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Abstract: This paper reviews applications of optimization techniques connected with reservoir
simulation models to search for optimal rule curves. The literature reporting the search for suitable
reservoir rule curves is discussed and examined. The development of optimization techniques for
searching processes are investigated by focusing on fitness function and constraints. There are
five groups of optimization algorithms that have been applied to find the optimal reservoir rule
curves: the trial and error technique with the reservoir simulation model, dynamic programing,
heuristic algorithm, swarm algorithm, and evolutionary algorithm. The application of an optimization
algorithm with the considered reservoirs is presented by focusing on its efficiency to alleviate
downstream flood reduction and drought mitigation, which can be explored by researchers in wider
studies. Finally, the appropriate future rule curves that are useful for future conditions are presented
by focusing on climate and land use changes as well as the participation of stakeholders. In conclusion,
this paper presents the suitable conditions for applying optimization techniques to search for optimal
reservoir rule curves to be effectively applied in future reservoir operations.

Keywords: optimal reservoir rule curves; optimization algorithm; climate change; reservoir model;
stakeholder participation

1. Introduction

Despite numerous advances in watershed management, there are still several factors
that lead to extreme events, such as floods and droughts, in various regions, particularly
Southeast Asia and Thailand. Some of the main factors include global warming, limited
natural areas, increased industrial usage and agricultural land development, which can
significantly impact hydrological processes in basins [1–3]. To achieve a balance between
resources and demand, water resource management adopts non-structural solutions. The
management of the supply side requires improved river–reservoir system operations, with
reservoir rule curves acting as essential guidelines for regulating the amount of water
released at different times [4,5]. Therefore, modifying the reservoir rule curves to consider
the effects of land use and climate change is necessary.

Typically, reservoir rule curves are derived from the optimization of the system op-
eration process using historical hydrological data and physical system constraints. To
manage long periods, including drought and flood events, simulation models evaluate the
effectiveness of the achieved rules and modify them if needed. In Thailand, the operating
rule curves of large reservoirs are revised every five years using updated hydrological time
series [6,7]. However, the inflow to the reservoir system undergoes significant changes
due to climate and land use alterations, making it impossible to accurately predict future
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operations using past hydrological data alone [8,9]. Therefore, implementing a mechanism
to predict hydrological flows entering the system is necessary when modifying reservoir
operating rule curves. The new rule curves, extracted using accurate forecast models that
consider the impacts of climate change and land use development, will likely perform
better in dealing with future hydrological events. In general, reviewing operating policies
within a technical framework that includes interdisciplinary approaches and stakeholder
participation is crucial.

To achieve its efficient management, reservoir operation employs a combination of
optimization techniques, the prediction of future hydrological conditions, and the partici-
pation of experienced decision-makers, with cross-disciplinary and stakeholder approaches
playing central roles. The participation of stakeholders promotes an optimization process
that incorporates the experience of reservoir operators [10]. Additionally, the quality of the
obtained results largely depends on the applied optimization algorithm [11]. Therefore, this
study presents and reviews some conventional optimization algorithms from the literature
for comparative purposes. The contribution of this paper includes presenting the suit-
able conditions to apply optimization techniques alongside a reservoir simulation model
to search for the accepted rule curves, including fitness functions, searching constraints,
land use change, climate change, and the participation of stakeholders. Details of each
contribution are presented within the paper.

2. Reservoir Simulation Models

Reservoir simulation models were developed to represent physical phenomena under
specific conditions, utilizing the principles of mass conservation and the physical limi-
tations of the reservoir and its associated facilities through interconnected mathematical
relationships [12–15]. These models are useful tools for system managers to estimate the
outcomes of their decisions, enabling them to achieve their goals and produce the highest
economic returns. However, the accuracy of these models in estimating reservoir efficiency
is heavily dependent on the correct estimation of reservoir inflows, a hydrological factor
with high uncertainty [16].

To ensure the safe capacity of the reservoir, the solid yield is considered as the bare
minimum and is transformed into the maximum permissible amount that can be utilized
during critical times. This approach guarantees that enough water is available in the
reservoir to meet the basic water needs of the downstream region. The first step in using
rule curves to calculate a reservoir’s water balance is to determine its storage capacity,
starting at full capacity. Water release can then be calculated based on predefined poli-
cies, such as the standard operating policy, hedging rule, hydropower rule, and space
rule [17–19]. SOP have been developed and widely applied because of the need to meet
target demands. Therefore, they are suitable for using to control water release for irrigation,
water supply and power generation. On the other hand, HR have been developed for the
operation of reservoirs during dry seasons under different conditions, serving the high
fluctuations of inflow. HR release criteria include allocating irrigation water considering the
vast effects of climate change, whilst focusing on mitigating current and future droughts.
Moreover, HR release criteria can be used in conjunction with reservoir rule curves for
managing both flood and drought situations [20]. Figure 1 presents a conceptual diagram
of the hedging rule (HR) and standard operating policy (SOP), which can be expressed
mathematically by Equations (1) and (2), respectively.
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January to December); Dτ is the net downstream water demand during month τ; Dt is the 
lower rule curve of month τ; Dt + C is the upper rule curve of month τ; and Wν,τ is the 
available water during year ν and month τ, as described in Equation (3): 
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where Sν,τ−1 is the stored water at the end of month τ − 1; Qν,τ is the monthly inflow to the 
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The hedging policy is expressed as follows:

When 0 ≤ (1 − DDIt)·Dt ≤ SWAt

Rv,τ =


WAτ if WAτ < SWAτ

Dτ + (SWAτ − Dτ)
WAτ−EWAτ

SWAtτ−EWAτ
if SWAτ ≤ WAτ ≤ EWAτ

Dτ if EWAτ ≤ WAτ < DDø + C
WAτ − C if WAτ ≥ Dø + C
0, otherwise

(1)

where Rν ,τ is the discharge of the reservoir at time τ; SWAτ and EWAτ represent the
available water at the start and end points at time τ, respectively; and Dτ is the downstream
water demand at time τ.

The standard operating policy is expressed as follows:

Rv,τ =


Dτ + Wν,τ − Dτ + C, f or Wν,τ ≥ Dτ + C + Dτ

Dτ, f or Dτ ≤ Wν,τ < Dτ + C + Dτ

Dτ + Wν,τ − Dν f or Dτ − Dτ ≤ Wν,τ < Dτ

0, otherwise

(2)

where Rν ,τ is the discharge of water during year ν and month τ (τ = 1 to 12, standing for
January to December); Dτ is the net downstream water demand during month τ; Dt is the
lower rule curve of month τ; Dt + C is the upper rule curve of month τ; and Wν ,τ is the
available water during year ν and month τ, as described in Equation (3):

Wv,τ = Sv,τ−1 + Qv,τ − Rv,τ − Eτ (3)

where Sν ,τ−1 is the stored water at the end of month τ − 1; Qν ,τ is the monthly inflow to
the reservoir; and Eτ is the evaporation loss.

The performance criteria of the system, including the number of failure periods, the
amount of supply and demand, the amount of excess water (spill), and the maximum and
average vulnerabilities, can be calculated as the results of the simulation model. Figure 2
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shows the regulatory water released from a reservoir and its characteristics compared to
target demands.
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3. Optimization Techniques for Reservoir Rule Curve Extraction

The optimization–simulation technique is a popular approach for the optimization
and system simulation of water resources. This technique uses optimization models to find
the best solutions while also simulating the system details. By connecting optimization
techniques with the reservoir model using monthly rule curves as decision variables, the
best values for these variables can be found to provide the best fitness for the objective
function. Optimizing the key points of rule curves can be an effective manner of avoiding
their fluctuation. Therefore, this section is divided into three sections, including the
integration of optimization techniques and the reservoir simulation model, the searching
process for the objective function, and optimizing the points of the obtained rule curves.

