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Abstract: With the rise of artificial intelligence and big data technologies, it is increasingly significant
to apply these emerging technologies to scientific decision-making in water conservancy project
construction management in the face of many problems in the process of water conservancy project
construction. Different from using traditional assessment methods for risk classification of water
conservancy construction hazards, this paper integrates a priori attention and constructs a transformer
risk prediction model based on a sliding window, which deeply explores the data value of water
conservancy construction hazards information, further predicts the risk level of water conservancy
construction hazards and realizes efficient and intelligent management of water conservancy project
construction hazard identification management.

Keywords: deep learning; hazard sources; risk evaluation; transformer model; task scenarios; a
priori knowledge

1. Introduction

With the booming development of China’s water conservancy industry, the construc-
tion of water conservancy projects has been accelerated.

The focus of engineering can be a system project with more complex procedures,
extensive scope, many participating units, and interlocking with the construction process [1].
According to the dam failure statistics of the International Commission on Large Dams
(ICOLD) and the Chinese Institution of Dam Engineering (ChinCOLD), a total of 2068 dam
failures were recorded in 57 countries worldwide (excluding China) by the end of 2020,
and a total of 99 dam failures in China from 2000–2021 [2–4]. Ge [5] based on domestic
and international research and the actual application of the project, believes that the
consequences of water conservancy project accident risk broadly include four aspects,
including loss of life, economic loss (direct economic loss such as housing and agriculture
due to inundation and indirect economic loss such as affecting transportation and normal
production of factories and mining enterprises), social impact, and environmental impact
(changes in river morphology and human landscape, major pollution, etc.). Sheng [6]
studied and analyzed the causes of dam failure accidents from multiple dimensions, such
as dam type, project scale, age, and geographical area, concluding that dam type is not the
decisive factor leading to dam failure and that strengthening supervision and ensuring that
all management systems for project operation are put into practice is the key to ensuring
the long-term stability of project construction.

According to the above study, project risk assessment management is the key to project
construction. The development of regulatory measures and emergency response systems
based on the risk level of hazard sources can effectively reduce the consequences of accident
risk in water conservancy projects. The purpose of this paper is to study the evaluation
of safety risk level of water conservancy projects based on deep learning. The traditional
risk evaluation cannot be applied to the practical application of large projects, while the
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transformer model based on the global self-attention mechanism can extract the contextual
semantic features in the sentences, and the risk level prediction is more accurate, but it also
leads to a large amount of network computation as a result. The main contributions of this
research are as follows:

1. The set of task scenarios of water conservancy projects was collated, and the sample
data were organized in chunks by task scenarios to construct a two-by-two linearly
independent task scenario vector.

2. To address the problem of missing features in short texts, this paper constructs a
vector of hazard source information representation based on a priori knowledge as
auxiliary information, and weighted fusion of sample data in terms of task scenarios
through an a priori attention mechanism, which makes the model have a more similar
learning style to that of humans.

3. In response to the defects of the transformer network model with large computation,
integrating project characteristics task scenes and sliding windows, proposed an
improved water engineering safety risk evaluation model based on transformer and
built a task scene judgment gate to restrict the attention mechanism to a sliding
window with task scenario, which reduces the network computation and improves
the model operation efficiency.

2. Literature Review

Engineering safety risk evaluation refers to the analysis and acquisition of possible
risk elements in the process of engineering construction with the help of relevant working
principles and methods, and the prediction of the probability of occurrence of risks and
the severity of consequences, on the basis of which effective risk prevention and control
measures are established through quantitative and qualitative analysis [7]. The US De-
partment of Defense actively advocated the implementation of risk management as early
as the 1970s [8,9], outlining how the project risk management process can be modified to
promote an uncertainty management perspective [10]. Bing L and Tiong RLK [11] based on
the characteristics of water conservancy and hydropower projects, conducted an overall
evaluation of safety evaluation factors that could not be analyzed quantitatively, using an
expert survey method and hierarchical analysis [12], and computed the relative weights
among the indicators [13]. They introduced a simple and practical approach to identify,
assess, monitor, and manage risks in an informed and structured manner. Hreinsson [14]
introduced the Monte Carlo simulation method into the risk evaluation system of wa-
ter engineering for hydropower plant engineering expansion projects. While domestic
research scholars continue to introduce advanced concepts from abroad, they carry out
risk evaluation applications on mega-projects such as the Three Gorges Project, making
the whole system of theoretical research and practical application of risk evaluation in
China gradually more advanced. Yang [15] adopted hierarchical analysis and fuzzy theory
in risk evaluation of water conservancy projects [16]. The combination of this method
and the fuzzy theory is used to evaluate the risk of large water conservancy projects by
decomposition analysis, aiming at the many factors affecting the risk of water conservancy
projects. Zhang [17] proposed to use the safety checklist method to inspect the derricks and
bases of offshore drilling and repairing rigs, and on this basis, the accident tree analysis
method was used to identify the types of hidden faults.

