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Abstract: The power oscillation induced by pressure fluctuation in the draft tube of the hydraulic
turbine is one of the limiting factors preventing the Francis turbine from operating in the vibration
zone. At the present power grid with a high proportion of renewable energy resources, we try to
improve the load regulation ability of the hydropower units by extending the stable operation zone
to the vibration zone. By the mathematical modelling of pressure fluctuation, this paper gives an
analytical expression of the power oscillation. We derive the extended Hamiltonian model of the
hydropower unit where power oscillation is external excitation. Secondly, the damping injection
method introduces some desired interconnection and damping matrices as the Hamiltonian damping
factor into the additional damping control. Finally, through theoretical analysis and experimental
simulation, this research discusses the resonance characteristics of pressure fluctuation and power
oscillation, the equivalent analysis between the damping factor and equivalent damping coefficient,
and the control design of vibration zone crossing during the start-up. Simulation results show that
when r25 = 1.3, the minimum power oscillation amplitude is 0.5466, which is equivalent to an increase
in D by 20. The maximum oscillation amplitude decreases by 4.6%, and the operation limited zone
is reduced by 10.1%. The proposed additional damping control can effectively suppress the power
oscillation and expand the regulation range.

Keywords: pressure fluctuation; power oscillation; Hamiltonian damping factor; additional damping
control; vibration zone crossing

1. Introduction

In a power system with a high proportion of renewable energy resources, hydropower
units (HU) as a large-capacity regulating power supply have been the only feasible technical
path to date. So, the load regulation requires a high frequency and a large span. When the
power oscillation occurs in the deviation from the rated-load condition, the stable operation
zone of HU is limited to 60%–100% of the rated load at present, and some are even limited
to 70–100% [1]. This situation narrows the range of active power regulation, which cannot
meet the requirements for regulating power supply. To expand the regulation range, related
research has even investigated the stability of operation under non-design conditions and the
expansion of the overload area [2,3]. From the perspective of practical projects, it has greater
potential for extending the stable operation zone under part-load conditions. There are some
theoretical and experimental studies on the formation and evolution mechanism [4,5] and
suppression measures [6,7] of pressure fluctuation in DL. However, because of its complex
dynamic behaviour and multi-field coupling characteristics, we have no suitable method to
solve this problem completely. This paper only analyses and studies the power oscillation of
the active power caused by the pressure fluctuation of DL in the Francis turbine.

When the frequency of pressure fluctuation in DL is close to the other oscillation
frequencies of HU, the resonance of hydraulic, mechanical, or electrical systems will be
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induced, which can cause greater harm to the entire system. For example, when the
frequency is close to the natural frequency of the generator, the power oscillation of active
power will be amplified [8–10], and when the frequency is close to the low-frequency
oscillation frequency of the power grid, it will even threaten grid stability [11]. The problem
of power oscillation caused by pressure fluctuation in hydropower stations has been
reported from time to time. There are two main ways: one is that the units operate in the
vibration zone under part-load conditions [12]; the next is that the units take too long to
cross or stay in the vibration zone during the start-up [13].

In the studies discussing the influence of pressure fluctuation on operation control,
its external features or measurable characteristics are usually used to describe pressure
fluctuation in DL, which many scholars have explored [14–16]. However, due to the
differences in structural parameters and operating conditions of HU, it is difficult to
quantify the nonlinear dynamics behaviour of pressure fluctuation accurately. In the related
applications of control analysis, the frequency and amplitude of pressure fluctuation are
regarded as measurable characteristics. For example, according to the features of the
vortex belt in DL under different load conditions, the piecewise function is used to give the
variation of pressure fluctuation [17]. The simplest way is to express the amplitude and
frequency of pressure fluctuation is by sine or cosine [18]. This paper adopts this simple
sine function to describe pressure fluctuation in the experimental simulation.

