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Abstract: With frequent extreme rainfall events caused by rapid changes in the global climate, many
cities are threatened by urban flooding. Timely issuance of flood warnings can help prepare for
disasters and minimize losses caused by floods. In this study, we propose a method based on
a convolutional neural network-bidirectional long short-term memory-difference analysis (CNN-
BiLSTM-DA) model for water level prediction analysis and flood warning. The method calculates and
analyzes the difference sequence between water level monitoring values and water level prediction
values, compares historical flood data to determine the alarm threshold for abnormal water level
data, and achieves real-time flood warnings to provide technical references for flood prevention and
mitigation. Taking Yancheng city, a low-lying city located in the plain area of Jiangsu Province in
China, as an example, this study verifies the accuracy of the CNN-BiLSTM model in water level
prediction, which can achieve an accuracy rate above 95%. This provides a reliable data basis for
further determination of warning thresholds using the DA model. The CNN-BiLSTM-DA model
achieves an accuracy rate of 85.71% in flood warnings without any missed reports, demonstrating
that this method has scientific, practical, and accurate features in addressing flood warning issues.

Keywords: plain area; flood disaster; water level prediction; difference analysis; warning threshold;
forecast warning

1. Introduction

As global climate change intensifies, extreme rainfall events are occurring more fre-
quently, posing greater threats to people’s lives and properties from flooding disasters.
To tackle this issue, China has been increasing its investment in water level monitoring
stations, which serve as a crucial foundation for monitoring water level changes and pro-
viding timely warnings of potential flood risks. From just over 300 stations in the early
years of the founding of the People’s Republic of China, the network has now grown to
over 3000 stations that are spatially distributed relatively reasonably, with well-developed
functions, covering the ten major river basins and major lakes and reservoirs in China.

The water level data obtained from these monitoring stations serve as basic infor-
mation for reflecting water level changes. Timely detection of abnormal data during
the monitoring process is of vital importance for predicting and warning of imminent
flood disasters [1]. In water level monitoring work, timely detection of abnormal data
and early warning are essential safeguards for ensuring high-quality economic and social
development and the safety of people’s lives and properties [2].

Numerous scholars have conducted various research on flood forecasting and warning,
and many warning methods and techniques based on different principles have emerged.
Currently, research on flood prediction and warning can be roughly divided into two
types [3]. One is flood prediction and warning research based on numerical models.
This type of research started earlier, has been studied more extensively, and can be more
maturely applied [4]. SWMM [5,6], InfoWorks [7,8], MIKE [9–11], and STORM [12,13] are
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widely used numerical models for flood prediction. However, with the advancement of
urbanization, the refinement of modeling requirements has made the modeling process
more complicated. A large number of parameters need to be calibrated, and the difficulty
in obtaining high-precision data and modeling makes the promotion and use of models
limited to a certain extent [4].

The other type is flood prediction and warning research based on time series analysis.
In recent years, the rapid development of artificial intelligence and information technology
has attracted the attention of scholars from various countries. More and more scholars are
applying deep learning models to flood warning research. For example, Zuo Ganggang
constructed a runoff prediction simulation system based on three machine learning models:
SVM, GBDT, and DNN. The system was simulated and verified using the Xianyang station
in the Weihe River basin, showing strong dynamics, universality, and operability [14].
Sun Yingjun and others focused on water level prediction during the flood process and
combined the advantages of convolutional networks and long short-term memory networks
to build a convolutional sequence-to-sequence network (CNN-Seq2Seq) prediction model,
which was experimentally verified to have high water level prediction accuracy [15]. Liu
Wei and others proposed a water level prediction method based on the LSTM model for
flood warning problems. By comparing historical flood events, the method can accurately
predict critical flood nodes [16].

These deep-learning-based methods provide new directions and approaches for solv-
ing flood warning problems. They have obvious advantages compared to traditional
methods, such as not requiring a high degree of hydrological and physical process cogni-
tion and relative simplicity in modeling. Therefore, they have great potential in the field of
flood warning research [17,18].