3.1. Integrating Optimization Techniques and the Reservoir Simulation Model

Reservoir rule curves consist of upper and lower curves, with 24 decision variables
in total for one reservoir. The physical characteristics of the reservoir and operational
constraints determine the feasible region, or the boundary, for each variable, which typically
ranges from dead storage to full capacity. A visualization of the optimization–simulation
technique, including the integration of optimization techniques and the reservoir model,
and the boundary of decision variables, is presented in Figures 3 and 4. Once the optimal
rule curves are found, they are used as the release criteria in the reservoir simulation model,
which considers both historic and synthetic inflows. This evaluation process results in the
creation of management criteria, such as the frequency, intensity, amount, and duration of
flood or drought conditions, as shown in Figure 5. In summary, the optimization–simulation
technique is an effective tool for optimizing water resource management strategies. The
optimization techniques can be integrated with the reservoir simulation model, both as
a single or multi-reservoir system. The decision variables (rule curves value) for a single
reservoir are 24 values, with 12 values for the lower rule curves and 12 values for the upper
rule curves. On the other hand, the multi-reservoir system uses 48 values for two reservoirs,
72 for three reservoirs, and 96 for four reservoirs. The search process simultaneously
provides the optimal rule curves of all the reservoirs of the system [21].
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3.2. Objective Function of the Search Process

Generally, most objective functions that search for an optimal solution are calculated
from the results of a simulation model. In our case, these values represent flood and
drought situations up to the limits imposed by the physical characteristics of each reservoir.
The popular objective functions for searching the optimal reservoir rule curves are the
minimal average water shortage described in Equation (4), the minimal frequency of water
shortages in Equation (5), the minimal average excess water per year in Equation (6), and
the minimal frequency of excess water in Equation (7) [8,9], shown as follows:

The minimal average water shortage per year:

MinH(avr) =
1
n ∑n

v=1 ShV (4)

The minimal frequency of water shortage:

MinFre(i) =
1
n

n

∑
v=1

Yshv (5)

The minimal average excess water per year:

MinP(avr) =
1
n ∑n

v=1 SpV (6)

The minimal frequency of excess water:

MinFre(i) =
1
n

n

∑
v=1

Yspv (7)

where H(avr) is the average water shortage per year; Fre(i) is the frequency of water shortages;
P(avr) is the average excess water per year; n represents an entire year; Shv is the water
shortage in year v; Yshv is the year of water shortage; Spv is the release of excess water
during year v; and Yspv is the year of the release of excess water.

3.3. Optimizing the Points of the Rule Curves

The obtained rule curves often fluctuate and lack practical usefulness due to the
independence of the searching boundary for each decision variable. These fluctuations are
caused by the seasonal pattern of streamflow and make it challenging, if not impossible,
to use the resulting curves. To avoid fluctuations in the obtained values, the smoothing
function and the moving average constraint are incorporated with the constraints of the
searching procedure. Firstly, a smoothing function can be applied to both the upper and
lower rule curves. This function controls the maximum and minimum storage levels of the
reservoir at the beginning and end of the flood season, respectively [22].

To describe the smoothing function for adjusting the rule curves, the monthly rule
curves’ lower and upper levels were fixed and represented by the ‘x’ and ‘y’ values,
respectively. In the early drought season, the water level in January (x1, y1) should be
higher than that in February (x2, y2) and then gradually decrease until June (x6, y6). From
July (x7, y7), which marks the beginning of the flood season, the water level should be
higher than that in June (x6, y6), and in August (x8, y8), the water level should rise higher
than in July (x7, y7) and increase until the end of the rainy season in October (x10, y10) until
the end of December (x12, y12). This pattern reflects the seasonal streamflow of Thailand.
The smoothing function constraints are integrated into the fitness function of the reservoir
simulation model to fit the rule curves, as presented below:

x1 > x2 > x3 > x4 > x5 > x6 < x7 < x8 < x9 < x10 < x11 < x12 (8)
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y1 > y2 > y3 > y4 > y5 > y6 < y7 < y8 < y9 < y10 < y11 < y12 (9)

where the variables x1 and y1 represent the initial water level in January, which marks the
beginning of the drought season. Similarly, x5 and y5 represent the water level in May; x6
and y6 represent the initial water level in June, which marks the end of the drought season
and the beginning of the flood season, and marks the starting point of the lower rule curve
for the flood season. Lastly, x12 and y12 represent the water level in December, which marks
the end of the upper rule curve for the flood season.

Secondly, the moving average is another smoothing function constraint for reducing
the fluctuate rule curves, for each rule curve can be described as:∣∣∣∣ xτ−2 + xτ−1 + xτ

3
− xτ

∣∣∣∣ ≤ 0.1T for τ = 3, . . . 12 (10)

∣∣∣∣ x12 + xτ−1 + xτ

3
− xτ

∣∣∣∣ ≤ 0.1T for τ = 2 (11)

∣∣∣∣ x12 + x12−τ + xτ

3
− xτ

∣∣∣∣ ≤ 0.1T for τ = 1 (12)

where x is rule curve level and T is the active storage of each reservoir. These smoothing
functions are integrated into the fitness function of the searching procedure [22].

4. Typically Applied Optimization Techniques

The optimal rule curves have been improved by many methods, initially using easy
methods and then more complicated procedures, such as the trial and error technique
with the reservoir simulation model, dynamic programing, heuristic algorithm, swarm
algorithm, and evolutionary algorithm. There are four groups of methods that are classified
according to the solution criteria. Figure 6 shows the method groups that are usually used
to find the optimal rule curves. Details of each technique are presented, starting with the
simple techniques and followed by the more complicated methods.

4.1. Trial and Error Technique with the Reservoir Simulation Model

The trial and error technique is a basic method used to improve reservoir rule curves
by using the reservoir simulation model [6,23]. This method involves evaluating the efficacy
of the system using a number of trial rule curves, which are modified by individuals with
previous experience in operating reservoirs. Figure 7 illustrates the procedure of the trial
and error method for finding suitable rule curves. However, this method is not always
acceptable in practice since it does not guarantee obtaining the best solution. Nevertheless,
it can be considered as the basic version of the expert systems in the management of
water resources.

