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Abstract: The assessment and forecast of avalanche danger are very important means of preventing
avalanche fatalities, especially in recreational areas. The use of artificial intelligence methods for these
purposes significantly increases the accuracy of avalanche forecasts. The purpose of this re-search was
to improve the methods for assessing and forecasting avalanche danger in the Ile Alatau Ridge. To
create a training sample, the data from three meteorological and two avalanche stations for the period
from 2002 to 2022 were used. The following predictors were chosen: air temperature, snow cover
depth, precipitation, and snowpack stability index. The subject of the assessment and forecasts was
the level of avalanche danger, assessed on a five-point scale. The program Statistica StatSoft was used
as a neurosimulator. When forecasting avalanche danger, the predictive values of air temperature
and precipitation, obtained from numerical weather forecast models, were used. The model correctly
assessed the current level of avalanche danger in 90% of cases. The forecast of avalanche danger
was justified in 80% of cases. The artificial intelligence program helped the avalanche forecaster to
improve the forecast quality. This method is currently being used for compiling an avalanche bulletin
for two river basins in the Ile Alatau.

Keywords: artificial intelligence; artificial neural network; avalanche danger forecast; avalanche
danger assessment; Northern Tien Shan

1. Introduction

Snow avalanches pose a great danger to people and economic objects. They are widely
distributed in many mountainous regions of the world. Avalanches create a particularly
big problem for ski resorts and travel companies organizing ski tours and freerides. Every
year, an average of 90 skiers and tourists die in avalanches in the European Alps [1]. In
Kazakhstan, over the past 71 years, their number has amounted to 98 victims [2]. Currently,
most of the avalanche incidents occur in unprotected areas among fans of extreme winter
sports—freeriders and ski tourists [1]. Avalanche forecast and avalanche danger warning
play a key role in preventing such accidents. In Switzerland, the avalanche danger forecast
and avalanche bulletin are compiled at the federal level by the Snow and Avalanches
Research Institute (SLF) [3–6], in France by the Meteo France meteorological service [7,8],
in the USA and Canada by regional avalanche centers [9–13]. In addition, each ski resort
has its own avalanche service that issues a local avalanche bulletin with an avalanche
danger forecast. In Kazakhstan, avalanche danger warnings are issued by the regional
branches of the Kazakhstan Hydrometeorological Service [14,15]. This warning is sent to
the Ministry of Emergency Situations, which alerts the population and carries out avalanche
prevention measures: closure of the territory and artificial avalanching. At the Shymbulak
and Akbulak ski resorts in the Ile Alatau, avalanche danger assessment and avalanche
prevention measures are carried out by the ski patrol services.

The first attempts to forecast avalanches were made in Switzerland and the USSR
in the 1930s [16,17]. They were widely developed in the second half of the 20th century.
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With the development of the network and the improvement of methods for observing
avalanches, forecasting methods became more complicated and improved from those based
on the intuition and experience of the forecaster to modern computer programs of artificial
neural networks [4,18–20].

In the 1980s, the Swiss Snow and Avalanche Research Institute (SLF) developed the first
avalanche forecast computer program based on the nearest neighborhood method [21,22].
The program was not designed to replace a forecaster but to help them in the process
of analyzing the situation and making a decision. It selected the most similar events to
the current or predicted situation from the entire set of previous events, showing what
the conditions and consequences were. Currently, modern NXD2000 and NXD-REG
versions of this program are used by the Swiss Avalanche Warning Service for local and
regional avalanche danger forecasts and the daily avalanche bulletin [23]. The program
has become widespread and is used in many avalanche centers in Europe and North
America [9,10,19,23–27].

In the 1990s, artificial intelligence methods began to be used for forecasting avalanche
danger [28–32]. This became possible thanks to the development of computer technology
and the computing abilities of personal computers. Artificial neural networks simulate
the work of a human brain and show good results in practical application for predicting
the avalanche danger in different regions [28–32]. They are also used to assess avalanche
hazard [33] and glacier mass balance [34].