From the dynamic of view, it is effective to increase the system damping to suppress
the parameter variety and disturbance. For example, by increasing the damping of HU,
the amplitude of power oscillation can be significantly reduced [19]. The article [20] used
PSS to suppress the power oscillation induced by pressure fluctuation, which is equal to
increasing the damping of their resonance zone. Based on this idea, this paper attempts to
study how to improve the damping of HU to suppress the amplitude of power oscillation
from the control.

The damping characteristics are improved by narrowing the oscillation amplitude
and reducing the oscillation times through the control strategy. For the power oscillation
induced by the vortex belt of DL, the optimization of governor control parameters has a less
inhibiting effect on the power oscillation [21]. Therefore, it is necessary to consider other
auxiliary signals as control inputs to supply additional damping to the object system, such
as the PSS module on the generator side. There are a few control theories whose purpose is
to improve the damping characteristics of the system. The damping injection method based
on generalized Hamiltonian theory explicitly proposes injecting damping into the system
to improve the transient characteristics [22–24]. The core of this theory is to change the
geometric structure by modifying the interconnection or damping matrix. However, it is
difficult to obtain the analytical expression of the modified Hamilton function to maintain
the mathematical equivalence. Some research results have used flexible methods to design
the equivalent control law after structural modification in practical problems. For example,
for high-order systems with incomplete control, the control design adopts the approximate
treatment at the given equilibrium point [25], and the article [26] has proposed a parametric
design method called H-damping-assignable. The Hamiltonian function is minimized to
synthesize the corresponding control laws [27].

This paper proposes an equivalent control design method of damping injection in the
fifth-order Hamiltonian system of HU, which aims at suppressing the power oscillation
induced by pressure fluctuation. Associations among the value of damping factor, the
variation of damping characteristics, and the influence of resonance characteristics are
studied. In practical application, selecting appropriate damping factors and adopting
PID + Hamiltonian additional damping control can effectively improve the vibration zone
crossing during the start-up of HU. The new control strategy ensures that the system
quickly passes through the resonance region and reduces the active oscillation amplitude
induced by pressure fluctuation.
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2. Problem Description

The pressure fluctuation of a Francis turbine results from the upward transmission of
an eccentric vortex in the draft tube (DL). It is presented as a periodic change of the water
head across DL [18]. The mechanical power pt defined by the IEEE Working Group [28] is
expressed as

pt = Atht(q− qnl) (1)

pt only applies to the unconstrained draft tube with zero inlet pressure, and ht only
refers to the pressure at the hydro turbine admission. However, the strict definition of the
water head is the pressure difference between the upstream of the hydro turbine and the
downstream.

The new water head accounting for the pressure fluctuation is described by

ht = ht0 + hp sin(ωpt) (2)

Noted that ht0 is ht in Equation (1).
Similarly, we define the new mechanical power after inserting Equation (2) into

Equation (1):
pt = Atht0(q− qnl) + At(q− qnl)hp sin(ωpt)

= pt0 + ∆p
(3)

where pt0 is pt in Equation (1) and ∆p = Athp(q − qnl)sin(ωpt).
Let ∆p/pt0 in Equation (3), we have:

∆p
pt0

=
hp

ht0
sin(ωpt) (4)

Equation (4) shows that the frequency of power oscillation is the same as that of
pressure fluctuation. According to “Basic technical specification for large and medium
hydraulic turbines” [29], the peak-to-peak allowable value is 3~10% of the corresponding
operating head, and the absolute value is less than 10 (m). In medium and low turbines,
their power oscillation may have a larger oscillation amplitude.

The motion equation of HU is:

dω

dt
=

1
Tj
[pt − pe − D(ω− 1)] (5)

Substituting Equation (3) into Equation (5) to obtain:

dω

dt
=

1
Tj
[pt0 − pe − D(ω− 1)] +

1
Tj

Fp sin(ωpt) (6)

We define Fp = Athp(q − qnl).
According to the theory of vibration mechanics [30], the active power under harmonic

excitation is sinusoidal oscillation with the same external excitation frequency. When the
frequency of pressure fluctuation is close to the natural frequency of power oscillation,
the latter amplitude will be increased by the resonance, and HU will be unable to operate
stably. According to the resonance characteristics, the oscillation amplitude can be reduced
or suppressed by increasing the damping of the system. In this paper, we try to minimize
the power oscillation and improve the operating stability by the damping injection method.

