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Abstract: Path instability of a rising bubble is a complex phenomenon. In many industrial appli-
cations, bubbles encounter walls, and the interactions between the bubbles and the wall have a
significant impact on flow physics. A single bubble rising near a vertical wall was experimentally
observed to follow a bouncing trajectory. To investigate the near-wall dynamics of rising bubbles, 3D
numerical simulations were performed based on the volume of fluid (VOF) method using the open
source solver OpenFOAM. The effect of wall proximity and surface tension on the bubble trajectory
was investigated. Previous studies have focused on the near-wall rising dynamics of bubbles for
higher Eotvos numbers (Eo) and varied the Galilei number (Ga). The physical properties of the flow
were chosen such that the free-rising bubble lies in the rectilinear regime. The Ga number was fixed
and the Eo number was varied to analyze its effect on the bubble’s rising trajectory. It was found that
the presence of the wall increases the drag experienced by the bubble and induces an early transition
from rectilinear to a planar zigzagging regime. We identify the maximum wall distance and the
critical Eo number for the bubble to follow a bouncing trajectory. The amplitude, frequency and
wavelength of the bouncing motion are independent of the initial wall distance, but they decrease
with decreasing surface tension.

Keywords: rising bubbles; path instability; wall effect; bouncing bubbles

1. Introduction

Rising bubbles have been a topic of active research due to their rich physics and
various applications in different domains of science and engineering. Bubble behavior has
a significant impact on the flow properties and heat and mass transfer effects in gas–liquid
two-phase flows encountered in industry and many natural phenomena. The application
domain of bubbles is very wide, ranging from heat exchangers and bubble column reactors
to targeted drug delivery and laser histotripsy.

The non-linearity and the number of parameters involved make the dynamics of
rising bubbles quite complex. The dynamics of a single bubble rising due to buoyancy
in an infinite liquid pool has been the focus of many experimental [1–6] and numerical
studies [7–14] in the past. A bubble can show different shapes and rising trajectories
depending on the interplay between surface tension, viscosity and inertia forces. The
contamination of the bubble surface can alter its dynamics in a significant manner [4].

In clean water, small bubbles follow a straight vertical path maintaining a spherical
shape. There are no vortices behind the bubble making the flow axisymmetric. As the
bubble size increases, it rises following a plane zigzag or a three-dimensional helical path.
The fascinating phenomenon of path instability of a rising bubble has been the focus of
many experimental, numerical [8] and analytical studies [15]. The transition from the
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rectilinear to the oscillatory regime takes place when the streamwise vorticity accumulated
on the bubble surface exceeds a critical value [5,16], resulting in an asymmetry in the
vortical structures in the wake. The wake structures and vortical activity for the different
path regimes have been extensively researched and documented [3,8,17]. Moreover, the
bubbles also show significant shape deformations resulting in ellipsoidal, oblate ellipsoidal
or cap shapes [4]. The shape deformations and wake instability have been considered
responsible for the bubble path instability [12,18].

Gumulya et al. [19] and Senapati et al. [20] performed numerical simulations to
investigate the effect of the bubble wake on a trailing bubble. They found that the leading
bubble is unaffected by the proximity of the trailing bubble. The trailing bubble interacts
with the wake of the leading bubble and accelerates. The path of the trailing bubble is also
affected by the vorticity in the wake and the path deviation depends on the Reynolds and
Eotvos numbers. Ghosh et al. [11] numerically modeled the shape distortion of one bubble
due to the influence of the other and their merging.

In many industrial applications, bubbles encounter walls, and the interactions between
the bubbles and the wall have a significant impact on flow physics. A single bubble rising
near a vertical wall has been experimentally observed to follow a “bouncing” trajectory.
Tsao and Koch [21] made observations for a single bubble rising very close to a wall at
different inclination angles. They were the first to report that the bubble shows a steady
bouncing behavior as it rises along the wall. After a certain critical angle, the bubble just
slides along the wall. They linked this behavior to the bubble deformation dynamics. De
Vries et al. [3] conducted experiments for a bubble rising very close to a vertical wall in
still water. They observed that the bubble showed different behaviors such as sliding away,
bouncing with constant amplitude or bouncing with increasing amplitude as the bubble size
increases. Other researchers have explained this phenomenon based on the wall-induced
lift force [22,23]. Podvin et al. [24] attempted to mathematically model the phenomenon
using lubrication theory to model the wall-induced force. However, their model could
not capture the bouncing process. Jeong and Park [25] carried out experimental studies
for a high Re bubble rising at different distances from a vertical wall made of different
materials. Lee and Park [26] suggested that the presence of the wall surface induces vortex
shedding. Barbosa et al. [27] conducted experiments for a wide range of Reynolds and
Weber numbers for bubbles rising near inclined walls. Using a force balance approach
correlated with their experimental data, they formulated a condition for the critical angle
for the transition from bouncing to sliding behavior.