The development of any avalanche forecasting method proceeds according to the
following scheme: (1) the collection of the data on avalanche conditions and avalanche
activity for the previous period; (2) establishing links between the indicators of the condi-
tions for the formation of avalanches and the characteristics of avalanche activity; And (3)
the use of these relationships to determine the level of avalanche danger under current or
forecast weather and snow conditions. As indicators of the conditions for the formation of
avalanches, air temperature, precipitation, as well as wind speed and direction are usually
chosen among meteorological indicators, and snow depth and the presence of a weak layer
among snow conditions. The indicators of avalanche activity are the size and distribution
of avalanches, which can be summed up in the level of avalanche danger. Often, in addition
to the parameters directly measured at observation points, calculated indicators received
from actual data are used as input variables, for example, the air temperature trend or the
rate of new snow settling. Sometimes snow cover indicators are modeled by physically
driven models based on meteorological observations; for example, the SNOWPACK model
in Switzerland [5,31,35] and SAFRAN/Crocus/MEPRA chain of models in France [8,36]
are used for this.

In the initial period of the development of avalanche danger forecasts, an alternative
approach was used, in which all situations were divided into two categories: “there are
avalanches” or “there are no avalanches” [3,37,38]. In the 1990s, the probabilistic forecast
of avalanches began to prevail, when the probability of avalanches and the intensity of the
avalanche activity began to be assessed. In 1983, a five-level scale of avalanche danger was
developed at the SLF [18,39], which, with minor modifications, began to be used in many
countries in Europe and North America [40].

In the countries of the former USSR and in particular, in Kazakhstan, machine-based
methods are very little used for avalanche forecasting, and the probabilistic forecast and the
scale of avalanche danger levels are not used by official avalanche warning services [14].

Avalanche forecasts is an important part of avalanche prevention measures in the
Almaty region. Since 1966, avalanche forecasting has been carried out by the avalanche
department of the State Meteorological Service, which was created after the avalanche
disaster in March 1966 [15]. In the same year, two snow avalanche stations began to operate
in the Ile Alatau, where observations of the weather, snow cover, and avalanches were
made. On the basis of these stations’ work, methods for forecasting avalanches based on
the discriminant analysis were developed [15,41,42].
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The forecasts of new snow avalanches are carried out according to the method pro-
posed by Tsomaya and Abdushelishvili in the Caucasus [43]. The forecast uses the data
on the depth of old snow and the depth or water equivalent to new snow. On the scatter
plot, points “with avalanches” and “without avalanches” are indicated. A dividing line is
drawn between them and the corresponding equation is selected [44]. Kondrashov further
improved this method and began to divide avalanche situations according to the size of
avalanches [41]. Kolesnikov developed a method for forecasting avalanches associated with
thaws, in which the critical sum of hourly positive air temperatures at the representative
meteorological station was determined depending on the strength of old snow [15].

In 2000, within the framework of cooperation with the SLF, an attempt to use the
NHD2000 program for forecasting avalanches in the valley of the Kishi Almaty River based
on the long-term data (1966–1999) of the Shymbulak avalanche station was made [45]. The
accuracy of the forecasts was 70%. Unfortunately, this experiment did not continue.

Currently, the Avalanche Warning Service of Kazakhstan uses two methods to predict
avalanches [14]. The Kondrashov method is used for the forecast of avalanches associated
with snowfalls. The Kolesnikov method is used for the forecast of avalanches associated
with thaws. The main predictor for the forecast of snowfall avalanches is the amount of
new snow and for the forecast of thaw avalanches, the maximum air temperature [15]. For
all types of avalanches, the depth of the old snow is of great importance.

After the onset of a snowfall or thaw, measurements of the new snow depth or air
temperature are carried out hourly, and when they approach critical values, an avalanche
danger is declared. In this case, the regional office of the meteorological service sends
a warning to the local administration and emergency services, which, if necessary, take
protective measures [15].

As a matter of fact, this is not quite a forecast but rather a diagnosis of the avalanche
danger, since a warning is practically issued when the avalanche danger has already
occurred. Sometimes, this warning is issued when avalanches have already begun to occur.
The forecast is considered correct if at least one avalanche occurred during the declared
avalanche dangerous period. With such an approach, the accuracy of the currently used
methods is equal to 90–95% [14]. At the same time, it should be noted that such a high level
of correct forecasts is due not so much to the accuracy of the methods and forecast graphs
but to the experience and intuition of forecasters.

The main advantage of these methods is simplicity. The disadvantages include the
following: (1) no lead time; (2) the alternative nature of the forecast; (3) a strong dependence
on the experience of the forecaster.

The main conclusions driven from the analysis of the current state of the forecast
and warning of the avalanche danger in Kazakhstan are as follows. The methods were
developed more than 40 years ago; they are largely outdated and require moderniza-
tion. To improve forecasting methods, it is necessary to use the observational data from
avalanche stations obtained over the past 20 years. When developing methods for forecast-
ing avalanches, it is necessary to use new approaches and methods, in particular, machine
learning methods and the international scale of avalanche danger levels.