The occurrence of extreme precipitation events can lead to abnormal changes in water
levels. Therefore, the alarm for abnormal water level changes plays an essential role in flood
forecasting and warning [1]. In flood warnings for plain areas, water level is an important
warning indicator. The monitoring data from water level stations, which provide a real-time
reflection of precipitation changes in the form of time series, possess strong periodicity,
autocorrelation, and certain spatial features. Considering the ability of bidirectional long-
and short-term memory (BiLSTM) to handle time-series information and capture temporal
correlations, convolutional neural network (CNN) to extract spatial features from data, and
difference analysis (DA) to calculate and analyze the reasonable differences between actual
water level monitoring and predicted data, this paper proposes a method to predict water
level based on CNN-BiLSTM, along with the DA model for water level anomaly alarm and
flood warning in plain areas. The model predicts water level time series data, analyzes the
difference between actual and predicted data, and determines the alarm threshold, thus
achieving the alarm for abnormal water level data and flood warnings [1].

2. Materials and Methods
2.1. Study Area and Dataset

The water level data used for instance validation in this study were obtained from the
Chuanchang River Hydrological Station in Yancheng City, Jiangsu Province. Yancheng City,
located in a low-lying plain area in Jiangsu province, is vulnerable to the impacts of flood
disasters. Therefore, using it as a study instance is of important reference and practical
significance for further exploration of flood warning methods and techniques [19].

The study area is located in a plain region where water level is a crucial indicator
for flood warnings. Considering the following factors, this paper chooses water level as
the warning indicator for flood disasters in plain areas: water level is a direct indicator
that reflects flood risk and is easy for people to understand and accept, as well as for
warning information to be conveyed; water level data collection is relatively simple and
convenient; as a crucial warning indicator for flood disasters in plain areas, the use of water
level can better reflect the actual situation; water level change is sensitive and can reflect
environmental changes in a short period, providing better timeliness for flood warning
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compared to other indicators. The emergence of extreme rainfall will cause abnormal
changes in water level, and the realization of water level anomaly data warning plays an
indispensable supportive role in achieving prediction and warning of flood disasters in
plain areas.

A total of 3652 daily water level monitoring data from the Chuanchang River Hydro-
logical Station were selected for instance validation, covering the period from 1 January
2006 to 31 December 2015. Among them, 3649 data were valid while 3 data were miss-
ing. Considering that water level monitoring data are a time series with strong temporal
correlation between adjacent time points, the nearest value filling method was used to
process the missing data without affecting subsequent predictions [1]. A line graph using
the completed water level data was plotted, as shown in Figure 1. Due to the frequent
occurrence of flood disasters in Yancheng City in 2015, this year’s dataset was chosen as
the test set. Without changing the temporal characteristics of the preprocessed dataset, the
test set was divided into the training set, validation set, and test set in a ratio of 7:2:1. The
model dataset is shown in Table 1.
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Table 1. Model Dataset.

Model Dataset Duration Number (pcs)

Training set 1 January 2006 to 31 December 2012 2557
Validation set 1 January 2013 to 31 December 2014 730

Test set 1 January 2015 to 31 December 2015 365

2.2. Model Structure
2.2.1. CNN

CNN is a feedforward neural network with deep structures that can perform convo-
lutional operations. Its efficient feature extraction ability has made it widely applied in
water level prediction fields [20,21]. The water level data are input into a one-dimensional
CNN, in which the convolutional layer, pooling layer, and fully connected layer have
specific functions. The convolutional layer uses convolution kernels to extract effective
nonlinear local features of the water level monitoring data. The pooling layer compresses
the extracted features, obtains critical feature information, and improves the generalization
ability. Finally, the fully connected layer converts the obtained features into feature vectors
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and passes them to the output layer. The basic structure of one-dimensional CNN is shown
in Figure 2. The mathematical model description is given in Equation (1).

xl
j = f (∑M

i xl−1
j × kl

ij + bl
j) (1)
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In the equation: xl
j corresponds to the jth feature map of the lth layer; f (·) is an

Activation Function; M is the number of input feature mappings; xl−1
j is the jth feature

mapping of the l-1st layer; kl
ij is the trainable convolution kernel; bl

j is a Paranoia Item.