3. Additional Damping Control for the Hamiltonian System

The port-controlled Hamiltonian (PCH) system takes the form of:

.
x = [J(x)−R(x)]

∂H
∂x

(x) + g(x)u(x) (7)
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The state variable x∈ Rn and control input u∈ Rm, m < n, H(x) is the energy function,
g(x) is the input matrix, the structure matrix J(x) is antisymmetric, and the damping matrix
R(x) is a semi-positive definite symmetric matrix.

(i) Assume that x* is the equilibrium, the constant control v* is the solution of

0 = [J(x∗)−R(x∗)]
∂H
∂x

(x∗) + g(x∗)v∗ (8)

If the corresponding conditions [31] are satisfied, v* is the input of stabilization control
in system (7).

(ii) Given the constant structural modification Ja and Ra, the desired Hamiltonian structure
matrix is Jd(x) = J(x) + Ja, Rd(x) = R(x) + Ra, which satisfies Jd(x) = −Jd(x)T, Rd(x) =
Rd(x)T. So, the system (7) can be rewritten as

.
x = [(Jd(x)− Ja)− (Rd(x)−Ra)]

∂H
∂x (x) + g(x)u(x)

= [Jd(x)−Rd(x)] ∂H
∂x (x)− [Ja −Ra]

∂H
∂x (x) + g(x)u(x)

= [Jd(x)−Rd(x)] ∂H
∂x (x) + g(x)β(x)

(9)

where
g(x)β(x) = −[Ja −Ra]

∂H
∂x

(x) + g(x)u(x) (10)

β(x) is the equivalent control after structure modification.
At the equilibria x*, the modified Hamiltonian system (9) also satisfies:

0 = [Jd(x∗)−Rd(x∗)] ∂H
∂x (x∗) + g(x∗)β(x∗)

= [J(x∗)−R(x∗)] ∂H
∂x (x∗) + [Ja −Ra]

∂H
∂x (x∗) + g(x∗)β(x∗)

= −g(x∗)v∗ + [Ja −Ra]
∂H
∂x (x∗) + g(x∗)β(x∗)

(11)

When the system is asymptotically stable, the control β(x) in Equation (10) replacing
β(x*) in a neighbourhood around the equilibrium point is valid. Assume that g(x) is a
constant matrix, that is, g(x) = g(x*) = g. Combining with Equations (10) and (11), there are:

g[u(x)− v∗] = (Ja −Ra)[
∂H
∂x

(x)− ∂H
∂x

(x∗)] (12)

(iii) Let α(x) = u(x)-v*. If g(x) is full of rank, (gTg) is reversible. In addition,

α(x) = (gTg)
−1

gT(Ja −Ra)[
∂H
∂x

(x)− ∂H
∂x

(x∗)] (13)

α(x) is the additional damping control of the Hamiltonian system (7) with (Ja, Ra), and
α(x*) = 0. Notice that α(x) only plays a role in the transient process.

The resulting control law must calculate the matching Equation (8) at the given
equilibrium x*, which is its limitation. The control design method is selected by the load
state of the system in the actual operation. The additional damping control is appropriate for
this research, which aims to suppress the power oscillation induced by pressure fluctuation.