Solving these problems was the aim of this work. The following tasks were complete.
An electronic database of the weather, snow cover, and avalanches for the last 22 years
was created. A five-level scale of avalanche danger adapted to the conditions of the Ile
Alatau was developed. An artificial neural network was created. It was trained to assess
and predict the levels of the avalanche danger.

The novelty of this research is the development of a method for forecasting avalanche
danger using artificial neural networks and the international scale of avalanche danger
in relation to the conditions of the Ile Alatau Ridge. The results of this work are of great
importance for the improvement of avalanche forecasting methods in the countries of
Central Asia.
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2. Study Area

The study area covered the Kishi Almaty and Ulken Almaty River basins located on
the northern slope of the Ile Alatau Ridge (Figure 1). This ridge is located in the southeast
of Kazakhstan. It belongs to the Northern Tien Shan mountain system. The study area
was limited by the coordinates from 43◦00′ to 43◦14′ N and from 76◦56′ to 77◦02′ E. The
territory was chosen as a study area because it is characterized by a high avalanche activity
and development. Therefore, avalanches are a big problem there. Over the past 55 years,
143 people have been caught up by avalanches, 67 of them have died. In total, 90% of the
dead were skiers, tourists, and climbers [2,15].
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Figure 1. Study area.

Almaty, the largest city of Kazakhstan, is located at the foot of the mountains. Its
population is about 2 million people. In the mountains, within an hour’s reach, there is the
large Shymbulak ski resort, which is visited by up to 12 thousand people daily. The area is
very popular among climbers, freeriders, and ski tourists. A good knowledge of the conditions
of avalanche formation and avalanche activity is of great importance [46,47]. There are three
meteorological and two avalanche stations with a long history of observations.

The foot of the mountains is located at an altitude of about 1100 m above sea level.
The height of the watershed ridges reaches 4400 m. Four high-altitude landscape zones are
distinguished: a low-mountain one with deciduous forests and shrubs (1100–1500 m), a mid-
mountain forest-meadow one with coniferous forests and subalpine meadows (1500–2800 m),
a high-mountain meadow one with alpine meadows and creeping shrubs (2800–3400 m),
and a high-mountain glacial one with stones, rocks, and glaciers (above 3400 m).
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A cold period with air temperatures below 0 ◦C and a constant snow cover lasts
from December to February in the low-mountain zone, from November to April in the
midmountain zone, and from October to May in the high-mountain zone. The yearly
amount of precipitation is 800 mm in the low-mountain zone. With altitude, the amount
of precipitation increases and reaches 1100 mm in the high-mountain zone. The amount
of cold period precipitation in the form of snow is 100 mm in the low-mountain zone,
300 mm in the midmountain zone, and 800 mm in the high-mountain zone. The depth of
the snow cover before the end of the winter is 50 cm in the low-mountain zone, 110 cm in
the midmountain zone, and 150 cm in the high-mountain zone [47].

Avalanche activity is noted above 1500 m and reaches its maximum in the zone of
2000–3200 m. This zone is characterized by the predominance of a steep relief. The excess
of watersheds over the bottom of the valleys reaches 1200 m. The area of avalanche starting
zones varies from 1 to 50 ha.

According to Armstrong’s classification, the snowy climate of the Ile Alatau is conti-
nental [48]. The average temperature of the cold period is −6.8 ◦C, the depth of the snow
cover is 106 cm [49,50]. The dangerous avalanche period lasts from December to April.
Due to a shallow snow depth and low air temperatures, a weak layer of snow with a depth
hoar is usually formed by early January in the lower part of the snow cover and reaches a
thickness of 30 cm by early March [47]. The surface hoar is formed very rarely and quickly
disappears in the continental climate conditions due to the low air humidity [51].

In the Ile Alatau, the main causes of avalanching are snowfalls and thaws. Dry
avalanches of new snow, caused by snowfalls, predominate in quantity, and wet avalanches
of old snow, associated with thaws, predominate in size.

During the winter period, 3 to 48 days with avalanches occur. There are two peaks of
avalanche activity during the winter. The first, a weak one, is in December and the second,
a strong one, is in March. The duration of avalanche cycles in December–February, when
dry avalanches with new snow occur, is 2–3 days. In March–April, when wet avalanches
associated with thaws occur, the duration of avalanche cycles depends on the duration of
the thaw and can reach up to 7 days [51].