2.2.2. LSTM

The LSTM neural network, proposed by Hochreiter et al. [22], is currently one of the
most mature architectures in recurrent neural networks (RNNs). To address the problem
of gradient explosion and vanishing in RNNs when predicting long-time series, LSTM
supplements RNNs with three gate units—gate-based forgetting, input gate, and output
gate—that can independently control information transfer. This enhances its ability to
learn long-time sequences and improves the efficiency, speed, and accuracy of network
convergence. The basic structure of LSTM is shown in Figure 3.
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1. Gate-based Forgetting: selectively forgetting useless information from the previous
cell state Ct−1. Read the hidden state ht−1 from the previous time step and the input
data xt from the current time step, and calculate a value between 0 and 1. When the
value is 0, all information is forgotten, and when it is 1, all information is preserved,
as shown in Equation (2).

ft = σ
(

W f ·[ht−1, xt] + b f

)
(2)

In the equation: in the calculation of the forget gate status, ft represents the result,
while W f represents the weight matrix of the forget gate, and b f represents its bias
term; σ denotes the sigmoid activation function.

2. Input Gate: Read the input data xt at this time and retain useful information. Use the
activation function tanh to obtain the temporary cell state C̃t at this time, and finally
generate the cell state Ct. Its updating process is shown in Equations (3)–(5).

it = σ(Wi·[ht−1, xt] + bi) (3)

C̃t = tan h(Wc·[ht−1, xt] + bc) (4)

Ct = ft ⊗ Ct−1 + it ⊗ C̃t (5)

In the equations: it represents the computation result of the input gate state at time t;
Wi is the weight matrix of the input gate; bi is the bias term of the input gate; Wc is the
weight matrix of the cell state; bc is the bias term of the cell state; tanh is the hyperbolic
tangent activation function; and ⊗ is the Hadamard product that multiplies elements
in the same position.

3. Output Gate: Selecting crucial information to be passed on to the next time step. The
desired cell state for output is chosen using the sigmoid activation function, which
is multiplied by the output that has passed through the tanh activation function to
produce the next hidden state output value, ht, as shown in Equations (6) and (7).

ot = σ(Wo·[ht−1, xt] + bo) (6)

ht = ot ⊗ tan h(Ct) (7)

In the equations: ot represents the computation result of the output gate state when t
is the current time step; Wo is the weight matrix of the output gate; and bo is the bias
term of the output gate.

2.2.3. BiLSTM

The BiLSTM model is an optimization of the LSTM model. By adding a backward
LSTM layer, it creates a condition for fully mining historical and future information.
Through bidirectional propagation of forward and backward layers, it achieves a greater
degree of exploration of important information hidden in time series data, further im-
proving the model’s prediction accuracy. The output process of BiLSTM is shown in
Equations (8)–(10). Ultimately, the output of BiLSTM is the final prediction result, serving
as one of the basic input data for the DA model. Its basic structure is illustrated in Figure 4.

h f
t = LSTM

(
h f

t−1, xt

)
(8)

hn
t = LSTM

(
hn

t−1, xt
)

(9)
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ht = αh f
t + βhn

t (10)
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In the equations: LSTM refers to the computation process of the LSTM hidden layer;
h f

t represents the calculation result of the forward hidden layer state at time t; hn
t represents

the calculation result of the backward hidden layer state at time t; α is the forward output
weight; β is the backward output weight; and ht represents the calculation result of the
BiLSTM hidden layer state at time t.