Currently, traditional machine learning methods like Bayesian classifiers [18], sup-
port vector machines [19], and deep learning models, such as convolutional neural net-
works [20,21], recurrent neural networks [22,23], and long and short-term memory neural
networks [24], have been widely used in long text classification tasks. Liu proposed a
moderated deep learning model [25], the BERT model was used to generate the dynamic
feature vector of the character set of the accident text, and the Bi-LSTM model was used to
mine the semantic features of the accident report text, deeply analyzed the causes of water
conservancy project construction accidents. In order to detect cracks on the dam surface
and reduce labor costs, Lin [26] used the deep learning YOLOv3 model for prediction,
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which enhanced the detection of small cracks. Liu [27] used the improved YOLOv3-DN
algorithm to identify the dangerous source elements of the construction site, and fed back
in real time on the building information model platform to realize the intelligence of water
conservancy information.

Although the traditional risk evaluation methods can solve the needs of some appli-
cation scenarios to a certain extent, the performance is poor and cannot deal with such
problems efficiently. In the safety risk evaluation of water conservancy construction, the
information on hazard sources collected manually is mostly recorded in the form of text
tables in the risk hazard database. They are described in the form of short text, and there
is semantic ambiguity in the context of sparse features [28]. If deep learning models such
as BERT are directly applied to short text classification, it will cause problems, like poor
classification results and poor model performance.

The transformer model based on a multi-headed self-attentive mechanism [29–31] can
fully extract the sentence context semantics, which can solve the short text type’s defect of
feature sparsity. Since the model is based on global attention, the network computation is
large; therefore, this paper proposes an improved water engineering safety risk evaluation
model based on transformer, which reduces the computational complexity of the network
model by building a task scene judgment gate and restricting the attention mechanism
to the inside of a sliding window with the task scene as the unit. At the same time, the
attention mechanism is used to weigh the hazard source information representation vector
that incorporates a priori knowledge so that the model has a learning mode more similar to
that of the human brain and improves the accuracy of model risk level prediction [32–34].

3. Materials and Methods
3.1. Study Area and Data Source

The project in Xinbei District of the Xinmeng River Extension and Dredging Project
involves 36 villages in five towns from north to south, including Menghe Town, Xixiashu
Town, Luoxi Town, Penniu Town, and Chunjiang Town (abandoned area), with a total
length of about 25.29 km: 21.81 km (3.3 km newly opened) in the section north of the canal;
1.4 km in the section of Penniu Junction; and 2.06 km in the newly opened section of the
southern extension. Jiepai of New Meng River Extension Dredging Project: The water
conservancy pivot project is an important part of the extension and dredging project of the
New Meng River, located in the town of Jiepai, Danyang City, Zhenjiang, at the mouth of
the river in the northward extension section of the New Meng River, consisting of a ship
lock, a restraint lock, and a pumping station, with buildings arranged in sequence from
west to east.

The Xinmeng River Extension and Dredging Project is a backbone project with com-
prehensive benefits of flood prevention, drainage, water resources allocation, water ecology
improvement and navigation, which is also listed in the 172 national major water con-
servation and water supply projects and the key project of the construction of Yangtze
River Economic Belt, according to the “Overall Plan for the Comprehensive Management
of Water Environment in Taihu Basin”, “Taihu Basin Flood Control Plan”, and “Taihu Basin
Water Resources Comprehensive Plan” [35,36]. The overall layout is from the right bank
of the Yangtze River in the north. The overall layout starts from the right bank of the
Yangtze River in the north to the Dajie River, and the Jiepai Water Conservancy Hub will
be built at the mouth of the diversion river and dredged along the old Xinmeng River to
the Beijing-Hangzhou Canal, with the main function of improving the water environment
of Taihu Lake and the western part of the lake and raising the flood control and drainage
standards of the basin and the region.