The physics of this phenomenon is quite complex, and the mechanism of bouncing
depends on several parameters. The problem of a rising bubble depends on four non-
dimensional parameters:

Eotvos number-ratio of gravitational force to surface tension force Eo = (ρl gd2)/σ
Galilei number-ratio of inertial force to viscous force Ga = (ρl g1/2d3/2)/µl
Density ratio = ρl/ρg
Viscosity ratio = µl/µg
Here, ρ, µ, σ, d and g represent the density, dynamic viscosity, surface tension coeffi-

cient, bubble diameter and gravitational acceleration, respectively. The subscripts l and g
denote the liquid and gas properties, respectively.

In an experimental setting, it is tough to independently vary the different parameters
governing the phenomenon. Numerical simulations come in handy to explore physics
incorporating a wider parameter space. Sugioka and Tsukada [28] investigated the drag and
lift forces acting on an inviscid bubble moving near a plane wall using 3D direct numerical
simulations. They found that, due to the presence of the wall, the drag force increases,
and the direction of the lift force depends on the Reynolds number and the bubble–wall
distance. Zhang et al. [29] simulated bubbles in the presence of a vertical wall and found
that the amplitude and frequency of oscillatory bubble motion decrease with decreasing
Galilei number. They also noted that the wall-normal dimensionless force, amplitude and
frequency are almost independent of the wall-bubble initial distance. They predicted a
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critical Galilei number for the transition from a steady to an oscillating regime, and it is
found to be less than that for the unbounded condition. However, due to high Eo (=16), the
bubble does not experience any attractive motion, and thus, bouncing motion and collision
are not observed. Zhang et al. [30] performed 2D simulations for large deformable bubbles
rising at different distances from the wall. They found that the bubble rises in a Z-shape
and as the distance from the wall increases, the swing amplitude of the bubble gradually
decreases, while the swing frequency of the bubble increases. Yan et al. [31] carried out
VOF-based 3D simulations to investigate the bubble rising behavior near a vertical wall and
observed the bubble bouncing motion. They found that as the Galileo number increases,
the asymmetrical shedding of vortex structures is exacerbated by the presence of the wall.
They predicted a critical Galilei number for the transition from rectilinear to spiral motion.
The closer the bubble is to the wall, the earlier the transition occurs. Moreover, at low
Galileo numbers, the bubble terminal velocity decreases due to the presence of the wall.
Hasan and Hasan [32] studied the migration dynamics of an initially spherical bubble near
a corner formed by two vertical walls and identified five regimes based on the bubble’s
migrating trajectory. Recently, Khodadadi et al. [33] performed numerical simulations over
a wide range of Bond and Morton numbers for a single bubble rising near inclined walls.
They identified three different bubble–wall interaction regimes—sliding, intermittent and
non-contact—and plotted the regime map over the range of parameters considered.

The goal of this research is to explore the physics of bubble–wall interactions and
gain insight into the bubble bouncing behavior as well as the parameters governing this
phenomenon. The presence of a wall acts as a perturbation in the flow domain which can
strongly affect the trajectory of the rising bubble and trigger the path instability of the
bubble. For gas–liquid two-phase systems, a precise knowledge of the bubble trajectory
is essential to estimate the gas-phase residence time through which the contact time for
interfacial transport can be calculated. The bubble trajectory can be indirectly linked to the
efficient design of gas–liquid two-phase systems. Moreover, knowledge of the parameters
controlling the bubble trajectory can help us control the flow physics and heat transfer
characteristics of many types of industrial equipment. Thus, a detailed investigation of
the wall effect on the bubble dynamics is very much needed. This work focuses on the
canonical case of a single bubble rising near a vertical wall which serves as the first step
towards understanding multi-bubble systems encountered in industry.

Except for a few recent computational studies [28,30,31], the phenomenon of bouncing
bubbles due to wall proximity has been studied in the past only through experiments.
Experimental studies have their own constraints, and to delve deeper into the physics
of any natural phenomenon, we need to look from the perspective of a wider parameter
space. There is a need for a robust and well-established numerical model to capture this
phenomenon. Moreover, there are still a lot of unanswered questions on bouncing bubbles,
such as (1) which force plays the dominant role in governing the dynamics of bouncing;
(2) how far into the liquid domain can the wall affect the bubble; (3) what is the role
of the transport properties of both the fluids; (4) what are the kinematic and dynamic
characteristics of the bouncing motion of the bubble, when observed in a wider parameter
space; (5) a force balance model which can predict such dynamics.

To answer some of these questions, we use numerical simulations to analyze the effect
of wall proximity and surface tension on the motion of a single bubble rising close to a
vertical wall. In Section 2.2 we compare the parameter ranges covered in this work with
the recent literature. Previous studies [25,29–31] have explored the effect of wall proximity
on the dynamics of large bubbles with a higher Eotvos number. In this work, we study the
effect of the initial bubble–wall distance on the dynamics of smaller bubbles with Eo and
Ga corresponding to the air–water system. The bubble size is chosen such that the bubble
lies in the rectilinear regime.