2.2.4. The Construction of CNN-BiLSTM

(1) The input layer is defined using sequenceInputLayer, with input data in the form
of a sequence with size [f_, 1, 1] and named “sequence”. The sequenceFoldingLayer is
then used to transform the input sequence data into matrix form for processing in the
convolutional layers. (2) Two convolutional layers and two ReLU activation layers are used
to extract features. (3) The sequenceUnfoldingLayer is used to convert the matrix output of
the convolutional layers back into sequence form, and the flattenLayer is used to flatten
the sequence data into vector form for processing in the fully connected layer. (4) In the
BiLSTM layer, six LSTM units are set, and the output feature is obtained from the last time
step. (5) The LSTM output is mapped to a scalar value using a fully connected layer and an
output layer.

After adding the layers to the hierarchy chart, connectLayers is used to link the layers
together. Specifically, the output of the sequence folding layer is connected to the input
of the first convolutional layer, the miniBatchSize output of the sequence folding layer is
connected to the miniBatchSize input of the sequence unfolding layer, and the output of
the second ReLU activation layer is connected to the input of the sequence unfolding layer.

2.2.5. DA

Given the intricate and diverse factors that influence changes in surface water levels,
reasonable discrepancies may exist between actual monitoring data and predicted data.
The CNN-BiLSTM model’s predictions and actual water level data are used as input
for a DA model. This model analyzes the difference sequence between the actual and
predicted water level data, extracting inherent patterns to determine warning threshold
values. When the prediction model has sufficient accuracy, the difference sequence between
its output prediction data and the measured data will fluctuate around zero and be roughly
symmetrical about zero. Based on this rule, we propose a method for iteratively determining
the alarm threshold for abnormal water level data. (1) To derive the difference sequence,
the measured value sequence is subtracted from the predicted value sequence, followed by
computation of the absolute value sequence, denoted as “A”, from the resulting difference
value sequence; (2) Take 0 as the initial upper limit value U and choose 0.95 as the confidence
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interval; (3) Observe the proportion of the absolute value sequence A that is less than or
equal to the upper limit value U. If the proportion is greater than the confidence interval
of 0.95, then take the upper limit value as the absolute value of the warning threshold,
otherwise, increase the upper limit value until the threshold absolute value is obtained.
The basic structure of the DA model is shown in Figure 5.
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2.3. Anomaly Detection and Early Warning

The process of alerting water level anomalies using the CNN-BiLSTM-DA model
includes the following steps: data preprocessing, training the CNN-BiLSTM model, eval-
uating prediction performance, building the CNN-BiLSTM-DA model, validating model
effectiveness, and real-time alerting, as shown in Figure 6.

2.3.1. Data Preprocessing

Firstly, the missing parts in the historical water level monitoring dataset were filled us-
ing the nearest value filling method to establish a complete preprocessed dataset. Secondly,
the complete dataset was divided into training, validation, and test sets in chronological or-
der, with a ratio of 7:2:1. Finally, the dataset was normalized using Min–Max normalization
into a series of values ranging from 0 to 1.

2.3.2. Training the CNN-BiLSTM Model

The training set is input into the CNN-BiLSTM for training. The CNN framework
used in this paper includes 2 one-dimensional convolutional layers and 2 pooling layersto
extract feature information contained in the water level data. The pooling layer uses the
max-pooling method to effectively compress the nonlinear and local features extracted by
the convolutional layer and further inputs the feature vector to the BiLSTM. The BiLSTM
hidden layer analyzes and learns the internal dynamic changes of the feature vectors
extracted by the CNN through iterations, to extract more comprehensive global feature
information. To prevent overfitting and improve the efficiency and generalization ability
of the model, a dropout layer is added after the BiLSTM hidden layer. The number
of iterations is set to 12,500 times, and the Adam neural network optimizer is used for
parameter optimization. The CNN-BiLSTM prediction model is trained on the training
set data, and the prediction effect of the model is verified using the validation set, and the
predicted water level dataset is output [22].
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2.3.3. Evaluating Prediction Performance