The scale of the project is large, involving a large number of construction workers
and adjacent to residential areas. Therefore, it is important to carry out an intelligent risk
evaluation of the project’s risk sources, explore the potential risk sources, predict the risk
level, reduce the possibility of accidents in the project, and ensure the long-term safety of
the project.
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3.2. Task Scenarios

The water conservancy project is a more complex procedure, the tasks to be completed
in different construction tasks are very different, then the potential sources of hazards in
the construction process will also have a large difference. For example, in the earthwork
open excavation task scenario, close attention must be paid to the operation site because
the surrounding steep slopes and mountains hold the possibility of landslides, runoff, and
other major disasters. While in the earthwork blasting task scenario, the need to supervise
the construction tasks such as transportation of blasting equipment, manual handling
of blasting equipment, and blasting operations, there is the risk of blasting injuries to
construction personnel.

Therefore, this paper proposes to take the construction task scenario as the unit and
chunk the text data for pre-processing and model training. Take the first-level task scenario
“earthwork” in the risk and hazard database of the Xinmeng River Extension and Dredging
Project as an example, as shown in Table 1.

Table 1. Task scenario information.

First-Class Mission Scenes Secondary Mission Scenes

Earthwork

Basic regulations
Open earth excavation

Concealed earth excavation
Open stone excavation

Concealed stone excavation
Stonework blasting operation

Construction and safety support
earth-rock filling

Ti vector representation of the task scenarios in the project, a linearly unrelated vector
group can be constructed using the linearly related vector group [37]. Therefore, the vectors
of task scenes are transformed as follows so that there is no direct relationship between the
task scene representation vectors, where ci, i are non-zero integers.

Ti = [Ti, 0 · · · ci · · · 0] (1)

ci = i (i = 1, 2 . . . n), (2)

According to Formula (1), the task scenario vector set is linearly independent and can
be obtained using: [

Ti · Tj
]
=

{
0, i 6= j
|Ti|, i = j

, (3)

3.3. A Priori Attention

In a multi-classification task, we exclude some classes to which the sample cannot
belong and classify the sample on the remaining classes, which is equivalent to giving
this sample certain a priori knowledge [38]. Combining the a priori knowledge with the
deep learning network model allows the model to have a learning style more similar to
that of the human brain, thus improving the risk level prediction accuracy of the network
model. In the actual construction process of hydraulic engineering projects, the collected
samples of hazard sources are limited, too redundant, and too complicated, and there are
sparse features and text semantic ambiguity after data pre-processing. Therefore, an a priori
knowledge-based hazard information source representation vector (hereinafter referred to
as an a priori vector) can be used as auxiliary information. The text vector incorporating an
a priori knowledge makes up for the problem of sparse sample features to a certain extent
and provides some feasibility for improving the risk prediction accuracy.

If the a priori vector is simply spliced and fused with the text vector, it cannot reflect
the importance of a word to the text data of different task scenarios, and the importance
of each word that constitutes the text to the text can directly affect the final model effect.
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Therefore, this paper uses a priori attention, introduces the attention mechanism on the
basis of a priori knowledge, calculates the importance weight coefficients of a priori vectors
for text data of different task scenes, and realizes the optimal use of information carried by
a priori knowledge.

The expertise in the field of water conservancy engineering has some guidance for
the model based on the “Guidelines for Identification of Hazardous Sources and Risk
Evaluation of Water Conservancy and Hydropower Projects (for Trial Implementation)”
and “Classification Standards for Enterprise Employee Casualty Accidents” formulated by
the Ministry of Water Resources, etc., and combined with the risk and hazard database of
the New Meng River Extension Dredging Project can be inscribed for each hazard source
record with two information representations of the category of hazard sources and the
category of accidents that may result. The specific division is shown in Table 2.