All indicators of avalanche activity strongly depend on the snowiness of the win-
ter [49]. Both snowiness and avalanche activity in the Ile Alatau are characterized by strong
interannual variability. In years with little snow, the snow depth is less than 70 cm, the
number of days with avalanches is three, the number of avalanches is 10, and the total
volume of avalanches is 5000 m3. In snowy years, the snow depth exceeds 150 cm, the
number of days with avalanches is 50, the number of avalanches is 240, and the total
volume of avalanches is 2 million m3 [49]. In 57 years of observations, 1965/1966 was the
most extreme year in terms of snowiness and avalanche activity. The repeatability of such
indicators is less than one time in 100 years [51].

3. Materials and Methods

This work used data from the Shymbulak, Big Almaty Lake, and Mynzhylki mete-
orological stations, as well as data from the Shymbulak and Big Almaty Lake avalanche
stations. The duration of the observations was 22 years, from 2001 to 2022. The location of
the stations is shown in Figure 1. The Shymbulak and Mynzhylki stations are located in the
Kishi Almaty River valley at an altitude of 2200 and 3017 m, respectively. The Big Almaty
Lake stations are located in the neighboring Ulken Almaty River valley at an altitude of
2502 m. The meteorological stations are a part of the World Meteorological Organization
network, and the data of these stations are available on the website www.rp5.ru (accessed
on 30 May 2022) [52]. Avalanche stations’ data were taken from the Avalanche Warning
Service reports. The work also used the data from observations of the snow cover and
avalanches from the Institute of Geography and Water Safety.

The list of variables included in the database is given in Table 1. Meteorological vari-
ables were taken from the meteorological stations’ data. The measurements of parameters at
these stations were carried out according to the WMO and KazHydroMet standards [53,54].

www.rp5.ru
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The snow cover characteristics were taken from the reports of the avalanche stations. Ob-
servations at these stations were carried out in accordance with the Guidelines for Snow
Avalanche Operations of Kazakhstan [55]. The snow depth was measured by stakes with
an accuracy of 1 cm. The snow water equivalent was measured by a cylindrical-weight
densitometer with an accuracy of 1 mm for the water layer. The snow depth and the snow
water equivalent at the stations were measured daily. The snow depth on slopes was
measured weekly and after snowfalls.

Table 1. The list of the database variables.

Parameter Units Obtaining Way

Snow depth at mountain slopes cm Measured remotely

Snow depth at meteorological stations cm Measured at the site of a
snow-avalanche station

New snow depth cm Measured at the site of a
snow-avalanche station

Snowfall intensity cm/hour Calculated

Water equivalent of the snow cover mm Measured at the site of a
snow-avalanche station

Presence of a weak layer in the snow cover 2 categories: yes, no Determined at the site of a
snow-avalanche station

Snow shear strength in the weakest layer kg/m2 Measured at the site of a
snow-avalanche station

Snow water equivalent above a weak layer mm Measured at the site of a
snow-avalanche station CЛC

Snow cover stability coefficient No Calculated

Snow cover stability index by the block test 3 categories: stable, unstable,
very unstable

Measured at the site of a
snow-avalanche station

Daily amount of precipitation mm Measured at the meteorological site
Amount of precipitation per snowfall mm Calculated
Precipitation intensity mm/hour Calculated
Sum of precipitation for the previous 3 days mm Calculated
Average daily air temperature ◦C Calculated
Maximum air temperature ◦C Measured at the meteorological site
Minimum air temperature ◦C Measured at the meteorological site
Sum of hourly air temperatures since the
beginning of the thaw

◦C Calculated

Sum of the maximum air temperatures for the
previous 3 days

◦C Calculated

Maximum wind speed m/s Measured at the meteorological site

Number of avalanches No Visually calculated for the
studied area

Avalanche size 5 categories: small, medium, large, very large,
extremely large Visually determined

Presence of avalanche danger 2 categories: yes, no Assessed by a snow-avalanche
station forecaster

Avalanche danger level 5 categories: low, moderate,
considerable, high, extreme Assessed by avalanche experts

The description of snow profiles was carried out according to the methods of the
European, Canadian, and American avalanche warning services [56]. The shear strength of
snow in a weak layer was measured using a hand-held dynamometer and a frame with an
area of 100 cm2 (Figure 2). The snow cover stability coefficient was calculated as the ratio
of the snow strength to the water equivalent of the snow lying above the weak layer. Since
2019, the results of snow compression tests conducted according to the methodology of
the Canadian Avalanche Association [56] have been used as an additional indicator of the
snow cover stability.