This paper selects Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), Mean Absolute Deviation (MAD), and Root Mean Square Error (RMSE) as evalua-
tion metrics for the accuracy of water level prediction models [23,24]. Specifically, MAE is
calculated as the average absolute difference between predicted and actual values, with
smaller values indicating better prediction performance. MAPE ranges between 0 and
positive infinity, with 0 indicating perfect prediction and larger values indicating greater
prediction errors. MAD represents the average absolute difference between predicted and
actual values, with smaller values indicating more minor prediction errors and better model
performance, while RMSE represents the square root of the average squared prediction
error, with smaller values indicating better prediction accuracy. The calculation formulae
of the evaluation metrics are presented as follows:

MAE =

√
1
n

n

∑
i=1

(
xa(i)− xp(i)

)2 (11)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ xa(i)− xp(i)
xa(i)

∣∣∣∣× 100% (12)
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MAD =
1
n

n

∑
i=1

∣∣xa(i)− xp(i)
∣∣ (13)

RMSE =

√
∑n

i=1
(
xa(i)− xp(i)

)2

n
(14)

In the formulae: xa(i) and xp(i) represent the actual monitoring value and predicted
value at the time i, while xa and xp represent the mean of the actual monitoring sequence
and predicted sequence, respectively. n is the total number of samples.

2.3.4. Building the CNN-BiLSTM-DA Model

The water level monitoring data, as time series that reflects precipitation changes
in real-time, possess strong periodicity and autocorrelation and contain certain spatial
features. Considering BiLSTM’s ability to process time series information and capture
data’s temporal correlation, CNN’s capacity to extract spatial features of the data, and DA’s
ability to calculate reasonable differences between measured water level data and predicted
data, this paper employs a CNN-BiLSTM model to forecast water levels. Additionally, it
combines the DA model to analyze the reasonable differences between the actual monitored
water level data and the predicted water level data, constructing a CNN-BiLSTM-DA model
for water level anomaly warnings and flood disaster warning in plain areas.

Using the predictions from the CNN-BiLSTM model and actual water level data as
input for the DA model and calculating the difference between actual and predicted water
level monitoring data, a residual frequency distribution histogram was plotted using Origin
software to verify if the residual sequence is symmetrically distributed around zero. If so, a
DA model was constructed to determine the alarm threshold for abnormal water level data
using this model. Otherwise, the model parameters were reset, and the model structure
was modified and refined for retraining until validation was successful.

2.3.5. Validating Model Effectiveness

Existing historical data were used to verify whether the abnormal water level data
range and water level abnormal alarm threshold obtained are consistent with the actual
historical situation. If the determined abnormal data match the actual situation, it proves
the feasibility of the model and can be used to determine future abnormal water level data.
Otherwise, the confidence interval of the DA model should be changed, and the water level
abnormal data threshold should be re-determined.

2.3.6. Real-Time Alerting

To determine whether there is a risk of flooding, real-time data from water level
monitoring stations were compared to predictions generated by a CNN-BiLSTM model.
By calculating the difference between the two sets of data and comparing this value to a
predetermined threshold for anomalous water levels, it is possible to determine whether
the current data are within the expected range of normality or if there is a risk of flooding.
If the difference between the real-time data and the model’s predictions does not exceed
the threshold, then the data are considered to be safe. However, if the difference exceeds
the threshold, then a flood warning is triggered.

3. Results
3.1. Evaluation of the Prediction Effect of CNN-BiLSTM Model

When performing water level prediction using the CNN-BiLSTM model, we employ
12 historical data as independent variables to learn their temporal features and make a
prediction for the next data. However, such time series prediction models are susceptible
to the autocorrelation effect within the time series, leading to a lag phenomenon where
the current moment’s predicted data are used as the predicted value for the next moment,
resulting in a significant deviation between the predicted and actual values. To avoid
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unfavorable impacts of this phenomenon, this study utilized the difference between the
water level monitoring value of the present moment and the predicted water level value of
the next moment as input data for difference analysis in the DA model. After completing
the water level prediction using the CNN-BiLSTM model, we evaluated the accuracy of its
prediction results. The evaluation indicators for each dataset are shown in Table 2.

Table 2. Accuracy evaluation table of CNN-BiLSTM model.