4. Hamiltonian Model of Hydropower Units

As the external excitation, the power oscillation induced by the pressure fluctuation in
DL is added to the motion Equation (5) of HU. The generalized Hamiltonian model is from
the transformation of the differential equation model. Assuming that the power oscillation
approximates the Hamiltonian system input as an external excitation, we add the excitation
to the PCH model of HU [32]. The expanded PCH model is expressed as follows:

.
x = [J(x)−R(x)]

∂H
∂x

+ g(x)v(x) + F(x) (14)
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J(x) =


0 CT(x) 0 0 0

−CT(x) 0 0 1
2TjTy

0

0 0 0 1
Tj

0

0 − 1
2TjTy

− 1
Tj

0 0

0 0 0 0 0

,

R(x) =



r(x) 0 0 0 0
0 r(x) 0 1

2TjTy
0

0 0 0 0 0
0 1

2TjTy
0 D

T2
j ωB

0

0 0 0 0 ωBX2
ad

T′d0X f


g(x) =

[
0 1

Ty
0 0 0

0 0 0 0 ωB
T′d0

]T

, v(x) =
[

up(x)
E f

]
F(x) = [ 0 0 0 1

Tj
Fp sin(ωpt) 0 ]

T

where x = [x1, x2, x3, x4, x5]T = [q, y, δ, ω, E′q]T, F(x) is the external excitation, and the
Hamilton function is:

H(x) =

Ty At
x2

1
x2
(x1 − qnl) +

1
2 TjωBx2

4 −
1
2 U2

s (
1

Xq ∑
− 1

X′qΣ
) cos2 x3

+ 1
2

U2
s

Xq ∑
+ 1

2
Xd ∑X f

X2
adX′d ∑

x2
5 −

Us cos x3
X′d ∑

x5

(15)

The algebraic equations in Equation (14) are:

f1(x) = 1
Tw

(h0 − fpx2
1 −

x2
1

x2
2
)

f2(x) = − 1
Ty
(x2 − y0)

r(x) = − f2(x)∇x2 H+Atx3
1/x2

(∇x1 H)2+(∇x2 H)2

CT(x) =
f1(x)+∇x1 Hr(x)

∇x2 H

up(x) = u(x) + Ty
f1(x)∇x1 H+Atx3

1/x2
∇x2 H

pt = At
x2

1
x2

2
(x1 − qnl)

where up(x) is the control realized by a feedback dissipative, Xd∑ = Xd + XT + XL, X′d∑=
X′d + XT + XL and Xq∑ = Xq + XT + XL.

In the above model, the hydro turbine is a second-order model including flow and
guide vane opening. The head losses are proportional to flow squared and given by f 1(x)
in CT(x) of structure matrix J(x) in Equation (14). It is only a simple hydraulic condition
with a penstock and a non-elastic water column. If the elastic water column is adopted,
the model becomes a five-order model, and the derived Hamiltonian model has a more
complex expression, while HU is the eighth-order model. It is bound to make additional
damping control (13) more difficult.

In this paper, we first design the additional damping control for the fifth-order Hamil-
tonian model. Then, the adaptability of the control law for the expanded PCH system is
studied by example simulation.

5. Control Design
5.1. Damping Injection

This research aims to inject damping into the Hamiltonian system and suppress
the power oscillation. In the PCH system (7), the damping matrix R(x) reflects the port
dissipation characteristics. We want to add the corresponding Hamiltonian damping factor
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Ra to R(x) to increase the system damping. In HU, the active power belongs to the electrical
systems, and the pressure fluctuation of DL belongs to the hydraulic systems. So, Ra is the
correlation item between hydraulic and electrical systems. The desired structure matrix is
selected as follows:

Ja = 05×5, Ra =


0 0 0 0 0
0 0 0 0 r25
0 0 0 0 0
0 0 0 0 0
0 r25 0 0 0

 (16)

Insert (14) and (16) into (13), and the additional damping control is as follows:

α(x) =
[

α1(x)
α2(x)

]
=

[
Tyr25[

∂H
∂x5

(x)− ∂H
∂x5

(x∗)]
T′d0
ωB

r25[
∂H
∂x2

(x)− ∂H
∂x2

(x∗)]

]
(17)

Combining u(x) = α(x) + v* to obtain:

u(x)

=

 up∗ + Tyr25[
Xd ∑X f

X2
adX′d ∑

(x5 − x5∗)− Us
X′d ∑

(cos x3 − cos x3∗)]

E f ∗ − T′d0
ωB

r25Ty At[
x2

1
x2

2
(x1 − qnl)−

x2
1∗

x2
2∗
(x1∗ − qnl)]

 (18)

u(x) is a state feedback control, which builds the coupling correlation between the
different systems.