Tagawa et al. [34] explored the effect of surfactant concentration on the path instability
of a bubble rising in a helical trajectory. For the case of bubbles rising near a vertical
wall, previous works [29,31] have studied the effect of the Galilei number keeping the
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Eotvos number fixed at values greater than 1. They predicted the critical Ga number for
the transition from one regime to another. However, the authors have not come across any
previous work studying the effect of the Eotvos number on bubbles rising near a vertical
wall. Most of the previous research has focused on only discrete values of the Eo. In this
work, by varying the surface tension, we systematically vary the Eotvos number over a
large range (0.1–10) and find its critical value for the bubbles to start bouncing on the wall.

2. Computational Model

To study the wall effect on the rising motion of an initially spherical bubble, we
initialize an air bubble of diameter d in a water tank of dimensions (10d × 60d × 8d) (see
Figure 1). The dimensions of the computational domain have been chosen as the bubble
bouncing phenomenon while keeping the computational costs and time as low as possible.
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Figure 1. Schematic of the problem.

The height of the domain was taken as 60d so as to capture at least three bubble bounce
events. Previous numerical studies [35] have shown that if the walls are at least 6d away
from the bubble, then the computational domain can be treated as an unbounded fluid
medium. The length and breadth have been taken as 10d and 8d, respectively, so that there
is no effect of the right wall, the front and back walls on the bubble motion. Since, the
parameter range is chosen such that the bubble falls either in the rectilinear regime or the
planar zigzagging regime and the bubble is going to bounce on the left wall (i.e., along the
length of the domain) with negligible motion along the breadth of the domain, the length is
kept greater than the breadth.

To avoid the influence of the right, bottom, back and front walls the initial co-ordinates
of the bubble are set to (s, 4d, 4d), where s is the normalized initial distance of the bubble
centroid from the left wall. Thus, only the left wall would affect the dynamics of the
bubble [35,36]. The initial bubble–wall distance has been normalized with respect to the
bubble diameter.

The 3D computational simulation is performed with the interFoam solver in CFD code
OpenFOAM, where the VOF model, is used to reconstruct the gas–liquid interface. Open-
FOAM is a very robust open source CFD library and has been validated and used for the
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study of bubble dynamics by many researchers [37–39]. The VOF method has been proven
to be quite accurate to capture the physics of bubble–wall interactions [40,41].

2.1. Governing Equations and Numerical Model

The VOF model uses the phase fraction α to locate the phase interface. The grid cell is
filled with the liquid phase when α = 1, and when α = 0, it is filled with the gas phase. The
interface can be located as the region where α lies between 0 and 1.

The conventional VOF method involves the simultaneous solution of the continu-
ity and momentum equations along with the solution of the transport equation for the
phase fraction.

The incompressible continuity equation can be written as:

∇ · u = 0 (1)

The two phases share a common set of momentum equations, which can be repre-
sented as:

∂ρu
∂t

+∇ · (ρuu) = −∇p +∇ ·
[
µ
(
∇u +∇uT

)]
+ Fσ + ρg (2)

where u represents the velocity vector shared by the two fluids throughout the flow domain.
t and p denote the time and static pressure, respectively. Fσ represents the surface tension
force. In a single pressure system, the normal component of the pressure gradient at a
stationary non-vertical solid wall with a no-slip condition must be different for each phase
due to the hydrostatic component ρg when the phases are separated at the wall. In order to
simplify the definition of boundary conditions, a modified pressure is defined as:

pd = p− ρg.x (3)

where x represents the position vector of the fluid element.
Using Equation (3) in (2) yields the modified momentum equation as follows:

∂ρu
∂t

+∇ · (ρuu) = −∇pd − g.x∇ρ +∇ ·
[
µ
(
∇u +∇uT

)]
+ Fσ (4)

Body forces due to pressure gradient and gravity are implicitly accounted for by the
first two terms on the right-hand side of Equation (4).

In addition, the density ρ and viscosity µ are weighted by the phase fraction parameter
as follows:

ρ = αρl + (1− α)ρg (5)

µ = αµl + (1− α)µg (6)

where α indicates the liquid phase fraction parameter. Subscripts l and g denote the liquid
and gas phases, respectively.

The continuum surface force (CSF) model is used for surface tension. The surface
tension force is calculated as follows:

Fσ = σκ∇α (7)

where σ represents the surface tension coefficient and κ represents the local curvature at
the interface which can be approximated as follows:

κ = −∇
(
∇α

|∇α|

)
(8)



Water 2023, 15, 1567 6 of 23

In order to know where the interface between the two fluids is, an additional equation
for α has to be solved:

∂α

∂t
+∇ · (αu) = 0 (9)

In the interFoam solver, a two-fluid Eulerian formulation is used in which the phase
fraction equation is solved separately for each individual phase [37].