4.2. Dynamic Programming

The dynamic programming algorithm (DP) is popular for solving combinatorial opti-
mization problems [24–27]. Since the operating rules and performance characteristics of the
reservoir system are usually nonlinear and naturally combinatorial, DP can be considered
a very suitable method for optimizing the rule curves. It should be noted that dynamic
programming suffers from the curse of dimensionality in large-scale problems. In previous
research in this field, this issue has been pointed out as the greatest challenge of using DP in
reservoir operation optimization. To tackle this problem, various modified versions of DP
have been proposed in the literature, including discrete DP techniques [28,29], increment
DP [30], discrete differential DP [31], incremental DP successive approximation [32], and
folded DP [33]. Additionally, it should be noted that, due to the continuous nature of
the problem variables (e.g., storage levels, release values, and rule curve levels), discrete
algorithms are not suitable to solve reservoir management problems.
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To overcome the above-mentioned dimensional problem, the principle of progressive
optimality (PPO), a computationally efficient technique for a continuous state variable, is
usually applied to find the optimal rule curves. It has been shown that the computational
dimensionality of the DP/PPO approach is smaller than that of the traditional DP one
(see Figure 8). The DP/PPO was applied to find the optimal rule curves for single and
multi-reservoir systems in Thailand [34].
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4.3. Heuristic and Metaheuristic Algorithms

Heuristic algorithms (Has) use simple techniques for a guided random search to find
the optimal solution. Some of them are based on a local search. Conceptual simplicity
and ease of implementation have made such methods very popular. In this method, the
search process starts with a random initial solution. The initial solution is modified by
a simple operator, such as mutation. If this modification leads to the achievement of a
more optimal solution, the new solution replaces the previous one. Otherwise, the current
solution is retained. The processes of modification and replacement of the better solution
continue iteratively until the stopping condition is satisfied. After the calculations are
stopped, the best solution that is found is presented as the obtained optimum [35–37].



Water 2023, 15, 1669 9 of 34

Recently, various Has have been applied to achieve the optimum operating policies for
water resources [38–42].
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HAs have been applied with the simulation model search to obtain the optimal
reservoir rule curves. The heuristic algorithm begins with one initial solution to the
problem, usually chosen at random (lower and upper rule curves). Those initial solutions
are used in the reservoir simulation model. Then, the water discharge is calculated in
each month based on the random rule curves for controlling water storage as an objective
function [43] (see Figure 9). HAs have been applied to search optimal rule curves in
multipurpose reservoirs in Thailand. The results showed that the reservoir rule curves
developed with the HA technique were able to reduce water shortages by 43–44% compared
with the existing rule curves [43]. In addition, HAs have also been applied to control the
water allocation for the downstream reservoirs of the upper Tone River in Japan to prevent
flooding during heavy rainfall using the objective function to minimize the difference
between the simulated discharge thresholds and the actual operating criteria. It was found
that, during the operation, flood peaks were effectively reduced [44].

Some of the heuristic and metaheuristic algorithms that have been integrated with
the reservoir simulation model for searching optimal rule curves include the simulated
annealing algorithm (SA) and shuffled frog leaping algorithm (SFLA).

4.3.1. Simulated Annealing Algorithm

The simulated annealing algorithm (SA) has been successfully utilized to solve opti-
mization problems [45,46]. This approach is particularly effective in cases where the search
space is discrete, and exhaustive enumeration is not practical due to limited time. Although
SA may not always find the most efficient solution, it has proven to be an excellent strategy
for solving organizational optimization problems [47]. In the field of reservoir management,
SA has been extensively studied and applied in conjunction with the ‘10 reservoir problem’
standard criteria [48]. SA has been employed in many real reservoir systems in Thailand to
derive the optimal operating policies, where it has been found to take less computation time
compared to other optimization techniques, such as the genetic algorithm (GA) [49]. For
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example, SA has been applied to develop rule curves for the Bhumibol and the Sirikit Reser-
voirs in northern Thailand, which are large multipurpose reservoirs with an integrated
management system. The resulting rule curves were effective in reservoir management,
especially for seasonally fluctuating hydrological conditions [50]. SA has also been used
to develop a non-linear time-dependent dynamic model to describe the operation of a
single-purpose reservoir during the irrigation season. The objective of this model was
to maximize the total farm income by optimizing the allocation of irrigated crops, while
considering the changing conditions of soil moisture and plant water demand with an
integrated water balance model. This model has been used as a decision support tool for
irrigated cropping patterns and irrigation scheduling, such as in the planned reservoir on
the Havrias River in northern Greece [51]. Currently, SA is still popular to develop optimal
reservoir management and operational criteria, especially in integrating ecosystem-related
data with water allocation to support the environmental and agricultural water demand
and hydropower operation of multi-reservoir systems [52,53].
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4.3.2. The Shuffled Frog Leaping Algorithm

The shuffled frog leaping algorithm (SFLA) is a meta-heuristic optimization method
inspired by the memetic evolution of a group of frogs when searching for food [54–56].
The SFL algorithm is derived from a virtual population of frogs in which individual
frogs represent a set of possible solutions (possible rule curves). Each frog is distributed
to a different subset of the entire population described as memeplexes. The different
memeplexes are considered as different cultures of frogs that are located in different places
in the solution space (i.e., global search). Each culture of frogs simultaneously performs
an independent deep local search using a particle-swarm-optimization-like method [57].
To ensure global exploration [58], after a defined number of memeplex evolution steps
(i.e., local search iterations), information is passed between memeplexes in a shuffling
process. Shuffling improves the frog idea quality after being infected by frogs from different
memeplexes, ensuring that the cultural evolution towards any particular interest is free
from bias. In addition to improved information, random virtual frogs are generated
and substituted in the population if the local search cannot find better solutions. After
this, the local search and shuffling processes (global relocation) continue until defined
convergence criteria are satisfied. Recently, a conditional shuffled frog leaping algorithm
(CSFLA) integrated with a simulation model was applied to identify optimal reservoir rule
curves [59–61].

The developed CSFLA for searching rule curves is described as follows. The CSFLA
begins with an initial population of frogs, F = {X1, X2, . . . , Xn}, created randomly within
the feasible space. With the 24 decision variables for a single reservoir (upper and lower
rule curves variables), the position of the ith frog is represented as Xi = [xi1, xi2, . . . , xi24]T.
Then, a set of rule curves is used in reservoir simulation and the release water is calculated
by the simulation model considering these rule curves. Next, the release water is used
to calculate the fitness function to evaluate the frog’s position. The fitness function is the
minimum of the average water shortage subject to constraints on the simulation model, as
illustrated in Equation (4).
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4.4. Evolutionary Algorithms

Some of the evolutionary algorithms that have been integrated with the reservoir
simulation model to search for the optimal rule curves include the genetic algorithm
(GA), differential evolution (DE), genetic programming (GP), and cultural algorithm (CA).
Figure 10 shows the application of the evolution algorithm integrated with the reservoir
simulation model to search for the optimal rule curves.
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4.4.1. Genetic Algorithm

Genetic algorithms (GAs) have become increasingly popular over the past decade for
solving various problems due to their robust performance [62]. In order to handle problem
constraints and be integrated into simulation models, efficient computational methods
have been presented in conjunction with GAs [63]. These methods have been successful
in optimizing reservoir operations [64], which is a complex problem that involves the
management of water release from a reservoir to meet various demands while taking into
account multiple objectives, such as flood control, hydropower generation, and irrigation.

The GAs integrated with the reservoir simulation model involves transferring decision
variables from the physical space of the problem to the computational space using a coding
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approach. Each decision variable represents the value of the monthly rule curves, which is
defined as the upper or lower bound. A population of coded solutions is randomly gener-
ated in the search space of the problem. The water release values from the reservoir at each
time step are then calculated by the simulation model, and the performance criteria of the
system in supplying reservoir targets are evaluated. In an iterative process, GAs operators,
such as selection, crossover, and mutation, are executed on the existing population to pro-
duce new solutions. The simulation model simulates the rule curves and their performance
using the generated solutions and estimates the released water, the performance criteria of
the system, and finally the value of the predefined problem objective function. The process
of reproducing new populations continues until the stopping condition of the algorithm is
satisfied, and at the end, the best solution that is found represents the optimal rule curves
of the reservoir.