Water 2023, 15, 1438 7 of 17

Water 2023, 15, x FOR PEER REVIEW  7  of  18 
 

 

Sum of the maximum air tem-

peratures for the previous 3 

days 

°C  Calculated 

Maximum wind speed  m/s 
Measured at the meteorolog-

ical site 

Number of avalanches  No 
Visually calculated for the 

studied area 

Avalanche size 

5 categories: small, me-

dium, large, very large, ex-

tremely large 

Visually determined 

Presence of avalanche danger  2 categories: yes, no 
Assessed by a snow-ava-

lanche station forecaster 

Avalanche danger level 

5 categories: low, moder-

ate, 

considerable, high, extreme 

Assessed by avalanche ex-

perts 

The description of snow profiles was carried out according  to  the methods of  the 

European, Canadian, and American avalanche warning services [56]. The shear strength 

of snow in a weak layer was measured using a hand-held dynamometer and a frame with 

an area of 100 cm2 (Figure 2). The snow cover stability coefficient was calculated as the 

ratio of the snow strength to the water equivalent of the snow lying above the weak layer. 

Since 2019, the results of snow compression tests conducted according to the methodology 

of the Canadian Avalanche Association [56] have been used as an additional indicator of 

the snow cover stability. 

To characterize the avalanche activity, the data on the size and number of avalanches, 

based on the results of observations by the avalanche stations and the Institute of Geogra-

phy and Water Safety was used. The types and reasons of avalanches were determined by 

the avalanche deposits and were controlled by weather conditions. The sizes of some av-

alanches were measured instrumentally by geodetic methods, but in most cases, they were 

visually assessed. 

Avalanche sizes were divided into five categories according to the Canadian classifi-

cation [56], used in Canada and the USA: (1) small, less than 0.1 thousand m3, (2) medium, 

0.1–1 thousand m3, (3) large, 1–10 thousand m3, (4) very large, 10–100 thousand m3, and 

(5) extremely large, more than 100 thousand m3. Based on these data, the avalanche dan-

der level (ADL) was reconstructed for the period up to 2019, when the ADL had not yet 

been determined. Since 2019, the ADL has been assessed daily by the Institute of Geogra-

phy and Water Safety specialists when compiling an avalanche bulletin. 

 

Figure 2. Measuring the shear strength of snow in a weak layer. Figure 2. Measuring the shear strength of snow in a weak layer.

To characterize the avalanche activity, the data on the size and number of avalanches,
based on the results of observations by the avalanche stations and the Institute of Geography
and Water Safety was used. The types and reasons of avalanches were determined by
the avalanche deposits and were controlled by weather conditions. The sizes of some
avalanches were measured instrumentally by geodetic methods, but in most cases, they
were visually assessed.

Avalanche sizes were divided into five categories according to the Canadian
classification [56], used in Canada and the USA: (1) small, less than 0.1 thousand m3,
(2) medium, 0.1–1 thousand m3, (3) large, 1–10 thousand m3, (4) very large,
10–100 thousand m3, and (5) extremely large, more than 100 thousand m3. Based on these
data, the avalanche dander level (ADL) was reconstructed for the period up to 2019, when
the ADL had not yet been determined. Since 2019, the ADL has been assessed daily by the
Institute of Geography and Water Safety specialists when compiling an avalanche bulletin.

To assess the ADL, a 5-level scale developed on the basis of the European and North
American scales [39,40] was used, taking into account the conditions of the Ile Alatau
(Table 2). Depending on the size and prevalence of avalanches, the following levels were
distinguished: low, moderate, considerable, high, and extreme levels of avalanche danger.

Table 2. The scale of avalanche danger levels.

Avalanche Danger Level Size of Avalanches Number of
Avalanches

Probability of
Human Triggering

Recommendations
for Tourists Protective Measures

5 Extreme Very large and
extremely large Numerous Very high Do not go to

the mountains

Closure of roads
and territories.

Evacuation of people
from the

avalanche zone

4 High Very large Numerous Very high
Do not

enter avalanche
affected areas

Closure of roads
and territories.

Preventive avalanching

3 Considerable Large Many High
Choose the

route carefully.
Check snow stability

Warning of
the population.