∂α

∂t
+∇ · (αul) = 0 (10)

∂(1− α)

∂t
+∇ ·

(
(1− α)ug

)
= 0 (11)

The velocity is modeled in terms of the weighted average of the corresponding liquid
and gas velocities as shown below:

u = αul + (1− α)ug (12)

Equations (10)–(12) can be combined [37] to obtain:

∂α

∂t
+∇ · (αu) +∇ · [α(1− α)uC] = 0 (13)

With this formulation, a sharper interface resolution is achieved. The phase fraction
transport Equation (13) contains an extra convective term that is referred to as the compres-
sion term, which is used to keep the sharpness of the phase interface. In Equation (13), uc is
called the compression velocity, which is, in essence, the relative velocity between the two
phases. Since only a single velocity for both fluids is considered in the whole domain, the
compression velocity needs to be modeled [37,38] as:

uC = c|u|
(
∇α

|∇α|

)
(14)

where c is the compression factor with the value of 1. Equation (14) closes the system of
governing equations.

OpenFOAM solves the coupled system of Equations (1), (4) and (13) based on the
finite volume method. The details of the used discretization schemes are given in Table 1. A
predicted velocity field is constructed and then corrected repeatedly by using the pressure
implicit with splitting of operators (PISO) iteration procedure. Details of the solution
procedure followed by the solver can be found in this paper [38].

Table 1. Discretization schemes used for the different terms of the governing equations.

Term Discretization Scheme OpenFOAM Terminology
∂
∂t (ρu) Euler implicit time scheme Euler

∇·(ρuu) Total Variation Diminishing Limited linearV 1

∇·(αu) Total Variation Diminishing Gauss vanLeer

∇·[α(1− α)uC] Bounded limited scheme InterfaceCompression

∇·u Central Differencing Scheme Linear

∇α Central Differencing Scheme Linear

∇ ·
[
µ
(
∇u +∇uT)] Central Differencing Scheme Linear Corrected

All the walls were assigned a no-slip boundary condition for velocity and a zero
gradient boundary condition for pressure. A static contact angle boundary [40] condition
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was imposed on the left wall. Both the velocity and pressure fields were initialized as a
uniform field with a value of zero.

The convergence tolerance was set to 1 × 10−6 for all the governing equations. The
adjustable time step setting was turned on to ensure time step convergence.

The computations were performed on a supercomputing cluster using at least 128
cores in Intel Xeon SKL G-6148 processors running in parallel. Each solution needed at
least 5 days of runtime.

2.2. Parameter Space

The density and viscosity ratios have been chosen to represent an air–water gas–liquid
system. For the air–water system, taking ρ = 1000 kg m−3, µ = 0.001 Pa s, g = 9.81 m s−2

and d = 0.001 m, we obtain Ga = 99. The case of Ga = 99 and Eo = 0.14 represent a 1 mm air
bubble rising near a wall in pure water. Fixing the Ga and bubble diameter and varying
the Eo from 0.1 to 10 allows us to study the effect of surface tension on the near-wall
bubble behavior. In practical situations, we can control the surface tension of the air–water
interface by using surfactants. These Eo values range can be considered as the value of
Eo for a 1 mm air bubble rising in water having different surfactant concentrations. The
knowledge of the effect of surface tension on the bubble behavior in water can be leveraged
in practical situations to control the flow properties by using surfactants.

Table 2 shows a comparison between the parameters considered in previous research
and this work. It is quite clear that we are exploring a parameter space that has been
unexplored as of yet.

Table 2. Comparison of the range of physical parameters.

Researchers Eo Ga s

Zhang et al. [29] 16 0.57, 63.36, 90.51 0.75, 1, 2
Yan et al. [31] 2 8.8, 51, 95, 133 0.75, 1, 2

Our work 0.1, 0.14, 1, 2, 10 99 0.75, 1, 1.2, 1.5

3. Results

To investigate the effect of a nearby vertical wall on the hydrodynamic behavior of
a bubble, we divide this work into three parts. First, we compare the dynamics of a wall-
bounded bubble with a free-rising bubble, then, we investigate the bubble dynamics at
different initial wall distances. Finally, we study the effect of surface tension on the
bubble behavior.

3.1. Grid Independence and Validation

We performed our simulations on a uniform mesh so as to obtain the same level of
accuracy throughout the domain. To validate our model, we first chose a very coarse mesh
with only 10 cells (see Figure 2a) across the bubble diameter. We then refined the mesh to
obtain different meshes with 15 cells (see Figure 2b), 20 cells (see Figure 2c) and 25 cells
across the bubble diameter. Simulations for an air bubble (d = 1 mm) rising in pure water
were performed using these meshes and the trend of rising velocity achieved by each mesh
has been plotted in Figure 3. The results for terminal velocity for each mesh have been
tabulated in Table 3. Figure 2d shows the mesh in the region between the bubble and
the wall.
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Table 3. Mesh refinement study.

Refinement Level Number of Cells per Bubble Diameter Terminal Velocity
(m/s)

1 10 0.3
2 15 0.357
3 20 0.34

For simulating the phenomenon, a good resolution of the bubble surface is essential.
It is quite clear from Figure 2a that Mesh 1 cannot resolve the bubble surface.
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From Figure 3, we can see that the bubble velocity converges to a stable terminal
velocity only for Mesh 3.