GAs have been widely used in studies seeking optimal reservoir operation world-
wide, including in Thailand [65–70]. For example, in the face of climate change and
land use changes affecting runoff flows into reservoirs in upstream areas, the develop-
ment of the optimal rule curves for large- and medium-sized multipurpose reservoirs
has become necessary to improve their suitability and efficiency for future reservoir
management [8,71,72]. In a recent study, the objective function was to minimize water
shortages during the dry season and prevent overflows from reservoirs during the
flood season. The results showed that the optimal rule curves generated by GAs can ef-
fectively reduce the frequency and volume of water shortage situations and water over-
flow, while maintaining a reasonable efficiency compared to the existing rule curves.
The use of GAs in reservoir operation optimization can thus help decision-makers to
make better informed decisions that ensure water security for all stakeholders.

4.4.2. Differential Evolution

Another efficient evolutionary search algorithm that has been successfully used in
reservoir operation optimization and rule curve extraction studies is the differential evolu-
tionary algorithm (DE) developed by Storn and Price [73]. In 2008, Ready and Kumar [74]
applied a multi-objective functional model of DE to establish a water allocation policy
for irrigation to support multi-crop systems under water scarcity situations that result in
crop failure. A replication of this case study took place in Malaprabha Reservoir, India.
Their results suggest that the proposed DE could be used to develop different strategies for
irrigation planning and reservoir operation policies and to select the best possible solutions
appropriate to the expected hydrological conditions. In Thailand, DE was connected to
a reservoir model to develop the reservoir rule curves of the Lam Pao Reservoir, a large
multipurpose reservoir located in Kalasin Province in northeastern Thailand. The results
clearly indicated that the rule curves developed with DE can reduce the frequency, amount
of water scarcity, and flooding during the dry and flood seasons better than the old rule
curves. In addition, it demonstrated the development of appropriate reservoir operating
rules to accommodate variations in hydrological conditions [75]. To date, DE has also been
popularly applied to study optimum reservoir rule curves integrated with other algorithms.
For example, hybrid DE and Bat algorithm (BA), enhanced differential evolution (EDE), and
a differential evolution with particle swarm optimization (A-DEPSO) were used to solve
the complex problems of a case study of four hydropower reservoirs with multi-reservoir
operations [76–78].

4.4.3. Genetic Programing

Genetic programing (GP) describes a set of alternative techniques for application in a
wide range of engineering problems [79]. Numerical methods have used GP for resizing
structures in order to search for the optimal cross-sections and connecting the joints to
achieve the minimum weight. GP has been applied to search for the optimal reservoir rule
curves in the Huay Ling Jone reservoir, Yasothorn Province, Thailand [80]. Furthermore,



Water 2023, 15, 1669 14 of 34

GP was used to develop a real-time reservoir operation considering the forecast of inflow
flowing into the reservoir [81] and the reservoir’s operating rule [82].

The process of GP begins with a randomly generated initial population of computer
programs [83]. Each program in the population represents a parse tree generated by
combining its functions (nodes) and terminals (leaves), which are suitable for the problem
and defined in a function set and a terminal set, respectively [84]. The function set may
include arithmetic and mathematical functions, conditional and Boolean operators, iterative
functions, and user-defined functions or operators. The terminal set contains the arguments
for the functions. Once the initial population is generated, the current population is
repeatedly replaced with a new population (new generation) using genetic operators
(reproduction, crossover, and mutation) until the population’s best fitness reaches the
desired value or the maximum number of generations is reached. The genetic operators
used in GP are the same as those used in a basic genetic algorithm.

4.4.4. Cultural Algorithms

Cultural Algorithms (CAs) are a type of approach to evolutionary computational meth-
ods that was developed by Reynolds [85]. The cultural algorithm simulates social evolution
based on learning agent-based modeling (ABM) techniques and based on experience and
knowledge gained over time [86,87]. In addition to the population, this algorithm relies on
another element called the belief space. The processes defined in the algorithm are very
useful in improving the efficiency of the process to achieve the optimal solutions in the
search space. In the approach, the population is the set of possible solutions in the search
space, while the belief space is the space of knowledge obtained during the searching
process. The accumulated data in the belief space are shared across the population and are
applicable to all population-based optimization techniques [88].

Conditional Cultural Algorithm (CCA) was integrated with the reservoir simulation
model in order to optimize the reservoir rule curves. In that study, the minimization of the
average water shortage function was used as the optimization objective function. The CCA
was applied with historical inflows, future inflows under scenario B2, water demand, and
physical reservoir data to determine the optimal rule curves of the Huai Luang Reservoir
in the northeast of Thailand [89].

In the first step, a reservoir simulation model is coupled with a conditional cultural
algorithm. Computations start from randomly generating an initial population of reser-
voir rule curves, adjusting domain-specific knowledge, updating the belief space using
acceptance function, and stopping criteria. The physical and initial data of the problem are
considered, and then the reservoir rule curves in the initial population space are sent to the
reservoir simulation model to evaluate their performances. Using the monthly streamflow,
the objective function of the problem is calculated and the performance of the solutions
in the population is determined [71]. After that, new reservoir rule curves are generated
using algorithm operators and the initial population is replace if appropriate. This iterative
process continues until the stopping condition is satisfied.

4.5. Swarm Algorithms

The swarm algorithms that have been applied with the reservoir simulation model
for searching optimal rule curves include particle swarm optimization (PSO), cuckoo
search algorithm (CS), firefly algorithm (FA), flower pollination algorithm (FPA), gray
wolf optimizer (GWO), wind driven optimization (WDO), ant colony optimization (ACO),
and honey-bee mating optimization (HBMO). Figure 11 shows the application of swarm
algorithms integrated with the simulation model to search for the optimal rule curves.
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4.5.1. Particle Swam Optimization

The particle swarm optimization (PSO) algorithm, which was inspired by the swarm
behavior of some organisms (such as birds and fish) and proposed by Eberhart and
Kennedy [90], is one of the most efficient optimization methods to solve continuous prob-
lems. As with all guided stochastic search algorithms, the search begins with the generation
of a swarm of random solutions in the search space, and then based on the rules defined
in the algorithm, the swarm is updated in each iteration [91]. Although this algorithm
is population-based, its operators have nothing in common with evolutionary methods
and work based on swarm intelligence processes. Thus, in PSO, the potential solutions,
or the particles, move towards the optimal point by following the optimal particles and
using their personal experiences. PSO has been used in many fields, such as function
optimization [92], artificial neural network and fuzzy system control [93,94], and reservoir
operation planning and management [38].

Conditional particle swarm optimization (CPSO) with the reservoir simulation model
has been applied to search optimal rule curves [95]. In Thailand, the Lampao Reservoir,
which is located in the northeastern region, was used for the illustrative application [95]. In
2014, Zhang et al. [96] proposed an improved adaptive Particle agglomeration optimization
(IAPSO) algorithm to address a number of conflicting objectives and limitations. This is
related to non-linear problems with complex dynamic constraints, which are important in
the context of reservoir system operation. The study was tested on the Three Gorges Project
(TGP) and XiLuoDo Project (XLDP) power generation reservoirs in China, and IAPSO was
compared with other algorithms, such as wavelet PSO (WPSO), adaptive PSO (APSO), and
basic PSO (BPSO). It performed better with more efficiency and durability and appeared to
be better in terms of power generation benefits and convergence efficiency [96]. In addition,
PSO has been integrated into the reservoir system simulations that are co-operating to
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satisfy from a set of different priority requirements by considering hedging rules, which
are based on the level of monthly water retention. For the objective function of this
study, it increased efficiency and reduced large deficits and assigned different weights to
accommodate different demand categories [97]. In recent years, PSO has remained popular
for its application to improve reservoir allocation criteria considering the conditions of
iteration variables using water volumes for water supply and water spills [98] as well as
maximum energy for short-term and long-term flood control [99].