Preventive avalanching
in especially

dangerous areas

2 Moderate Medium Several Low
Be careful on the

slopes with specific
snow conditions

Warning of
the population

1 Low Small Single Very low
Do not go on snowy
slopes steeper than

40 degrees

Informing
the population
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The total number of daily observations of the weather, the snow cover and the
avalanche danger level was 3960. The data of 3098 avalanches were used in the work.
The timescale of the output variable was daily.

Creation of the artificial neural network. An artificial neural network can be created in two
ways: writing an independent program in open-source software (for example, in the Python
language) or using ready-made neurosimulators from computer program manufacturers,
for example, MathCad or Statistica StatSoft.

In our work, we used the Perm State University neurosimulator [57] and the statistical
software package from Statistica StatSoft Russia [58]. Tests of these programs showed
that the Statistica StatSoft neurosimulator gave the best results. The Statistica package is
a specialized software used in statistical and analytical work. It includes basic statistical
tables, automated neural networks, and data mining. Basic statistical tables allow to
statistically analyze data. The Statistica StatSoft neural network block allows to train a
neural network to solve problems of classification, regression, and cluster analysis. It
includes learning algorithms which give good results in supervised learning [58].

When training neural networks, two types of algorithms are used—supervised and
unsupervised learning. In our case, the archive information contained an output variable
(the avalanche danger level). Therefore, we chose a supervised learning algorithm. When
working with the StatSoft neural network simulators, the iterative numerical optimization
algorithm (BFGS) usually gives better results than the backpropagation algorithm [58].

A schematic diagram of the neural network is shown in Figure 3.
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The process of creating a computer model for assessing the avalanche danger level
using an artificial neural network is schematically shown in Figure 4. It includes the
following steps: collecting statistical data, choosing a mathematical calculation function,
and testing the finished model. With unsatisfactory results, the steps are repeated.
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The archived weather and avalanche data were exported to a Statistica Spreadsheet
and the training process was performed using the advanced automated neural network
function. We used a neural network with the following parameters:

1. Network type: multilayer perceptron.
2. Statistical problem: regression and classification.
3. Number of hidden layers: 3.
4. Number of learning epochs: 3000.
5. Number of hidden neurons: 300.
6. Learning algorithm: iterative numerical optimization (BFGS).
7. Activation function of hidden neurons: hyperbolic.
8. Activation function of output neurons: identical.
9. Sampling division: 90% training, 5% validation, 5% test.

The numbers of hidden neurons (NHN) and training epochs (NTE) were chosen
empirically. For this, several networks with NHNs from 240 to 360 and NTEs from 1000
to 3200 were tested. The networks were trained on the training set. The quality of the
model was determined by the ratio of correctly estimated daily levels of avalanche danger
to the total number of days in the sample set using a cross-validation. At the minimum
values of the number of hyperparameters, the rate of correct estimation of the avalanche
danger level was 77%. With their increase, the accuracy of the model increased to 90% when
NHN = 300 and NTE = 3000. A further increase in the number of hyperparameters did not
lead to an improvement in the quality of the model, so these values were chosen.

The training set was chosen as 90% of the data set in order to include more cases with
high and extreme avalanche danger levels. The training set included data from the period
2001–2019, the validation set, data from 2020, and the test set, data from 2021.

The remaining neural network parameters were chosen based on the recommendations
of the program manufacturer [58].
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4. Results

The database on the weather, snow cover, and avalanches for 2001–2022 allowed us to
obtain the following results: the frequency of avalanches caused by different reasons, the
probability of avalanche cycle durations, the frequency of days with different avalanche
danger levels and risks, the influence of factors on the avalanche danger level, the average
and threshold values of avalanche formation factors for different avalanche danger levels,
an artificial neural network trained to recognize avalanche danger levels, and a method for
assessing the current and forecasting avalanche danger levels.

Frequency of avalanches caused by different reasons. Precipitation was the most common
cause of avalanches (Figure 5). In 42% of cases, avalanches occurred either during a
snowfall or 1–2 days after it. Such avalanches occurred in November–February. In 25%
of cases, avalanches occurring during thaws were accompanied by precipitation. In those
cases, the precipitation could be both in the form of snow or rain. The thaws without
precipitation were the cause of avalanches in 26% of cases. The avalanches connected with
thaws or thaws with precipitation occurred in March–April. These avalanches were the
largest and most destructive ones. Blizzard and artificial avalanches accounted for 7% of
cases. Artificial avalanches could be caused by skiers or explosions.
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Duration of avalanche cycles. Most often, avalanche cycles lasted 2 or 3 days. The
occurrence of such cycles was 72% of the total number of avalanche cycles. Cycles when
avalanches occurred 4 days in a row accounted for 14% of cases, and cycles when avalanches
occurred from 5 to 7 days in a row accounted for 13% of cases.