Table 2. Classification of hazard source information representation.

Hazardous Source Category Types of Accidents That May Result

Equipment, facilities, tools, accessories defects Object strikes
Management Factor Deficiency Vehicle Injuries
Harsh climate and environment Mechanical damage

Behavioral hazards Lifting Injuries
Construction operations do not meet the

specifications Electrocution

Toxic and harmful gases Falling from a height
Toxic chemical spill Collapse
Behavioral hazards Explosion, fire

Poor working site environment Poisoning, asphyxiation
Fire Safety Other Injuries

The two a priori knowledge elements, the category of hazards and the category of
accidents that may result, are obtained from the hazard source description text by expert
experience judgment in the field of the water resources industry. According to the hazard
source information representation in Table 1, the information representation of two risk
factors is divided: 0 means that the hazard description text does not contain this kind of
elements, 1 means that the hazard description text contains this kind of elements, can be
constructed based on an a priori vector P(d).

The structure of the a priori attention model is shown in Figure 1; a priori attention is
the introduction of an attention mechanism based on a priori knowledge, and the results
obtained from the calculation of the attention mechanism are passed through the SoftMax
function, which represents the importance of the a priori knowledge representation vector
for each task scenario, as shown in Equation (4), where w is the importance coefficient.
The obtained importance coefficients are weighted and fused with the text blocks in terms
of task scenes to achieve more optimal utilization of the information carried by the prior
knowledge.

w = SelfAttention(Q, K, V) = softmax

(
Q ·KT
√

dk

)
·V, (4)

3.4. Improved the Water Engineering Safety Risk Evaluation Model Based on Transformer

In recent years, the transformer network model proposed by Google in 2017 [26] has
been widely used in the field of natural language processing. The transformer model essen-
tially follows the classical encoder-decoder structure of sequence information modeling,
which is a model composed of a multi-head attention mechanism and a feedforward neural
network. The transformer encoder consists of a self-attention layer and a feedforward
network layer, which perform residual connection and layer normalization operations,
respectively. A multi-head attention mechanism is introduced in the self-attention layer
to obtain contextual semantic information and process all words in parallel. It can both
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achieve parallel computing and capture global semantic information. The model structure
is shown in Figure 2.
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The traditional transformer structure avoids repetition and convolution in neural
networks by global self-attention but also because global attention computation can lead to
a large network computation. Therefore, this paper proposes a self-attention mechanism
within the task scene, which is implemented by the task scene judgment gate to limit the
global attention to the task scene window and reduce the network computation of the
self-attention mechanism. The model structure is shown in Figure 3.
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As discussed above, the source of danger in the construction process of hydraulic
engineering is discussed in the specific task scenario; therefore, the safety risk rating of
hydraulic engineering should depend on the task scenario. In the process of model training,
the training weight matrix should also depend on the task scenario to which it belongs;
the risk prediction of the hazard source in task scenario A only focuses on the risk of the
hazard source in task scenario A itself and has little correlation with the risk source in other
task scenarios. Therefore, the training matrix wq, wk, wv of the improved transformer
model proposed in this paper should design to meet the conditions mentioned above so
that the danger source only pays attention to the training matrix in the sliding window
of its task scene, as shown in Formulas (5)–(7). Among them, wq, wk, wv are the weight
matrix in the sliding window of the task scene, which is trained by numerous project data,
and Ti is the task scene vector.

wq = wq1 × T1 + wq2 × T2 + · · ·+ wqn × Tn = ∑n
i=1 wqi × Ti (5)

wk = wk1 × T1 + wk2 × T2 + · · ·+ wkn × Tn =
n

∑
i=1

wki × Ti, (6)

wv = wv1 × T1 + wv2 × T2 + · · ·+ wvn × Tn =
n

∑
i=1

wvi × Ti, (7)

The task scene judgment gate structure is shown in Figure 4. The task scene vector
Ti, to which this text vector belongs, is embedded in the input of the internal model of the
sliding window, which is to perform the self-attention calculation within the task scene.
Therefore, the input of the model is shown in Equation (8), where X is the text vector to be
input to the model, and Ti is the task scene vector to which it belongs.

