipitation
product to predict seasonal streamflow regimes in a tropical river basin located in Brazil.
The rationale for developing the obtained results was to address an improvement in the
seasonal streamflow forecast system in Brazil, as well as in the operation of hydropower
reservoirs and water resource management in the country. Therefore, it is expected that
this evaluation will enhance the use of products of the ECMWF global forecast system
in river basins located in South America. In general, the results showed that ECMWF-
SEAS5 can represent the seasonal rainfall conditions in the studied area well, including
the occurrence of extreme events. In addition, we compared four conceptual hydrological
models with different structures in order to account for the uncertainties associated with
the hydrological processes presented in a large-scale river basin. The results exposed
that the hydrological models presented a satisfactory performance in representing the
inflows at all six hydropower plants. However, none of the selected models presented a
superior performance in representing the streamflow regimes for all the evaluation stages,
including calibration, validation, and forecasting. For instance, for the calibration and
validation stages, the HBV presented better adaptation to the observed data compared to
the other hydrological models. For the validation stage, the SMAP model presented the
lower NSE and NSElog metrics in some sub-catchments, with mean values close to 0.5
and 0.65, respectively. In addition, all hydrological models exposed a negative bias for this
stage, indicating that observed streamflows are systematically greater than the simulations.
Those differences are specifically observed during the recession curves of the hydrographs.

For the uncorrected forecasts, the results showed a poor performance based on the de-
terministic metrics for all sub-catchments and hydrological models. For instance, negative
NSE values were exposed for the GR4J, HBV, and HBV models, whereas the SMAP model
achieved values of up to 0.5. The applied post-processing scheme substantially improved
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the reliability of streamflow forecasts, both in terms of deterministic and probabilistic
metrics. This improvement was exposed mainly in the representation of flows during
dry periods. The main advantage observed for the adopted post-processing procedure
is the moving window and cross-validation framework, which allows for representing
the time-varying streamflow conditions in the watershed. Based on PBIAS, the forecasted
streamflow presented values close to 10% for all hydrological models, with the exception of
the first month. This behavior can be attributed to the differences in the initial conditions of
the hydrological models and the watersheds at the beginning of each forecast. In this case,
additional correction procedures can be performed to adjust the initial state conditions of
each hydrological model.

According to CRPSS, we concluded that forcing different hydrological models with
the ECMWF-SEAS5 precipitation product represents a seasonal streamflow forecast system
more reliable than the climatology in tropical river basins located in South America. This
result can be verified by comparing both the raw and corrected forecasts for the different
lead times. After the bias correction, CRPSS presented a significant improvement in
the forecasts executed during dry months. Alternatively, the bias correction showed an
improvement for the forecasts executed during wet months only during the first three
months. Finally, the ROC curve exposed some differences in the performance of the adopted
hydrological models. For instance, the HBV model presented a greater probability of false
detection to measure the occurrence of low flows (Q90), while GR4J and HYMOD have the
same conditions for high flows (Q10).

This study highlights the importance of considering more than one hydrological
modeling approach to represent the streamflow conditions in a large-scale river basin, given
the uncertainties associated with the different hydrological processes. The comparison of
different hydrological modeling approaches showed that the performance of each model
can differ significantly according to the evaluated period. This variation can be related to the
different uncertainty sources associated with the calibration procedure, the model structure,
the parameters, and the input data. In addition, the perception of each hydrological
model commonly follows the main hydrological process presented in the regions they
are developed in. For instance, the SMAP model, adapted to represent the hydrological
conditions of watersheds located in Brazil, presented a lower performance for the validation
stage in comparison with GR4. However, this model presented better adjustment with the
observed data for the seasonal forecasts. On the other hand, the HBV model, which can
integrate a snow component and has the same number of parameters as the SMAP model,
did not show a good performance for the forecasts, despite this model showing the best
adjustment during the calibration stage.

For this study, we only considered conceptual approaches to representing streamflow
conditions. However, this study could be broadly extended by considering the use of empir-
ical or physical modeling approaches. The suggested directions for future studies included
the comparison of additional global forecast systems and the evaluation of the adopted hy-
drological modes for sub-seasonal streamflow forecast and short-term forecasting coupled
with data assimilation techniques.
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