Frequency of days with different avalanche danger levels. The distribution of the number
of days with different avalanche danger levels is shown in Figure 6. During most of the
cold period, low and moderate danger levels prevailed. At that time, single avalanches
of small and medium sizes were recorded. They could threaten climbers and tourists. A
considerable danger level was observed on 10.5% of days, mainly in the spring months.
The number of days with high and extreme danger levels was only 1.9%.

Low and moderate levels of avalanche danger suggested a low probability of fatalities
caused by avalanches. However, since such danger levels continued for a very long time
(84% of the duration of the winter period), the proportion of deaths attributable to these
danger levels was quite significant and amounted to 65%. In total, 12% of deaths occurred
on the days with a considerable avalanche danger level, and 23% of such cases occurred on
the days with a high and extreme danger levels. Taking into account the length of periods
with different avalanche danger levels, an individual avalanche risk at a considerable
danger level was 2.5 times higher than at low and moderate ones, and at high and extreme
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levels, 7.5 times higher than at a considerable one. The probability of death on days with
high and extreme avalanche danger levels was 18 times higher than the risk on days with a
low and moderate danger.
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Avalanches with property damage occurred almost exclusively at high or extreme
levels of avalanche danger, when they hit objects unprotected by engineering structures.
These avalanches accounted for 80% of cases. Material damage from avalanches with a
considerable danger level happened in 20% of cases. The risk of material damage from
avalanches at high and extreme levels of avalanche danger was almost 150 times higher
than at all other danger levels.

The influence of the factors on the avalanche danger level was assessed using the Spearman
correlation coefficient (Table 3). Most of the variables showed a stronger correlation with
the avalanche danger level than with the avalanche event. The highest correlation was
observed between the avalanche danger level and the depth of old and new snow and
between the avalanche event and the depth of new snow and the precipitation rate.

Table 3. The Spearman’s correlation coefficients of variables with the avalanche danger level and the
avalanche event.

Variables Avalanche Danger Level Avalanche Event

Snow depth 0.62 0.20
New snow depth 0.50 0.55

Snow water equivalent 0.63 0.21
Coefficient of snowpack stability −0.24 −0.11
Presence of a weak snow layer −0.25 −0.15

Daily precipitation 0.30 0.28
Sum of precipitation for the previous 3 days 0.41 0.32

Precipitation rate 0.43 0.48
Snowfall rate 0.37 0.41

Minimum air temperature 0.16 0.11
Maximum air temperature 0.18 0.13
Average air temperature 0.18 0.13

Sum of the maximum temperatures for the
previous 3 days 0.24 0.19
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Average and threshold values of the avalanche formation factors for different avalanche danger
levels were obtained by the cluster analysis using the StatSoft.13 software package. The
cluster analysis was carried out to solve the following problems: grouping the avalanche
dangerous periods into relatively homogeneous classes in accordance with five levels of
avalanche danger; a standardization of avalanche danger levels’ assessment by experts, a
reduction of the subjectivity, and assistance to an inexperienced expert; the creation of a
clustering algorithm that could be used in little-studied regions.

When setting up the Statistica.13 program, the algorithms recommended by the manu-
facturer were used, including clustering according to the Varda method with the choice
of the distance between points according to the Manhattan method [58]. As a result, the
average values of the factors of avalanche formation for the five levels of avalanche danger
were obtained (Table 4).

Table 4. Average values of the meteorological parameters for different avalanche danger levels.

Meteorological Parameter Avalanche Danger Level
Low Moderate Significant High Extreme

Daily precipitation, mm 1.0 12.6 20.0 35.0 40.0
Precipitation rate, mm/h 0.0 0.5 1.2 1.5 2.0

Maximum air temperature, ◦C −6.4 −1.5 3.1 7.3 12.7
Sum of the maximum temperatures for

the previous 3 days, ◦C −16.5 −1.2 10.9 23.2 36.9

Snow depth, cm 25 45 62 72 84
Snow cover water equivalent, mm 48 97 142 189 248
Coefficient of snowpack stability 1.55 1.15 0.99 0.84 0.82

The data on the threshold values of meteorological elements corresponding to three
levels of avalanche danger are given in Table 5. The threshold values of factors between
two and three and between four and five levels of avalanche danger could not be obtained
due to a strong blurring of the boundaries between clusters.