Mesh 4 (25 cells per bubble diameter) was also tested and there was not much dif-
ference in the results from Mesh 3. However, there was a considerable increase in the
simulation time. Mesh 3 was thus the optimum choice for carrying out the simulations and
the results from Mesh 3 can be considered to be grid independent.

The bubble terminal velocity for the same bubble size and fluid properties was calcu-
lated using the correlation of Jamialahmadi [42]. As can be seen from Table 4, the numerical
results are in excellent agreement with the experimental correlation. The drag coefficient
of the bubble is evaluated by balancing the buoyancy force and drag force at terminal
conditions. The experimental drag coefficient for the same conditions has been obtained
using Moore’s correlation [4]. Both the numerical and experimental drag coefficients are
shown in Table 4 below. The error between the experimental correlation and the numerical
result is around 8%.

Table 4. Validation with experimental results.

Numerical
(Mesh 3) Experimental % Error

Terminal Velocity 0.34 0.344 1.16
Drag Coefficient 0.113 0.123 8.13

Thus, we can say that results from Mesh 3 are in agreement with experimental findings
validating our model.

3.2. Near-Wall Rising Behaviour

For bubbles rising due to buoyancy, the near-wall bubble motion is very distinct from
the motion of an unbounded bubble. Figure 4 shows the trajectory of a bubble (d = 1 mm,
Eo = 0.14, Ga = 99) released at a distance of s = 1, 4 from the left wall. The bubble released at
s = 4 shows a straight rising trajectory (Figure 4b) while the one released at s = 1 shows an
almost two-dimensional zigzagging trajectory (Figure 4a). Since at s = 4 the rising trajectory
is not affected by the wall, it can be considered an unbounded bubble.
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bubble released away from the wall. d = 1 mm, Eo = 0.14, Ga = 99.
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It can be observed from Figure 5a that the unbounded bubble has no motion along
the x-direction. However, the wall-bounded bubble shows a sinusoidal variation of its
x-position with time, referred to as bouncing motion in the literature [3,21,25]. Figure 5b
shows the variation of the wall-normal velocity for the wall-bounded and unbounded
bubbles. After an initial transition state, the wall-normal velocity for the unbounded bubble
converges to a steady value of zero, whereas the wall-normal velocity for the near-wall
bubble shows a sinusoidal variation.
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The effect of the wall on the rising motion of the bubble is shown in Figure 6. The
y-position of the bubble is monotonically increasing for both cases, but the slope for the
bounded bubble is lesser than that for the unbounded bubble. The rise velocity of the
wall-bounded bubble is fluctuating, and its terminal velocity is lower than that of the
unbounded bubble.
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Now, if we look at the motion of the bubble in the spanwise direction (shown in
Figure 7a,b) it is quite clear that the variations are of negligible magnitude compared to
the variations in the other directions. For the unbounded bubble, after an initial transition
state, the motion in the z-direction ceases and the z-position of the bubble gets fixed at
z = 4.05 mm and z-velocity becomes zero. For the bounded bubble, random fluctuations in
both the position and velocity in the z-direction are observed. However, the magnitude of
these changes is very small.
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Figure 7. Comparison of z-motion of the bounded and unbounded bubble: (a) Time variation of
z-position of bubble centroid; (b) Time variation of z-velocity of bubble centroid. d = 1 mm, Eo = 0.14,
Ga = 99.

Figures 8 and 9 show the X and Y velocity contours, respectively, during a bounce
event. It can be observed that just after the bubble–wall collision, both the x-velocity and
the y-velocity in the region surrounding the bubble drop to significantly low values, thus
breaking the continuity of the liquid flow around the bubble. This can be considered as the
separation of the flow behind the bubble. It appears that the flow separation occurs after
the bubble has bounced. This might have an effect on the wake region behind the bubble.

Figures 10 and 11 show the velocity vector plots around the wall-bounded and free
bubble, respectively. It is clear that the wall provides a symmetry-breaking perturbation
to the vortices in the flow field. As per Kelvin’s circulation theorem, vortices in the flow
domain can generate lateral forces. From Figure 10, we can see that in the YZ plane, there
are two symmetrical vortices in the wake of the bubble. The lateral force generated due to
the two vortices on the bubble cancels out, and thus, the resultant force on the bubble is
zero, resulting in no motion in the spanwise direction.
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However, due to the presence of the wall, the flow structures in the XY plane become
unsymmetrical. The vortex structures in the wake of the bubble are asymmetrical resulting
in a net lateral force that attracts the bubble towards the wall. Thus, the asymmetry in the
flow structures provides a qualitative explanation for the attractive lift force experienced by
the bubble due to the presence of the wall. The bouncing phenomenon is just a consequence
of this lift force. As the bubble rises near the wall, it is attracted towards the wall due to the
lift force. When it becomes sufficiently close to the wall, the pressure in the thin liquid film
between the bubble and the wall exerts a force that repels the bubble away from the wall.
The bubble now moves away from the wall as it rises upwards. The lift force again attracts
the bubble towards the wall while the pressure in the liquid film repels it. The amplitude of
the bouncing motion, i.e., the maximum wall-normal distance reached by the bubble thus
depends on the balance of these two forces. Moreover, the wavelength of the bouncing
motion depends on the bubble rise velocity and the response time required for these two
forces to balance out.