Index MAE MAPE

Datasets Training
Set

Validation
Set

Test
Set

Training
Set

Validation
Set

Test
Set

0.0260 0.0330 0.0364 0.0353 0.0373 0.0365

Index MAD RMSE

Datasets Training
Set

Validation
Set

Test
Set

Training
Set

Validation
Set

Test
Set

0.0259 0.0331 0.0375 0.0476 0.0643 0.0856

As shown in Table 2, which presents the accuracy evaluation indicator values of the
CNN-BiLSTM model, the MAE values for the three datasets are much smaller than the
range of the monitored water level data. The MAPE values for each dataset are less than
5%, indicating that the accuracy of the CNN-BiLSTM model prediction can reach more than
95%; and the MAD and RMSE values are both significantly lower than 0.1, indicating that
the prediction error is small and reflecting the high accuracy of the model. The line graphs
comparing the measured and predicted data sequences for each of the training, validation,
and test sets show a high degree of fit, as shown in Figure 7.

To further verify the effectiveness and superiority of using the CNN-BiLSTM model
for water level prediction, this study compared it with the LSTM model [25] and the
CNN-LSTM model [26], using the model evaluation indicators of the validation set for
comparison. The comparison bar chart of the evaluation indicators for each model is shown
in Figure 8. The accuracy evaluations of the three models are compared in Table 3. From
Table 3, it can be seen that the MAE, MAPE, MAD, and RMSE values for the CNN-LSTM
model were 31.32%, 32.62%, 31.84%, and 10.98% smaller than those for the LSTM model,
respectively, indicating that CNN can extract spatial characteristics from water level data
and enhance the model’s prediction accuracy. The corresponding MAE, MAPE, MAD, and
RMSE values for the CNN-BiLSTM model were smaller than those for LSTM and CNN-
LSTM models, and compared with the LSTM model, the values of MAE, MAPE, MAD,
and RMSE were reduced by 38.06%, 38.81%, 31.76%, and 14.87%, respectively. Compared
with the CNN-LSTM model, the values of MAE, MAPE, MAD, and RMSE were reduced by
9.36%, 9.18%, 9.17%, and 4.50%, respectively. These results demonstrate the effectiveness
and superiority of the CNN-BiLSTM model in the field of water level prediction.

Table 3. Accuracy comparison table of three models.

Accuracy Index

Models
CNN-BiLSTM LSTM CNN-LSTM

MAE 0.0330 0.0530 0.0364
MAPE 0.0373 0.0610 0.0411
MAD 0.0331 0.0534 0.0364
RMSE 0.0643 0.0756 0.0673
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3.2. Determination of Threshold Values

We calculated the difference series between the predicted and measured values for all
datasets and selected the training and validation parts to plot the frequency histograms
of the difference distribution using Origin software. We also determined the warning
thresholds as −0.0325 and 0.0325 by the DA model, as shown in Figure 9. As can be seen
from Figure 9, most of the differences are distributed near zero, and the overall distribution
is roughly symmetrical about zero.

Water 2023, 15, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 9. Frequency histogram of residual distribution of training set and test set. 

3.3. Flood Warning Verification 
Based on the identified threshold for abnormal water level data, 28 abnormal data 

points were selected from the test set, as shown in Figure 10. Comparing the obtained 
abnormal points with the historical flood data in the investigation report on flood disas-
ters in Yancheng City, it was found that 24 of them were flood occurrence points and 4 
were false alarms. The accuracy of the CNN-BiLSTM-DA model for flood warnings 
reached 85.71%, and there was no missed reporting. This demonstrates the feasibility and 
accuracy of applying the CNN-BiLSTM-DA model to the screening of abnormal water 
level data and flood warnings. 

 
Figure 10. Water level anomaly data distribution chart. 