4.5.2. Cuckoo Search

The cuckoo search (CS) optimization algorithm is one of the algorithms developed to
solve non-linear and continuous optimization problems. This algorithm was introduced
by Yang and Deb [100], inspired by the life of a family of birds called cuckoo. The cuckoo
search algorithm is based on the optimal lifestyle and interesting features of this species,
such as their egg-laying and reproduction characteristics. Adult cuckoos lay eggs in the
nests of other birds. If the cuckoo eggs are not detected and destroyed by adult host
birds, they will grow and become adult cuckoos. Under the influence of environmental
characteristics, adult cuckoos migrate in groups hoping to find a suitable environment for
life and reproduction. In this algorithm, the suitable environment is the global Optimum in
the objective function of the optimization problem. To date, this algorithm has shown a
good performance in various optimization scenarios. The female cuckoo inspects different
nests to find a species of bird whose eggs, laid by them, are very similar in color and pattern
to her own. Meanwhile, some species of cuckoos lay their eggs only in the nests of certain
types of host birds. These cuckoos learn to lay eggs that closely replicate the color and
pattern of the host’s eggs. However, many host birds also learn to distinguish cuckoo eggs
from their own. In such a case, either the cuckoo eggs are thrown out of the nest or the host
bird abandons its nest and nests again in another place [101].

CS has often been applied in optimizations that seek to solve the problem of reservoir
management in different conditions and variables. CS is considered an alternative to the
optimal operation of multi-reservoir systems (OOMRS) for the purposes of maximizing
energy production. Punitive methods are used to address physical and operational lim-
itations [102,103]. The constraints of irrigation and flood control are considered [104],
including the connecting conditional cuckoo search algorithms (CCS) and the reservoir
simulation model, which has been applied to determine optimal reservoir rule curves [105].
This algorithm search begins with an initial feasible solution and boundary, as well as
input data. The number of available host nests and the total number of iterations is set
up. With 24 decision variables per reservoir (rule curve variables for the upper and lower
rule curves), a nest for the cuckoos is represented as Xi = [xi1, xi2, . . . , xi24]. Then, a set of
rule curves is used in the reservoir simulation and the release water is calculated by the
simulation model using these rule curves. The release water is then used to calculate the
fitness function to evaluate a nest. A nest is then chosen randomly. A new set of rule curves
is used in the reservoir simulation and the release water is used to calculate the fitness
function again for Z(Xi+1). Next, the fitness function Z(Xi+1) and the fitness function Z(Xi)
are compared: if Z(Xi+1) is larger than Z(Xi), return and choose a new nest, but if Z(Xi+1) is
smaller than Z(Xi), replace Xi by Xi+1 and keep the new nest (accepted rule curves) for the
next iteration. The next iteration is performed by choosing the new nest if the termination
criterion is not satisfied. The process is then continued until the criterion is satisfied, as
illustrated in Figure 11. In the case of climate change impact studies, CS has been used
to optimize the multifunctional performance of reservoir systems. Its purpose is to meet
downstream water needs and control potential flooding [106].

4.5.3. Tabu Search Algorithm

The tabu search algorithm (TSA) is a meta-heuristic procedure designed to search for
an optimal solution. This algorithm is different from other meta-heuristics that do not rely
on randomness or selection based on probability. It is a deterministic method that searches
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for solutions from the immediate best solution. It has been adapted to solve many problems
in engineering, such as civil, industrial, electrical as well as water resources [107–109]. The
tabu search is recognized as being able to avoid provide the final solution that is the local
optimum value and can continue to search until the solution is near to the global optimum
value [110,111].

From 2018 to 2020, the conditional tabu search algorithm (CTSA) integrated with
the reservoir simulation model was applied to find the optimal rule curves. The mini-
mum average water shortage per year was used as the objective function for the finding
procedure, including hydrologic data, water demand, physical reservoir data, and future
runoff using 50-year future climate data. The proposed model was applied to determine
the optimal future rule curves of the Ubolratana Reservoir in the northeast region of Thai-
land [8,112,113]. In addition, TSA has also been studied for the solution and development
of optimal reservoir operating policies and has been integrated with other algorithms,
for example, in flood protection [114], the interoperability scheduling solutions of large
reservoirs that require a navigation ship lock waiting time under multiple constraints, and
the long-term energy scheduling of hydropower systems [115,116].

4.5.4. Firefly Algorithm

The firefly algorithm (FA) is a swarm-based metaheuristic algorithm inspired by the
flashing behavior of fireflies. FA is one of the algorithms released in 2009 by Yang [117].
The algorithm imitates the behavior of fireflies and has ideal rules. One of these rules is
that an individual firefly will follow a brighter firefly and, if there is no brighter firefly, the
firefly will move randomly [117]. It is an effective and easy-to-implement algorithm [118].
FA has been popularly applied in studies to solve reservoir management problems in both
single and multi-purpose reservoir systems, with the main objectives being irrigation water
supply [119] and irrigation and hydropower generation [120]. It is also effective in finding
suitable solutions to a continuous reservoir problem [121]. Moreover, FA was applied with
the reservoir simulation model for searching optimal reservoir rule curves in a flood control
area. This algorithm search begins with an initial feasible solution and boundary and input
data. The 24 decision variables per reservoir are represented by both the upper and lower
rule curves. Then, a set of initial rule curves is used in the reservoir simulation and the
release water is calculated. The release water is then used to calculate the fitness function
to evaluate the initial rule curves. Then, a new set of rule curves is created and used in
the reservoir simulation. The release water is used to calculate the fitness function again
and the new set of rule curves is evaluated. Next, the fitness function for this iteration and
previous iteration are compared to accept the best one. The next iteration is performed by
again creating the new set of rule curves if the termination criterion is not satisfied. The
process is then continued until the criterion is satisfied, as illustrated in Figure 11. The
proposed model was applied to determine the optimal flood rule curves of the Nam Oon
Reservoir in the northeast region of Thailand. The minimum average excess water per year
and minimum frequency excess water were used as the objective functions [122].

4.5.5. Flower Pollination Algorithm

One of the alternative techniques that was recently adapted to find appropriate values
is the flower pollination algorithm (FPA), which is based on the pollen grains of the flower.
Each flower has a different way to lure a bird or insect pollinator to ensure pollination for
reproduction and survival [123–125]. FPA is a highly effective technique that is suitable
to search for the optimal reservoir rule curves. There were two objective functions that
are considered to the search process: the minimum average water deficit and minimum
average excess water. The application of FPA to develop reservoir rule curves has been
studied in medium and small reservoirs in Thailand. The Huay Sabag, Huay Ling Jone,
and Num Oon reservoirs, which are located in the northeast region of Thailand, were
considered in one case study [126]. The operating process consists of the following parts.
The connection of the FPA and reservoir simulation model starts with input data and all
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the initial necessary data, such as dead storage level, normal high-water level, full capacity
level, and monthly water requirements. The FPA procedure is based on the flowers and the
pollination process. For this study, each decision variable was represented by the monthly
rule curves, which are defined as the upper rule and lower rule curves. After the first set of
flowers in the initial population were calculated, the monthly release water was calculated
by the simulation model considering those rule curves. Next, the released water was used
to determine the objective functions. Then, the evaluation of the criteria was undertaken to
evaluate the objective function. After that, the reproduction process creates new rule curve
values in the next iteration to find the current best solution. This procedure is repeated
until all the values of the rule curves are appropriate.