Now, for the case of a bubble rising away from the wall, the wake structures are
symmetrical in both planes (Figure 11) and thus there is no net lateral force acting on the
bubble and the bubble rises straight upwards following a rectilinear trajectory.
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3.3. Effect of Initial Wall Distance

To study the effect of the bubble–wall distance on the bubble rising behavior, we
release the bubble at different distances from the wall. Keeping all other parameters fixed,
we vary s as s = 0.75, 1, 1.2, 1.5. It is quite intuitive to expect the effect of the wall to decrease
as the initial distance increases. This study will help us to analyze how far into the flow
field the effect of the wall creeps in.

From Figure 12, we can see that as the bubble–wall initial distance increases, the
bubble trajectory changes from bouncing to straight rising. The bubble shows a bouncing
trajectory for s of less than 1.5.
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Figure 12. Comparison of the bubble trajectory when released at different distances from the wall
(Eo = 0.14, Ga = 99).

Figure 13a,b shows the effect of the wall distance on the wall-normal motion of the
bubble. The characteristics of the bouncing motion for different s are listed in Table 5. It is
noted that for the s values for which the bubble shows a bouncing motion, the bouncing
trajectory has almost similar characteristics. This implies that the initial wall distance
does not impact the bouncing motion; however, there is just a phase difference of the
bouncing trajectories (Figure 13a) for different s. In other words, as the distance from
the wall increases, the time of onset of these instabilities also increases as we can observe
for the cases of s = 0.75, 1, 1.2. After s = 1.2, the bubble does not show bouncing in the
considered domain.
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Figure 13. Comparison of x-motion of the bubble released at different distances from the wall:
(a) Time variation of x-position of bubble centroid; (b) Time variation of x-velocity of bubble centroid.
d = 1 mm, Eo = 0.14, Ga = 99.

Table 5. Characteristics of bouncing motion at different s (Eo = 0.14).

s Amplitude (A)
(mm)

Wavelength (λ)
(mm)

Time Period (T)
(s)

0.75 0.56 18.5 0.06
1 0.6 18 0.06

Figure 14a,b show the effect of the wall distance on the rising motion of the bubble.
The rising velocity shows a fluctuating trend for s less than 1.5 and the terminal rise velocity
decreases as s decreases.
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Figure 14. Comparison of y-motion of the bubble released at different distances from the wall:
(a) Time variation of y-position of bubble centroid; (b) Time variation of y-velocity of bubble centroid.
d = 1 mm, Eo = 0.14, Ga = 99.

Figure 15 below shows the variation of the average rise velocity of the bubble with the
initial bubble–wall distance. As the wall proximity increases, the drag force on the bubble
increases, and thus, the average rise velocity decreases. In terms of the drag force, s = 1.5
can be considered as the critical distance beyond which the wall has a negligible effect on
the bubble motion.
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As can be seen from Figure 16, the spanwise motion of the bubble is quite randomized.
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Figure 16. Comparison of z-motion of the bubble released at different distances from the wall:
(a) Time variation of z-position of bubble centroid; (b) Time variation of z-velocity of bubble centroid.
d = 1 mm, Eo = 0.14, Ga = 99.

However, the fluctuations in the z-component of velocity decrease as the distance from
the wall increases. Moreover, the magnitude of the position variation and the velocity in
spanwise direction is very small compared to the other two directions.

3.4. Effect of Surface Tension

Keeping the bubble size (d = 1 mm) and distance from the wall (s = 1) constant, we
now vary the surface tension of the liquid–air interface. The different values of σ and the
corresponding Eo are shown below (see Table 6):

Table 6. The Eotvos numbers vs. various surface tension coefficients.

σ 0.1 0.07 0.01 0.005 0.001

Eo 0.0981 0.14 0.981 1.96 9.81

Figure 17 shows how the bubble rising trajectory changes at different values of surface
tension. After Eo = 1, the bubble shows a zigzagging trajectory while moving away from
the wall.
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Figure 17. Comparison of the bubble trajectory at different Eo (s = 1, Ga = 99).

The effect of surface tension on the wall-normal motion, rising motion and spanwise
motion is shown in Figures 18–21, respectively. It is evident from these figures that the
wall effect on the bubble dynamics is dependent on the surface tension value. A detailed
discussion of these results is performed in the following section.
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indirectly increases the drag force. 

Figure 18. Comparison of x-motion of the bubble for different Eo: (a) Time variation of x-position of
bubble centroid; (b) Time variation of x-velocity of bubble centroid. d = 1 mm, Ga = 99, s = 1.
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Figure 19. Comparison of y-motion of the bubble for different Eo: (a) Time variation of y-position of
bubble centroid; (b) Time variation of y-velocity of bubble centroid. d = 1 mm, Ga = 99, s = 1.
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Figure 22. The bubble shape as viewed from the XY (left) and YZ (right) planes for different values 

of surface tension. 
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From Table 7, we can see that for the values of surface tension for which the bubble
shows a bouncing trajectory (Figure 18a), as the Eotvos number increases, the amplitude,
time period and wavelength of the bouncing motion decreases.