Input = Ti · X, (8)
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According to the linear irrelevance of the task scenario vector representation group
in Section 3.2 of this paper, it is possible to prevent other task scenarios from influencing
the risk prediction results of this text (

[
Ti · Tj

]
= 0, i 6= j). There is a task scene judgment

gate in the internal model, and it enters into this sliding window for model training and
prediction when the conditions are met. Because of this, each text vector can only enter into
the sliding window of the task scene it belongs to and cannot be influenced by other task
scenes.

It is because the task scene vectors are embedded in the input and training matrices of
the model that the final model output vectors are expanded by

∣∣Tj
∣∣ times. In order not to af-

fect the final risk level prediction, the model output is scaled as shown in Equations (9)–(11),
where Qi, Ki, Vi are the query matrix, key matrix, and value matrix of the model before
scaling, respectively, and Tj is the sliding window, Taskj the task scene vector to which it
belongs.

Qi =
Qi∣∣Tj
∣∣ , (9)

Ki =
Ki∣∣Tj
∣∣ , (10)

Vi =
Vi∣∣Tj
∣∣ , (11)

Taking the query matrix Qi as an example, the text is entered within the sliding
window model shown in Figure 2, and the derivation formula is found below, and from
the final result, it is clear that Qi only correlates with the training matrix within the sliding
window of its task scene wqi correlated with self-attentiveness within the task scene is
achieved.

Qi =
wq·Input

|Tj| =
(wq1×T1+wq2×T2+···+wqn×Tn)·Ti·X

|Tj|
=

wqi·T1·Ti·X
|Tj| + . . . +

wqi·Ti·Ti·X
|Tj| + . . . +

wqi·Tn·Ti·X
|Tj|

=
wqi·Ti·Ti·X
|Tj| = wqi · X

(12)
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The core code of the improved water engineering safety risk evaluation model based
on transformer is as follows (Algorithm 1).

Algorithm 1: Intelligent hierarchical evaluation model of water conservancy project safety risk
based on transformer algorithm

Input Text vector based on task scene X1
Priori knowledge vector X2
Task scene vector T

Output The risk prediction level corresponding to the text vector Y
1 Function Linearity-Agnostic(T):
2 for (i = 0; i < T.length; i++)
3 Temp = new Array(T.length).fill(0)
4 temp[i] = i
5 T[i] = concat(T[i],temp)
6 Return T
7 End function
8 Function a priori-Attention(X1, X2)
9 Q = WQ · X1, K = WK · X1, V = WV · X1

10 R = Scale(Q · KT) = Q·KT
√

dk

11 Z = SoftMax(R)·V
12 Return Z + X2
13 End function
14 Function Slide_Window_i(X, T):
15 i f T[i] · T[j]! = 0
16 Qi = Wqi · X, Ki = Wki · X, Vi = Wvi · X
17 Qi =

Qi
|Ti| , Ki =

Ki
|Ti| , Vi =

Vi
|Ti|

18 R = Scale(Qi · Ki
T) = Qi ·Ki

T
√

dk

19 Y = SoftMax(R) ·V
20 Else continue
21 Return Y
22 End function
23 T = Linearity-Agnostic(T)
24 X = a priori-Attention(X1, X2)
25 Y = Slide_Window_i(X, T)

4. Results
4.1. Experimental Preparation

In this chapter, the risk and hazard database of the New Meng River Extension
Dredging Project is selected as the experimental object, and the data of 7500 hazard source
records in the construction risk database of the second and third bidding sections of the
New Meng River Extension Dredging Project located in Jintan District are selected for the
experiments in this chapter. Among them, the risk classification of hazard sources belonged
to four different risk categories. The number of samples, category labels, and examples of
each category are shown in Table 3.

The overall experimental idea is to divide the original hazard source text corpus into
training and test sets in the ratio of 7:3 after pre-processing. To verify the effectiveness of the
risk prediction model proposed in this chapter, the same dataset is used, and the classical
machine learning method and the deep learning method are selected as the baseline for
comparison experiments.