According to Lyapunov stability theory, the range of r25 in (16) should be calculated by
the positive definiteness of the Hessian matrix. Only in this way is the PCH system with the
desired structure matrix (Jd, Rd) asymptotically stable. However, for a high-order system, it
is too complicated to confirm the positive definite condition of the Hessian matrix, and the
obtained range of r25 at the given equilibrium is not the expected optimal value. Therefore,
this paper adopts the numerical example simulation to determine its value range.

5.2. Analysis of Control Law

The control input up(x) in the PCH system (14) can be rewritten as:

up(x) = u(x) +
− 1

Tw
Ty At∆h 1

x2
(3x2

1 − 2x1qnl) + Atx3
1/x2

−Ty pt
(19)

where

∆h = −
(

h0 − fpx2
1 −

x2
1

x2
2

)
(20)

The change in water head ∆h differs in the calculation between the rigid and elastic
water-hammer models, and the turbine power pt and flow q are both affected by ∆h. From
the above discussion, it seems feasible to calculate ∆h in the elastic water hammer model
and add it to the additional damping control of the PCH system. This problem needs more
research by simulation.

5.3. Control Structure

The control input of the hydro turbine is the main servomotor displacement u, and
that of the generator is excitation voltage Ef. We can regard the additional damping control
(17) as a part of coordinated control consisting of the traditional speed governor and
excitation controller. The structure of the Hamiltonian additional damping control is shown
in Figure 1.

In the structure diagram, we give the port information of the existing control system
and the scheme of additional control signal access. The speed governor adopts parallel
PID control: Kp = 5.0, KI = 1.7, KD = 1.3, and the excitation controller adopts thyristor
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excitation PID: KP1 = 1.0, KI1 = 1.5, KD1 = 0.0001. The main parameters of the system are
At = 1.127, Tw = 2.242, Ty = 0.5, Tj = 8.999, Td0′ = 5.4, Xd = 1.07, Xd

′ = 0.34, Xq = 0.66, Xf = 1.29,
Xad = 0.97, D = 5.
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6. Simulation Research
6.1. Pressure Fluctuation Analysis

The frequency of pressure fluctuation is usually described by multiples of that of
rated rotation in HU. The approximate estimation at present generally is to delimit an
adequate range. The natural frequency is nearly 1.0 (Hz). We define f p as the pressure
fluctuation frequency and f p = ωp/2π. In the following simulation, we try to find the
possible resonance phenomenon with f p = 0.9 (Hz), hp = 0.05 (p.u) and f p = 0.7 (Hz),
hp = 0.05 (p.u). The pressure fluctuation occurs at t = 1.0 (s). The mechanical power pt of
the hydro turbine and the active power pe of the generator is shown in Figure 2.
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pt and pe have the same oscillation frequency after entering the steady state. When
f p = 0.9 (Hz) is close to the natural frequency (1.0 (Hz)), there is a larger difference in the
oscillation amplitude between pe and pt than that of f p = 0.6 (Hz). Here is a resonance
zone of the pressure fluctuation and power oscillation. The article [18] also found that
the frequency of pressure fluctuation has a great influence on the oscillation amplitude of
active power, and there is an amplification point of the maximum amplitude. This result is
consistent with the classical vibration mechanics theory.

According to the classical theory of vibration mechanics, increasing the damping can
suppress the amplification of oscillation amplitude in the resonance zone, which is the
theoretical basis of this paper.

6.2. Damping Injection Simulation

Let hp = 0.05 (p.u), f p = 0.9 (Hz), and the pressure fluctuation occurs at t = 1.0 (s). The
responses of pe under the control laws (17) with different r25s are shown in Figure 3.
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r25 = 0 is equivalent to not adding the additional damping in control (17), and r25 = 1
is added to the damping. Compared to the result of no control, the Hamiltonian additional
damping control can obviously narrow the amplitude of power oscillation.