Table 7. Characteristics of bouncing motion at different Eo (s = 1).

Eo Amplitude (A)
(mm)

Wavelength (λ)
(mm)

Time Period (T)
(s)

0.1 0.73 25.1 0.07
0.14 0.6 18 0.06

Figure 20 given below shows the variation of the average rise velocity of the bubble
with the Eotvos number plotted on the log scale. It is evident from the plot that with
increasing Eo, the rise velocity decreases. This implies that the decrease in surface tension
indirectly increases the drag force.

From the above figure, we can observe that at lower surface tension values the bubble
assumes a flat shape. Figure 22a,b shows the deformation in the bubble shape at the time
of bouncing.
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4. Discussion

According to phase diagram of Cano-Lozano et al. [13], a rising bubble with Ga = 99
and Eo = 0.14 lies in the rectilinear regime. From Figure 4b, it is seen that the trajectory of the
bubble far from the wall is straight rising. The wall proximity induces an early transition
from the rectilinear to the planar zigzagging regime as shown in Figure 4a. This zigzagging
motion on the wall is referred to as bouncing motion in the literature [21,25] as the bubble
keeps on colliding with the wall, and thus, seems to bounce off the wall repeatedly.

From Figure 5, we can observe that the amplitude of this bouncing motion is constant.
The bubble collides with the wall at t1, t2 and t3. The time between two collisions is
highlighted in the figure and is almost constant, i.e., the bouncing frequency is constant.
The rising motion of the bounded and unbounded bubbles have the same nature (Figure 6).
Figure 6 shows the vertical distance traveled by the wall-bounded bubble between two
collisions (t1, t2) and (t2, t3) and it is almost constant. Thus, the bouncing motion is very
uniform with constant amplitude, frequency and rise distance in every bouncing cycle.

On analyzing the x-component of the bubble velocity (Figure 5b), it is seen that the
x- motion of the unbounded bubble has an initial transition state in which the x-velocity
oscillates about the mean value of zero. After reaching the steady state, the x-motion ceases,
i.e., x-velocity becomes zero. For the bounded bubble, the x-velocity shows a fluctuating
trend. As expected, the velocity starts to rise at the time of the bubble–wall collision. From
Figure 6a, it is evident that due to the presence of the wall, the drag force increases, and thus,
the average rise velocity of the bounded bubble is lesser than that for the unbounded case.

As expected, the unbounded bubble reaches a terminal state with vy = 0.34 m/s.
However, the y-motion of the bounded bubble cannot achieve a steady state terminal
velocity. After the buoyancy and drag forces are balanced, the bubble reaches a maximum
vy = 0.32 m/s. From Figures 5b and 6b, we can observe that at the time of the collision, the
x-velocity starts increasing, and consequently, the y-velocity drops from its maximum value.
As the bubble completes its bouncing cycle, the x-velocity decreases and the y-velocity
starts rising and it again reaches its maximum value and stays there for some time after
which the bubble is again attracted to the wall and the rising velocity drops again.

The spanwise motion (Figure 7a,b) is very negligible compared to those in the wall-
normal and wall-parallel directions. However, compared to the unbounded bubble, there
is some randomized motion in the spanwise direction for the bubble rising near the wall.

4.1. Effect of Wall Proximity

From Figures 12–15, it is evident that as s increases, the effect of the wall on the bubble
decreases. For s = 0.75 and 1, the frequency and amplitude of bouncing are almost equal and
constant (Table 5). However, there is a phase lag between them. For s = 0.75, the bubble is
attracted towards the wall quite early as expected. As the distance from the wall increases,
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it takes more time for the bubble to be attracted towards the wall. For s = 1.2, initially, the
bubble rises straight upwards with negligible motion in the wall-normal direction. After
t = 0.15, the bubble is attracted to the wall, and then after colliding with the wall, it shows a
bouncing trajectory with almost the same amplitude and frequency as the previous cases.
For s = 1.5, the bubble experiences negligible attraction towards the wall and its x-position
decreases very slowly with time. At this distance, we can say that there is no effect of the
wall, and hence, there is no bouncing motion. The wall-normal velocity shows a sinusoidal
variation of constant amplitude and frequency, as expected for the bouncing motion. For
s = 1.2 and 1.5, the velocity shows small variations about zero, this is quite obvious as the
bubble has no considerable motion in the x-direction.