Recently, several researchers have used FPA to assess the problems of various reser-
voir management schemes, both for single and multi-reservoir systems, as well as for
specific purposes, for example, optimizing hourly scheduling for crop water allocation and
hydropower generation [127] and the operation of a large hydropower development [128].

4.5.6. Gray Wolf Optimizer

Another recently developed method of finding suitable interest values is the new meta-
heuristic method that has been used to determine appropriate water allocation criteria,
called the gray wolf optimizer (GWO) [129–131]. In this method, inspiration comes from
the gray wolf and the search methods to improve the surrounding position and hunting
of gray wolves. It is based on the hunting behavior of gray wolves, which require skill
and ability to search for prey and to surround it [132,133]. From 2019 to 2022, several
studies reported the application of GWO to search for the optimal solutions to reservoir
operation problems. In 2019, Choopan and Emami [134] presented the application of GWO
to predict water storage in the Shaharchay Reservoir in northwestern Iran. Its objective
is to manage risks from flood and drought events. The results from the GWO technique
showed statistically good predictions compared to evolutionary algorithms, such as the
continuous genetic algorithm (CGA) [134]. Later, in 2020, at the Golestan Dam in Golestan
Province, Iran, Donyaii et al. [135] developed a multi-objective gray wolf optimization
(MOGWO) algorithm to find optimal reservoir operating criteria under changing climatic
conditions. The associated objective functions defined in the optimization process are the
risk reduction and maximization of model reliability indices under baseline conditions and
climate change periods. In 2021, Niu et al. [136] presented a hybrid gray wolf optimizer
(HGWO) to improve the optimum operation of real-world hydropower systems with the
goal of maximizing the benefits from total electricity generation. The simulations indicated
that the HGWO method produced more satisfactory scheduling plans than the multiple
control methods.

Most recently, in 2022, Masoumi et al. [137] released the shuffled gray wolf optimizer
(SGWO), a hybrid optimization algorithm inspired by the shuffled complex evolution
(SCE-UA) algorithm and GWO to solve mathematical benchmark function and multiple
reservoir performance optimization problems with different scales. Two hypothetical
reservoir systems 4 and 10 and the Dez Dam in Iran, considered as a single reservoir system,
were chosen as case studies in this research. In addition, the performance of the SGWO
algorithm was compared to that of well-known evolutionary algorithms, such as particle
cluster optimization (PSO) and genetic algorithm (GA). Their results showed that SGWO
was able to achieve significantly better outcomes by using a significantly smaller number
of function assessments. In Thailand, GWO with a reservoir simulation model to search for
the optimal rule curves was applied. This algorithm search begins with an initial feasible
solution and boundary and input data. The decision variables are represented the upper
and lower rule curves. Then, a set of initial rule curves is used in the reservoir simulation.
The release water from reservoir simulation model is then used to calculate the fitness
function for evaluating the initial rule curves. Then, a new set of rule curves is created
and used in the reservoir simulation. The release water from the reservoir simulation
model is used to calculate the fitness function again and evaluated the new set of rule
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curves. Next, the fitness function of this iteration and previous iteration are compared
to accept the best one. The next iteration is performed by creating the new set of rule
curves again. The process is then continued until the criterion is satisfied, as illustrated
in Figure 11. The Ubolratana reservoir in Khon Kaen Province, the Lampao reservoir in
Kalasin Province, and the Nam Oon reservoir in Sakon Nakhon Province were considered
as the case studies [138].

4.5.7. Wind-Driven Optimization

The wind-driven optimization (WDO) algorithm is an alternative optimization tech-
nique that has recently gained popularity. The algorithm is a nature-inspired global
optimization methodology that draws inspiration from atmospheric motion. Essentially,
WDO is an evolutionary adaptation of air parcels in the atmosphere that are able to find
the best pressure to balance the atmosphere [139]. WDO is a population-based iterative
heuristic global optimization algorithm where a population of infinitesimally small air
parcels navigates over an N-dimensional search space following Newton’s second law of
motion, which is also used to describe the motion of air parcels within the Earth’s atmo-
sphere [140]. The technique has been successfully applied to optimize electromagnetics
problems [141–144], and is particularly suited for solving problems with both discrete and
continuous parameters.

WDO has also been applied to search for optimal reservoir rule curves in flood
control areas. For example, the technique was used to determine the optimal flood
rule curves of the Nam Oon Reservoir in the northeast region of Thailand, with the
minimum average excess water per year and minimum frequency excess water used
as the objective functions [145]. WDO has also been used to develop rule curves for
multiple reservoir systems, with the objective of improving the existing method of
managing a single reservoir that caused serious problems during the rainy season
when it was flooded in 2017 in Sakon Nakhon Province, Thailand [146]. In both studies,
the WDO technique was combined with a reservoir simulation model. The process
involves starting with an initial population that is created randomly within the feasible
space, which is the value between the dead storage capacity and the normal capacity
levels of the reservoir. Each decision variable represents the monthly rule curves in the
reservoirs, which are defined as the upper level and lower level.

4.5.8. Ant Colony Optimization

The ant colony optimization (ACO) algorithm was developed as another search op-
timization technique that was motivated by the natural phenomenon of ants depositing
pheromones on the ground to mark favorable paths that should be followed by other
members of the colony [147]. ACO is a probabilistic technique to solve computational
problems that can be reduced to finding a good path through graphs and has been widely
applied to various problems [148,149]. ACO emerged as useful for improving the operating
rule of the Hirakud multipurpose reservoir system in India. During the implementation,
a limited time series of inflows was considered as well as the classification of reservoir
volumes into several classes and the consideration of reservoir discharges for each time
period according to the pre-determined criteria of suitability. In this case study, multiple
objectives were identified, including reducing flood risk, minimizing irrigation deficits, and
maximizing hydropower generation as a priority. The final objective was to implement the
developed model into the monthly reservoir operation [150]. ACO has been implemented
to find a solution to the problem of hydropower reservoir operation that is defined as a
partially connected graph consisting of a set of rule curves connecting the nodes of the
graph. Each rule curve was assigned to represent the local operating policy of the reservoir.
The results clearly indicated that ACO paves the way for the efficient utilization of the
incremental solution generation mechanism available in ACO to enforce explicit problem
constraints [151].
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Then, in 2013, ACO was developed by identifying constraints so as to address the
appropriate multi-reservoir operating system problem by considering the decision parame-
ters of the problem as well as its responsiveness to both the storage and discharge volumes.
The algorithms developed are known as constrained ant colony optimization algorithms
(CACOAs). The results were found to outperform the conventional unrestricted ACOs,
especially in the ability of CACOAs to quickly and optimally solve multiple reservoir
operational problems [152]. Moreover, Kangrang and Lokham [153] also proposed a condi-
tional ACO (CACO) linkage to a reservoir model to find a suitable reservoir control curve
by selecting the case study of the Lam Pao Reservoir in Kalasin Province, northeastern
Thailand. In their study, the objective function of the search was identified as the lowest
average water scarcity and the increase in water allocation for future irrigation areas was
identified. Finally, the comparison of the new control curve developed with CACO to the
existing one suggests that it is effective in reducing the water shortages that are appropriate
to seasonal hydrological conditions, especially regarding the reservoir inflow. Overall,
the strength of the ACO is its quick search for global solutions as well as the appropriate
application to various conditions. Accordingly, ACO is popularly used to find solutions in
water resource management [154].