As mentioned in Section 4, the value of r25 needs to be determined by simulation.
r25 has a reasonable range to guarantee the convergence of the system to the desired
neighbourhood. The oscillation amplitude changes with r25 are as follows in Figure 4.
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When r25 = 0, the oscillation amplitude of pe is the reference value marked by a red
dotted line.

When the data points are above the reference line, α(x) with r25 < 0 supplies negative
damping. In addition, α(x) with r25 > 0 shows a positive damping characteristic. This
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variation of damping characteristics is consistent with the expectation of the damping
injection method. When r25 exceeds the range limited to the X-axis in Figure 4, the response
curve of pe will gradually diverge and lose its stability, and when r25 = 1.3, the oscillation
amplitude is the smallest, which can function as the optimal value.

The above study determines the effective range and optimal value of the damping
factor through simulation calculation. In this simple way, we solve the problem of manually
constructing and solving the high-order Hessian matrix.

Further simulation shows that this change in damping characteristics is related to
the frequency of pressure fluctuation in DL. Given different r25s, the oscillation amplitude
change with f p is shown in Figure 5.
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Figure 5. Amplitude change with f p in different r25s.

The oscillation amplitude with r25 = 0 is also used as the reference value marked by
the blue line. The intersection point of any two lines tells that the damping characteristic
changes dynamically with f p. When f p is below a specific value located at the intersection,
the positive damping induced by r25 = 1 adjusts to the negative damping. This situation
also applies to r25 = −1.

From the two waveform peaks in Figure 5, the resonance peak point is shifted with
the value of r25. The additional damping control based on the desired structure matrix (Jd,
Rd) can modify the self-vibration characteristics and natural frequency. This phenomenon
reveals a new way to improve the oscillation characteristic of the system, which needs
further study.

6.3. Damping Injection Quantization

It is difficult to make rigorous theoretical calculations to quantify the damping in the
Hamiltonian addition control. The power oscillation caused by the equivalent damping
coefficient of generator D can be equated with that of a certain r25. We try to obtain the
value of r25 indirectly by calculating D.

Take r25 = 0, D = 25 and r25 = 1.3, D = 5 for example, we select the maximum amplitude
of power oscillation in steady state as a reference. The responses under two conditions are
shown in Figure 6.

The oscillation amplitude of the red line is 0.5477, which is close to that of the blue line
(= 0.5466) in t = 10 ~ 15 s. It shows that the effect of r25 = 1.3 is equivalent to an increase in
D by 20.
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6.4. Expand the Stable Operation Zone

Figure 4 shows that the Hamiltonian additional damping control with any r25s cannot
completely restrain power oscillation induced by pressure fluctuation. The expansion of
the oscillation amplitude is the main cause of the loss of stability. We want to use the
Hamiltonian additional damping control to expand the load regulation range, which is
analysed as follows with an example simulation.

Under different load conditions, traditional PID control and PID + Hamiltonian addi-
tional damping control are adopted. The comparison is as follows in Figure 7.
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The dead-zone set in Figure 8 is 0.01 (p.u). When Hamiltonian additional damping
control is added, the power oscillation (blue line) is lower than the PID control (red line).
In HU, the operation limited zone (shaded part) shrinks, and the load regulation range is
extended.
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6.5. Simulation of Vibration Zone Crossing

From no-load to rated load, HU will inevitably pass through the part-load vibration
zone. If it takes too long in this process, the power oscillation in the vibration zone will
induce the low-frequency oscillation [18].

When the active power increases from 0.1 to 1.0 (p.u), the unit will cross the vibration
zone during the part-load operation. Consider the following three conditions.

Case 1. No additional Hamiltonian additional damping control, that is, r25 = 0, only
the PID control of speed regulation and excitation.