1. In the a priori knowledge validity experiments, the same dataset and prediction model
are used, and the only difference is whether or not a priori knowledge is introduced
and a priori knowledge is used as auxiliary information to compensate for the feature
defects in the short text for comparison experiments to verify the validity of a priori
knowledge.
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2. In the model prediction correctness experiments, multiple network models (SVM,
CNN, GAT, RCNN, transformer) are selected for the risk level prediction correctness
comparison experiments on the project dataset. The SVM model parameters are as
follows: the penalty parameter c was set as the default value 1, the kernel function was
selected as the Gaussian radial basis function, and the function parameter g was set
as 0.25; other parameters of the neural network model are as follows: embedding-dim
is 256, max-length is 100, batch-size is 16, and the learning rate is 1 × 10−5.

3. In the model efficiency experiments, the transformer model and the improved model
are selected for comparative analysis in terms of running time to verify the efficiency
of the improved model.

Table 3. Risk level classification and examples.

Risk Level Quantity Example Sentences of Experimental Corpus

Level I 1830 Structure support material does not meet the requirements

Level II 1877
The mud discharge line needs to pass through the bridge hole

and pile group, did not check the mud discharge pipe
fixed measures

Level III 2748 When connecting and dismantling the mud pipe in windy and
rough waters, the operator did not fasten the safety rope

Level IV 1045 The setting of steel escalators does not meet the
safety requirements

Using accuracy as an evaluation indicator, it can reflect the proportion of samples
for which the prediction model can accurately identify the risk level of the hazard source
so that the model prediction accuracy can be determined, and the accuracy indicator is
calculated as shown in Equation (13).

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

The number of samples belonging to this risk level that is predicted to be in this level
is recorded as TP, the number of samples not belonging to this risk level that is predicted to
be in this level is recorded as FP, the number of samples belonging to this risk level that is
predicted to be in other levels is recorded as FN, and the number of samples not belonging
to this risk level that is predicted to be in other levels is recorded as TN.

4.2. A Priori Attentional Validity Experiment

In this paper, we construct a vector of hazard source information representation based
on a priori knowledge as auxiliary information and introduce a self-attentive mechanism to
weigh the fused text vector to compensate for the sparse sample features. This subsection
verifies the effectiveness of fusing a priori knowledge to construct a network for risk
prediction through two sets of experiments.

Both groups of experiments use the transformer model based on risk level prediction.
The first group of experiments uses the classical transformer model for risk level prediction,
the second group of experiments uses the transformer model with simple spliced a priori
knowledge vectors for risk level prediction, and the third group of experiments uses the
transformer model with the weighted fusion of a priori knowledge vectors by attention
mechanism for risk level prediction and compares the accuracy of the prediction of the
three groups of experiments.

From the experimental results in Figure 5, we can obtain that the accuracy value of risk
level prediction of the traditional transformer model is 0.548, the accuracy value of risk level
prediction of the transformer model with simple splicing of a priori knowledge vectors
is 0.617, and the accuracy value of risk level prediction of transformer model with the
weighted fusion of a priori knowledge vectors by attention mechanism is 0.736. Through
the comparative analysis of the first and second groups of experiments, the use of a priori
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knowledge vectors as model auxiliary information is effective in improving the accuracy
of risk level prediction; through the comparative analysis of the second and third groups
of experiments, the use of attention mechanism weighted fusion of a priori knowledge is
effective in improving the accuracy of risk level prediction.
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4.3. Experiment on the Correctness of Model Prediction

In this paper, we propose the sliding window transformer risk prediction model based
on fused a priori attention. To verify the effectiveness of this model in water conservancy
construction risk prediction, classical deep learning network models (SVM, CNN, GAT,
RCNN, transformer) are selected for comparison experiments, and the accuracy results
obtained are shown in Figure 6.
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1. SVM: this method uses TF-IDF to construct a hazard feature vector for hazard source
text and input it into the SVM model for training to realize hazard source prediction;

2. CNN: this method uses CNN to extract the text feature information of hazard sources
and then uses softmax as the classifier;

3. RCNN: this method is a new model constructed by combining CNN and recurrent
neural network (RNN), which can combine the advantages of the two neural networks
and improve the performance of the model;
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4. GAT: the heterogeneous text graph is constructed by using the hazard information
representation vector based on prior knowledge as input. This method uses the
attention mechanism on the basis of graph convolutional network modeling, which
can achieve good results.