4.5.9. Honey-Bee Mating Optimization

The honey-bee mating optimization (HBMO) algorithm is a nature-inspired algorithm
that mimics the mating process of honey bees. In recent years, HBMO has shown promise
in solving reservoir management problems by being applied to highly constrained and/or
unconstrained real-value mathematical models with the objective of minimizing the total
squared deviation from the target requirement. Comparisons with other known heuristic
methods have been favorable [155,156]. Researchers have used HBMO to extract the
monthly linear operating rules of reservoirs for irrigation and hydropower purposes,
considering decision variables such as reducing the water supply deficit [157]. In 2011, an
improved version of HBMO was introduced to develop operating rules for multi-reservoir
systems with the objective of improving the release rule and the retention-volume-balancing
function, which form the operating policy. The proposed rule curves were able to manage
the tight constraints that define parallel reservoir operation in such a way that all generated
solutions are possible after a particular set of iterations [158]. While still a relatively new
algorithm, HBMO has shown promise in the field of reservoir management and could
potentially offer significant benefits in optimizing reservoir operations.

In addition, Solgi et al. [159] introduced a new enhanced HBMO (EHBMO) that relies
on a new mating process, replacing the one used in the HBMO algorithm. This change
enables EHBMO to achieve a solution that is as close as possible to the global optimum with
less computational effort compared to HBMO. The performance of the EHBMO algorithm
was tested with constrained and unconstrained mathematical optimization problems. It
was also used to find the optimal functioning of multi-reservoir systems. Recently, in
Thailand, HBMO has been applied to create the optimal reservoir rule curves impacted by
future climate change between 2020 and 2049 based on climate data from CMIP5 with the
scenarios from RCP4.5 and RCP8.5, respectively. The case study examined the effectiveness
of new rule curves in managing fluctuations in streamflow at the Ubolratana Reservoir,
located in the northeast region of Thailand. The results demonstrated that the new rule
curves were successful in addressing variations in streamflow and showed promise for
future water management efforts in the region. Specifically, the new rule curves were
found to increase the storage capacity of the reservoir during the flood season and reduce
water shortages during the dry season. These findings were compared to the existing rule
curves, and the results showed clear improvements with the implementation of the new
curves [160]. By demonstrating the positive impact of these new rules in a real-world
setting, this study has important implications for future water management practices in
Thailand and beyond. Hence, the methodology and results of this study are presented in
this paper in Section 5.1.
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5. Suitable Future Rule Curves

Finally, in addition to the various optimization techniques presented previously, the
development of an optimal reservoir rule curves by applying correlated hydrological data
is also presented as well as its implications for reservoir rule curves operation management.
In particular, the development of a reservoir rule curves requires the volume of water
flowing into the reservoir originating from the upstream area above the reservoir, which is
regarded as the main resource of the stored water in the reservoir [161]. However, because
of the global climate change problem, the amount of rain and temperature fluctuates
considerably when compared to past values and is likely to become more severe in the
future. For this reason, global climate change is expected to have an inevitable, direct
impact on the hydrological system. Moreover, the problem of land use changes due to the
encroachment of watershed forest areas due to the demand for agricultural areas and human
habitation has increased and tends to increase according to the growth of the economy.
These situations have affected runoff flow conditions, in particular, surface water behavior,
evaporation, interception, and infiltration [162,163]. In addition, the implementation of
a stakeholder participation process in reservoir management [164], consisting of highly
skilled and experienced professionals in controlling water allocation appropriately in each
season and in flood or drought situations, has been taken into consideration to improve the
reservoir rule curves after its development from different models.

The results of work in this section are, therefore, expected to make the reservoir rule
curves developed through this multi-stakeholder participatory process more appropriate
when integrated with the approaches described in first two sections. Therefore, the problem
of climate and land use changes affects reservoir management, from the perspective of
the operation starting from the analysis of hydrological conditions to the last dimension,
which is the reservoir management model that has been reviewed by highly skilled and
experienced experts [165]. For this reason, in this section, we present the development
process of the reservoir rule curves taking into account global climate change (especially
precipitation and temperature) and land use changes. It is based on reliable numerical
models that are widely used to simulate future situations [71,166]. It also includes a final
improvement with the participation of experts, leading to the development of an efficient
reservoir control curve suitable for future hydrological variability scenarios.

5.1. Climate Change

The study of climate change and its potential impact on hydrological systems is a com-
plex and important field of research. To estimate future climate change, researchers often
use climate models, such as global circulation models (GCMs) and regional climate models
(RCMs) [167]. In Thailand, for example, the study of reservoir rule curve development has
used future climate data integrated with hydrological models to estimate future runoff
flowing into reservoirs.

One RCM that has been widely used in Southeast Asia, including Thailand, is the
Providing REgional Climates for Impacts Studies (PRECIS) model, developed by the
Hadley Center for Climate Prediction and Research. PRECIS uses data from the global
climate model dataset ECHAM4 as a base for its calculations [168]. The model has a spatial
resolution of 0.22 ◦C in the grid, which is downscaled to 0.2 ◦C or about 20 km [169,170].

The goal of these studies is to apply the results of future climate predictions from
models such as PRECIS to assess runoff into reservoirs and develop suitable control
curves for managing water resources in the future. For example, a recent study by
Kangrang et al. [9] used the results of climate change forecasts for the A2 scenario from
2015–2064 to assess the impact on the Ubolratana Reservoir in the northeast region of
Thailand. The study found that, while rainfall trends for the Loei station were lower than
the baseline year data during the first 30 years of the A2 scenario, after 40 years, the average
rainfall is expected to be higher than the baseline year. In contrast, both the Ubolratana
Dam and Chulabhorn Dam stations are expected to experience an increase in rainfall trends.
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However, the study also found that the maximum and minimum temperatures are
expected to increase for all three climate stations compared to the baseline year. This
information can be considered as an analysis of changes in hydrologic conditions in the
upstream area of the Ubolratana Dam (see Figure 12). Moreover, changes in land use
are expected to impact the variability of runoff flowing into the reservoir, highlighting
the need for the ongoing monitoring and management of water resources in the face of
climate change.
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5.2. Land Use Changes

Land use and land cover changes can have a significant impact on runoff in a given
watershed area. Because of this, there are numerous methods used to monitor these changes,
ranging from less precise methods to more accurate ones. In general, land use and land
cover changes are represented in maps over a certain time period, such as 1 year, 2 years,
5 years, 10 years, or 15 years. The length of the time period is usually determined based on
the objective of the analysis and the functional unit being used.

One model used for decision-making that incorporates aspects of Cellular Automata
(CA) and Markov Chain is called CA Markov [171,172]. This model is used to predict
land use and land cover changes and has been applied to a variety of water resource
problems, such as runoff analysis due to rapid climate change and urbanization [173], flood
evaluation [174], and soil erosion. Furthermore, there has been extensive utilization of the
CA Markov model in anticipating future land use and land cover transformations [175,176].

In this section, we explore the results of a study that analyzed land use scenarios in
the upstream area of the Ubolratana Reservoir, which is located at the outlet point in the
east of the watershed and is also the climate change forecast area. In order to accurately
assess the variation in runoff, we need to study the two variables (climate and land use
patterns) in parallel and in a dynamic manner [177,178].