4. Discussion 
In order to effectively predict the occurrence of floods, improve the ability to prevent 

and mitigate floods, and reduce property and life losses caused by disasters, the present 
study proposes a method based on time series prediction models for water level forecast-
ing and analysis of difference sequences to determine the methods of water level anomaly 
alarm and flood warning threshold. This method possesses high warning accuracy and 
enriches and expands the research ideas and methods for flood disaster warning. The pro-
posed method mainly consists of two parts: the CNN-BiLSTM model and the DA model. 
(1) The accurate prediction of water levels by the CNN-BiLSTM model is an essential 

Figure 9. Frequency histogram of residual distribution of training set and test set.

3.3. Flood Warning Verification

Based on the identified threshold for abnormal water level data, 28 abnormal data
points were selected from the test set, as shown in Figure 10. Comparing the obtained
abnormal points with the historical flood data in the investigation report on flood disasters
in Yancheng City, it was found that 24 of them were flood occurrence points and 4 were
false alarms. The accuracy of the CNN-BiLSTM-DA model for flood warnings reached
85.71%, and there was no missed reporting. This demonstrates the feasibility and accuracy
of applying the CNN-BiLSTM-DA model to the screening of abnormal water level data and
flood warnings.
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4. Discussion

In order to effectively predict the occurrence of floods, improve the ability to prevent
and mitigate floods, and reduce property and life losses caused by disasters, the present
study proposes a method based on time series prediction models for water level forecasting
and analysis of difference sequences to determine the methods of water level anomaly
alarm and flood warning threshold. This method possesses high warning accuracy and
enriches and expands the research ideas and methods for flood disaster warning. The
proposed method mainly consists of two parts: the CNN-BiLSTM model and the DA model.
(1) The accurate prediction of water levels by the CNN-BiLSTM model is an essential
component of this method for accurate flood warnings. By combining the high efficiency of
CNN in extracting time series spatial features with BiLSTM networks’ ability to fully exploit
historical and future information, the CNN-BiLSTM model achieves accurate prediction
of water level data sequences. The evaluation results of the prediction performance show
that the MAE values output by the model are significantly smaller than the range of water
level monitoring data; the MAPE values are all less than 5%, indicating an accuracy of over
95%. Additionally, the MAD and RMSE values are both significantly less than 0.1, demon-
strating small prediction errors and reflecting high accuracy of the model. By comparing
the prediction results of the LSTM model and CNN-LSTM model, the effectiveness and
superiority of the CNN-BiLSTM model for water level prediction are verified; therefore, it
can provide reliable data evidence for further determining thresholds. (2) The DA model is
crucial in determining the warning threshold. It calculates the difference sequence between
water level monitoring data and water level prediction data, selects 0.95 as the confidence
interval, and determines the warning threshold by continuously adjusting the upper limit
value U. The validated threshold values are −0.0325 and 0.0325. The CNN-BiLSTM-DA
model achieves an accuracy of 85.71% in flood warnings without any missed warning
events, demonstrating the scientific, emergency, and accuracy of this method in solving
flood disaster warning problems. This method can provide technical reference for flood
warning and urban flood control and disaster reduction to a certain extent.

5. Conclusions

(1) By using one-dimensional CNN to fully exploit the spatial features of water level
data, feature vectors are generated and input into BiLSTM, which overcomes the drawbacks
of single BiLSTM models and improves the stability and reliability of water level prediction
models. Compared with LSTM, the prediction accuracy evaluation indicators MAE, MAPE,
MAD, and RMSE are reduced by 38.06%, 38.81%, 31.76%, and 14.87%, respectively. Com-
pared with CNN-LSTM, the prediction accuracy evaluation indicators MAE, MAPE, MAD,
and RMSE are reduced by 9.36%, 9.18%, 9.17%, and 4.50%, respectively. This indicates that
CNN-BiLSTM has higher prediction accuracy and better superiority. (2) Through the DA
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model, the difference between the actual monitoring data and the predicted data of the
water level is calculated to determine the threshold for flood warning. Using Yancheng
City in the China Plain as an example, we compared the anomaly points with historical
flood data and found that the warning accuracy rate reached 85.71% without missing any
warnings. This proves that the proposed CNN-BiLSTM-DA model has some scientific,
emergency, and accuracy aspects in flood warnings in plain areas.
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