Case 2. Add Hamiltonian additional damping control, and r25 = −0.5. In the transient
process of load increase, the target value in control law is obtained by the difference between
the initial and final active values of pe.

Case 3. Add Hamiltonian additional damping control, and r25 = −0.5. The target
value only corresponds to load pe = 1, ignoring its variation in the load increase.

The simulation results are shown in Figure 8.
From the above figure, pe of different control strategies receives different degrees of

influence from pressure pulsation when the unit runs in the part-load vibration zone during
the start-up (0~30 s). After 30 s, the unit leaves the vibration zone and gradually enters
a steady state, and the influence of pressure pulsation disappears. The power oscillation
may occur when it crosses the vibration zone too slowly or when the pressure fluctuation
amplitude is high. Compared to the control effect of Case 1, the control law in Case 2 can
greatly reduce the amplitude of power oscillation, and Case 3 can let the unit pass through
the vibration zone rapidly.

From the signal flowchart in Figure 1, the Hamiltonian additional damping control
is directly added to the PID output. It is equivalent to adding a power feed-forward to
improve the regulation speed. The opening speed of the guide vane is accelerated, which
may cause high pressure in the pipeline. During the start-up, we should comprehensively
consider the relationship between the velocity of passing through and the pressure change.

7. Conclusions

In this paper, we first give the calculation formula of the water head considering the
pressure fluctuation in DL and expand the PCH model of HU. Secondly, the damping
injection method is used to design the Hamiltonian additional damping control to suppress
the power oscillation induced by pressure fluctuation. There are three conclusions:

1. The simulation results show that adding the Hamiltonian damping factor is mathe-
matically equivalent to increasing the oscillation damping, and it is effective to use
additional damping control based on the damping injection method.

2. The resonance point of pressure fluctuation and power oscillation shifts with the
values of the Hamiltonian damping factor. The damping characteristic of the same
factor is a variation of positive-negative near the resonance point. In application, the
values of these damping factors should be selected by the load condition.

3. PID + Hamiltonian additional damping control can expand the stable operation zone.
During the start-up, HU applying the Hamiltonian additional damping control can
faster pass through the vibration zone and have a smaller power oscillation than the
PID control.

However, in deriving the control strategy, the approximate treatment at the given
equilibrium point is used to obtain the equivalent control law. This processing method
is only a flexible approach selected for practical problems. It is difficult to maintain
mathematical equivalence between the modified and original systems, and due to the
excessively strict mathematical equivalence, there are still many difficulties in applying it
to high-order systems. These issues will continue to be explored in future research.
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Nomenclature

DF Draft tube
HU Hydropower unit
PCH Port-controlled Hamiltonian
At Constant proportionality factor
ht Water head of the hydro turbine (p.u)
q Flow of the hydro turbine (p.u)
qnl No-load flow of the hydro turbine (p.u)
hp Amplitude of Pressure fluctuation in DL (p.u)
∆p Mechanical power oscillation (p.u)
Tj Inertia time constant (s)
pe Active power of the generator (p.u)
D The equivalent damping coefficient
Fp Amplitude of power oscillation in the hydro turbine (p.u)
u Speed governor output (p.u)
Ef Excitation controller output (p.u)
y Guide vane opening (p.u)
y0 Initial guide vane opening (p.u)
Tw Water inertia time (s)
fp Water head loss coefficient
Ty Time constant of the main servomotor (s)
Eq ′ Internal transient voltage (p.u)
Us Infinite-bus voltage (p.u)
Xd The d-axis synchronous reactance
Xd
′ Transient reactance of the generator (p.u)

XT Reactance of the transformer (p.u)
XL Reactance of the transmission line (p.u)
Xq The q-axis synchronous reactance (p.u)
Xf Reactance of the excitation winding (p.u)
Xad The d-axis armature reaction reactance (p.u)
T′d0 Time constant (s)
ωp Angular frequency of pressure fluctuation (rad/s)
ω Angular velocity of the generator (p.u)
ωB Basic angular velocity,ωB = 314 rad/s
δ Power angle (rad)
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