The y-position of the bubble increases monotonically with an almost constant slope
for all s. The slope of the line increases as s increases as observed in Figure 14a. As we
can see from Figure 14b, the maximum y-velocity reached by the bubble increases as s
increases. As the distance from the wall (s) increases, the drag force decreases, and thus,
the average rise velocity increases. As explained in the previous section, the y-velocity
magnitude shows a fluctuating pattern due to the bouncing motion. With increasing s,
the bouncing motion dies out and so do the fluctuations in the y-velocity. As s increases,
the maximum y-velocity achieved by the bubble increases. This is expected because, with
increasing distance from the wall, the effect of the wall decreases, and thus, the effect of the
wall on the rising velocity decreases. For s = 1.5, there are no fluctuations, and the rising
velocity reaches a terminal state with vy ≈ 1. This implies that the terminal velocity is
slightly lesser compared to the terminal velocity of the free-rising bubble. At s = 1.5, the
wall effect is not strong enough to bring an effect in the wall-normal direction and induce a
bouncing motion but it increases the drag, thus decreasing the y-velocity of the bubble.

4.2. Effect of Eotvos Number

Let us now analyze the effect of the variation of Eo on the bubble behavior. As the
surface tension decreases and the Eo increases, the drag experienced by the bubble increases.
This can be deduced from Figure 19. The y-position and the maximum rising velocity
achieved decrease with increasing Eo number. This increase in drag can be attributed to the
flattening of the bubble surface with decreasing surface tension.

At Ga = 99, the transition from rectilinear rising regime to planar zigzagging regime
occurs at Eo v 1.5 [13]. In the presence of the wall, the bubble shows zigzagging motion
(18a) for the entire range of Eo considered in this study, i.e., from Eo = 0.098–9.8, except for
Eo = 1. It is observed that for Eo < 1, the bubble bounces on the wall. Meanwhile, for Eo > 1,
the bubble slowly moves away from the wall following a zigzagging trajectory. At Eo = 1,
after an initial transition state, the bubble gradually slides away from the wall. Thus, at
Ga = 99, Eo = 1 represents the critical value of Eo for which the wall force transitions from
attractive to repulsive, thus changing the bubble motion from bouncing to sliding away.

For Eo < 1, with increasing surface tension and decreasing Eo, both the amplitude and
the frequency of the bouncing motion increase (Figure 18a). The maximum wall-normal
velocity achieved after the bubble–wall collision is also higher for lower Eo (Figure 18b).
With regards to the motion in the spanwise direction, for the bouncing regime (Eo < 1) the
oscillations of velocity in the z-direction increase with decreasing Eo, whereas for the sliding
away regime (Eo > 1), the z-velocity magnitude is highest for the highest Eo. However,
no particular trend can be fitted for the z-motion for any value of Eo and the order of
magnitude of the velocity and displacement is negligible compared to those in the other
two spatial directions.

5. Conclusions

In this work, VOF-based numerical simulations were performed to assess the impact
of wall proximity and surface tension on the motion of a single air bubble rising in still
water. For the parameters considered in this work, the bubble lies in the rectilinear regime.
The following conclusions can be drawn from the obtained results:
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• The presence of the wall near the bubble provides a significant perturbation to the
flow structures in the fluid domain, which induces an early transition of the bubble
trajectory from the rectilinear to the planar zigzagging regime. At Ga = 99, the critical
Eo for this transition decreases from 1.5 to 0.14.

• A 1 mm diameter air bubble rising near a vertical wall in pure water (Ga = 99, Eo = 0.14)
follows a bouncing trajectory as observed in previous experimental works. The
bouncing motion is characterized by constant wavelength, amplitude and frequency.
There is no significant motion of the bubble along the spanwise direction. The bouncing
motion is thus two-dimensional.

• Due to the presence of the wall, the drag experienced by the bubble increases. The
average rise velocity of the bubble rising near the wall is less compared to the
unbounded bubble.

• As the bubble–wall initial distance increases, the bubble rising trajectory changes from
bouncing (planar zigzagging) to straight rising. Moreover, as the distance from the
wall increases, the maximum velocity and the average rise velocity also increases, i.e.,
the drag decreases.

• The bubble shows bouncing motion for s < 1.5. For the bouncing regime (i.e., s < 1.5),
the change in wall proximity only changes the time of onset of bouncing. It does not
impact the characteristics of the bouncing trajectory. The closer the bubble is to the
wall, the earlier it triggers these path instabilities.

• For Ga = 99, s = 1, the bubble shows a bouncing motion for Eo < 1.

To have a complete picture of the effect of surface tension on the bubble bounc-
ing behavior, the effect of wall proximity at different values of surface tension needs to
be explored through more simulations in the future. Moreover, to further explore this
phenomenon, the effect of bubble size on the bouncing motion should also be studied. Fur-
thermore, well-planned experimental investigations should be conducted to supplement
the computational study.
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Abbreviations
The following abbreviations are used in this manuscript:

d Bubble Diameter
Eo Eotvos Number
g Acceleration due to gravity
Ga Galilei Number
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s Normalized bubble-wall initial distance
t Time
vx x-velocity of bubble centroid
vy y-velocity of bubble centroid
vz z-velocity of bubble centroid
VOF Volume of fluid
x x-position of bubble centroid
y y-position of bubble centroid
z z-position of bubble centroid
α Phase fraction
ρ Density
σ Surface Tension Coefficient
µ Dynamic Viscosity
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