To forecast the patterns of future land use, the land uses in the past were used as the
baseline. The land use types were classified based on the criteria of functional unit. An
example of 12 land use types is shown in Figure 13. The future land use map created from
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this analysis can be used to estimate the future inflow into the reservoir, providing valuable
information for water resource management and planning.
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In this section, the study results of simulated future land use maps using the CA
Markov model are discussed. The simulation was conducted for the period of 2015–2064
and compared to the baseline period between 2008 and 2014. The analysis revealed that the
largest land use changes were the expansion of sugarcane and rubber tree, while paddy
field and forest areas decreased. To illustrate the transition areas, five simulated land use
maps are presented in Figures 14 and 15. These maps provide a visual representation of the
changes in land use patterns over time and can be useful in predicting the future inflow
into the reservoir.

The projected results from these two sections was integrated with SWAT hydrological
models to assess variations in runoff volume into the reservoir in future time series. Finally,
runoff data obtained from the SWAT model was used to construct reservoir rule curves that
are appropriate for the variability of hydrological conditions.

5.3. SWAT Model

In the past decade, a simulation of the hydrological situation has been accepted that
assess hydrological conditions using mathematical models in past, present, and future
situations. The results are expected to be affected by climate change and there will be
correlated changes in land use. One model widely used by hydrologists, researchers, and
environmental and water resources engineers is the semi-distributed model called SWAT
(Soil and Water Assessment Tool) [179]. SWAT is a hydrological model that was designed
to assess the impact on water resources of rainfall and land use changes and operates on a
daily time step. In addition, it can also work effectively with minimal input data, which is
particularly suitable for areas that have limited default data. SWAT has been used widely
to analyze runoff into a small basin [180–182]. The results of SWAT make it possible to
recognize future trends in the runoff into the reservoir, which has the effect of enabling the
prediction of the reservoir operation [183–185].
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For the case study of the Ubolratana Reservoir presented in this section, in the initial
implementation phase, SWAT requires input basic data, including DEM, stream lines,
daily climate data, and spatial maps of land use and soil types. Then, the model defines
the watershed delineation and calculates the simulation runoff during the baseline year.
The effectiveness of the estimation is then considered by comparing the runoff from the
observed stations and the runoff from SWAT as present in terms of R2 (coefficient of
determination), RE (relative error), and Ens (Nash–Suttclife simulation efficiency). In this
study, the calibration of SWAT was conducted by adjusting the eight hydrologic parameters:
Alpha_BF, Gwqmn, Gw_Revap, Sol_Awc, Epco, Esco, Ch_N2, and Gw_delay.

The suitably calibrated SWAT with the hydrologic parameters, as compared with the
record data, can then be used to forecast future runoff. Then, the simulated daily data from
the PRECIS model and future land use from CA Markov were used in SWAT to estimate
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the future runoff. The considered durations for the calculations were separated into five
time periods of 10 years. The procedures in the calculation are shown in Figure 16.
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The runoff of the SWAT model and runoff of the observed stations showed that the
effective indexes (R2, RE, and Ens) could be accepted. In order to predict the future runoff
at the Ubolratana Dam station between 2015 and 2064, the calibrated SWAT was simulated
using inputs from the climate data of PRECIS, which also had decreased tolerances, and the
land use maps of the CA Markov model. The simulated outcomes showed that the future
average annual runoffs from the A2 and B2 scenarios were 4028.91 and 4580.50 MCM,
respectively. Figures 17 and 18 indicate an increase in the runoff into the Ubolratana
Reservoir in the future periods relative to the baseline period. Subsequently, SWAT-derived
runoff was used as input for the development of reservoir rule curves linked to the reservoir
simulation models and various optimization techniques were used to solve problems by
searching optimal solutions based on many constraints and objective functions.

5.4. Participation of Stakeholders

The process of developing reservoir rule curves involves obtaining suitable curves
from simulations with various algorithms and then improving them through stakeholder
participation. In Thailand, the Royal Irrigation Department (RID) [186] controls the manage-
ment of reservoirs, and the rule curves developed from the model require some improve-
ment through a participatory process. To enhance the reservoir operating simulation for
reducing floods in the Shell Mouth Reservoir on the Assiniboine River in Canada, Ahmad
and Simonovic [187] used expert involvement approaches with the system dynamics (SD)
method. They found that the operator trusted the model’s application and was willing to
help to enhance the SD model’s structure to find a workable solution to the problem.
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tion for reducing floods in the Shell Mouth Reservoir on the Assiniboine River in Canada, 
Ahmad and Simonovic [187] used expert involvement approaches with the system dy-
namics (SD) method. They found that the operator trusted the model’s application and 
was willing to help to enhance the SD model’s structure to find a workable solution to the 
problem. 
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Similarly, Kangrang et al. [188] used expert participation to improve reservoir rule
curves in Thailand using the conditional differential evolution (CDE) optimization ap-
proach. The findings showed that the appropriate rule curves of the Expert-CDE approach
had efficiencies that may decrease water scarcity and overflow. Skilled operators, such as
the director of reservoir operations, senior operations engineer, and technical operations
engineer, were involved in the process, which consisted of surveying, observation, inter-
viewing, a focus group, and a workshop [188]. Their ideas were implemented to rerun the
simulation model and evaluate the objective function, and their recommendations were
used to modify the final rule curves.

The results showed that the patterns of the accepted rule curves obtained using
expert adjustment were smoother than the ones without adjustment, which was due to the
rule curves being adjusted by the operators based on their experiences. The adjustments
from the participation process led to the stakeholders accepting the rule curves as they
understood the process, making it easier for operators to use them (see Figures 19 and 20).
Although the results of using the rule curves with expert operators were close to the results
of using the rule curves without adjustment for both scenarios, the rule curves with expert
operators were still more accepted to be used in actual reservoir operation. This highlights
the importance of stakeholder participation in developing reservoir rule curves that can be
practically applied by the agency in charge [189].
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6. Conclusions

Reservoir rule curves are necessary guidelines for controlling the storage and release
of water from a reservoir. Generally, the rule curves need to be improved when the data of
water flowing into the reservoir and downstream water demands change. The inflow into
the reservoir is affected by land use in the upstream area and climate changes. Generally,
this inflow is estimated by using the SWAT model, which considers both land use and
climate changes. The popular land use change model is CA Markov. The climate models
are PRECIS and GCM.

Many optimization techniques have been applied alongside the reservoir simulation
model in order to improve the reservoir rule curves. They introduce progressively simple to
complex techniques, using the trial and error technique with the reservoir simulation model,
dynamic programing, heuristic algorithm, and swarm-intelligence-based and evolutionary
algorithms. The decision variables are the optimal rule curves that are defined as the upper
rule and lower rule curves. There are 24 decision variables for the monthly rule curves of a
single reservoir and they should be multiplied for a multi-reservoir system, consisting of
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12 values from the upper rule curves and 12 values from lower rule curves. The best values
of these decision variables are archived by optimization techniques integrated with the
reservoir simulation models using smoothing function constraints. The suitable future rule
curves for future condition situations are the obtained rule curves from the optimization
technique integrated with the reservoir simulation model considering future conditions.
Furthermore, the future inflow from upstream into reservoir should be used in the reservoir
simulation model with up-to-date downstream water demands. The estimated future
inflow into the reservoir is required to assess land use and climate changes as well as
stakeholder participation. In future studies, short-term operation and weekly rule curves
should be investigated to increase their use in reservoir operations.
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