5. Transformer: The model is a neural network model based on a self-attention mech-
anism, which is widely used in the field of natural language processing, such as
machine translation, language understanding, and generation.

From the analysis of the experimental results in Figure 6, it can be seen that the risk
level prediction accuracy of other deep learning network models is not much different, and
they are all less than 0.6. The risk level prediction accuracy of the improved model is 0.736,
which is about 25% higher than the traditional transformer model. The evaluation index
data of the improved model are shown in Table 4.

Table 4. Improved model evaluation index based on transformer.

Prediction Level
Precision Recall F1 Accuracy

Grade I Grade II Grade III Grade IV

True
level

Grade I 1424 361 35 10 0.759 0.778 0.768 0.778
Grade II 275 1309 254 39 0.619 0.697 0.656 0.697
Grade III 146 362 2033 207 0.814 0.740 0.775 0.740
Grade IV 32 82 177 754 0.747 0.722 0.714 0.722

4.4. Model Efficiency Experiments

In this paper, we propose a transformer model based on a sliding window according
to the actual project situation, which restricts the attention calculation to the inside of the
sliding window in terms of task scenarios and reduces the amount of network computation
of the attention mechanism. In order to verify the efficiency of the improved model, the
running time of the traditional transformer model and the improved model proposed
in this paper are compared and analyzed on the same project dataset, and the obtained
experimental results are shown in Figure 7.
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From the analysis of the experimental results in Figure 7, it can be seen that the running
time of the traditional transformer model is 596 s, and the running time of the improved
model is 435 s. Compared with the traditional transformer model, the running time of the
model is reduced by about 27%, which proves that the improved model can reduce the
amount of network computation, improve the running speed of the model, and verify the
efficiency of the model.
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5. Discussion

The improved water engineering safety risk evaluation model based on transformer
proposed in this paper integrates project feature task scenario and sliding windows, builds
task scene judgment gates, and restricts the attention mechanism to a sliding window
with task scene as the unit. Analysis from the theoretical point of view: the traditional
transformer model calculates the global attention, and the algorithm time complexity is
O
(
n2), where n is the sum of the text lengths of all task scenarios. The improved transformer

model proposed in this paper calculates the a priori attention within the task scenario,
and the algorithm time complexity is O

(
m2), where m is the maximum text length of the

task scenario (m � n). Therefore, when the sample data volume is large, there will be
m� n, so the time complexity of the improved transformer model is much smaller than
that of the traditional transformer model. Analysis from the perspective of example data:
from Figure 7, it can be seen that the improved transformer network model reduces the
running time by 27% compared with the traditional transformer model, which improves
the running speed of the model.

In this paper, three experiments are conducted in the a priori attention validity experi-
ment. In the comparison experiments of the first and second groups, using whether or not
to introduce a priori knowledge as a control variable, it is argued that it is obtained that a
priori knowledge can indeed compensate for the deficiency of insufficient characteristics
of sample data and can improve the accuracy of model risk level prediction; in the exper-
iments of the second and third groups, using the way of a priori knowledge fusion as a
control variable, it is argued that it is obtained that introducing a self-attentive mechanism
to weight fused a priori knowledge is more effective than simply splicing the accuracy of
model prediction is higher. The effectiveness of a priori attention on the data of this project
is argued by comparing the two groups of experiments.

6. Conclusions

This paper proposes an improved water engineering safety risk evaluation model
based on transformer, which builds a task scene judgment gate and restricts the attention
mechanism to a sliding window with the task scenario as the unit, so this model reduces
the computation of the network to a greater extent compared with the traditional model.
At the same time, this paper introduces the attention mechanism on the basis of a priori
knowledge, calculates the importance weight coefficients through the attention mechanism,
and weighted fusion of a priori vectors and text vectors, which makes the model have
a learning mode more similar to the human brain, compensates for the deficiency of
insufficient sample features and improves the accuracy of model risk level prediction.
Experiments were conducted on the data of the Xinmeng River Extension and Dredging
Project, which proved the effectiveness of a priori attention for improving the accuracy
of the model and also demonstrated that the sliding window in terms of task scenarios
reduced the computational effort of the network model, and the research in this paper was
successfully applied on real data.
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