Table 5. Threshold values of the snow cover characteristics and meteorological parameters for
different avalanche danger levels.

Snow Cover Characteristics and Meteorological
Parameters

Avalanche Danger Level

Low Moderate and Significant High and Extreme

Daily precipitation, mm 10 15 25
Precipitation rate, mm/hour 0.5 1.0 1.2

Maximum air temperature, ◦C 10 15 20
Sum of the maximum temperatures for the previous

3 days, ◦C −1 5 20

Snow depth, cm 30 50 75
Snow water equivalent, mm 100 150 200

Coefficient of snowpack stability 1.5 1.0 0.7
Depth of the snow cover on avalanche prone slopes, cm 50 75 100

New snow depth, cm 15 20 30
Snowfall rate, cm/hour 1.0 1.5 2.0

Water equivalent of a new snow, mm 10 15 20
Presence of a weak snow layer in the snowpack No Yes Yes

Assessment of the stability of the snow cover by block
tests’ method Stable Unstable Very unstable

Sum of hourly air temperatures since the beginning of
the thaw, ◦C 200 300 400

Wind speed (gusts), m/s 10 15 20

The results of training the artificial neural network to recognize avalanche danger levels. The
input variables for training the artificial neural network were the following: the daily
precipitation, the old snow depth, the new snow depth, the maximum air temperature,
the sum of the three previous days’ precipitations, the sum of the three previous days’
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maximum air temperatures, and the index of snowpack stability. The output variable was
the avalanche danger level.

While performing the work, several neural networks with different learning parame-
ters (number of epochs, number of neurons, learning algorithm) were trained. The ones
that showed the smallest error were selected among them. The finished neural networks
were saved in the PMML format—the international standard for intelligent programs. They
can be opened in the Statistica program in the prediction mode for further work while
operationally forecasting avalanches.

A neural network simulator trained on the training sample gave good results (Table 6).
In the regression mode, the percentages of recognition were 84–90%, and in the classification
mode, they were 77–91%. The quality of the network was determined by the ratio of
correctly estimated daily levels of avalanche danger to the total number of days in the
sample set using cross-validation.

Table 6. Results of training and testing the neural network simulator from StatSoft to assess the
avalanche danger level.

Observation
Station

Network
Architecture

Network Quality (% of Recognition)
Learning

Performance Test Sample Validation
Sample

Network operation in the regression mode
Shymbulak MLP 5-240-1 86.3 87.2 86.3

Big Almaty Lake MLP 5-320-1 88.3 89.1 89.6

Mynzhylki MLP 3-240-1 85.5 89.6 84.1

Network operation in the classification mode
Shymbulak MLP 6-240-5 90.5 83.5 81.6

Big Almaty Lake MLP 6-260-5 88.7 84.8 85.4

Mynzhylki MLP 3-240-5 80.6 83.0 76.7

Avalanche danger level forecast based on numerical weather forecast models. The main draw-
back of the existing methods for forecasting avalanche danger is the lack of lead time. One
way to increase the lead time is to use the results of numerical weather forecasting models.
In that case, the accuracy of the avalanche danger level’s estimation slightly decreased.

The reference points for the snow avalanche forecast were the three mountain meteo-
rological stations—Shymbulak, Mynzhylki, and Big Almaty Lake. The weather forecast for
these points can be taken from the interactive weather map on the Windy.com website [59].
We used the data from three predictive models: ECMWF, GFS, and ICON. The GFS model
showed the best accuracy in the conditions of the Ile Alatau in terms of precipitation, and
the ICON model in terms of air temperature. The values of the correlation coefficients for
the air temperature were higher than for the amount of precipitation. As the terrain altitude
rose, the accuracy of the weather simulation results decreased.

For avalanche danger levels’ forecasts with a lead time of up to 3 days, the GFS model
should be used for precipitation forecasts and the ICON model for air temperature forecasts.
The accuracy of estimating the forecasted avalanche danger levels was reduced to 75–80%
due to errors in weather forecasts.

In the winter of 2021/2022, the developed method was tested on data that were not
included in the 2021–2021 set. With the help of a neural network trained on a sample
of 2001–2021, the current (today’s) and forecast (tomorrow’s) levels of avalanche danger
were estimated. They were compared with the actual levels of avalanche danger, which
were determined by experts on the basis of data on avalanche activity. Out of 175 days,
the artificial neural network correctly estimated the current level of avalanche danger in
157 cases (90%). The forecast danger levels coincided with the actual ones in 80% of cases.
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5. Discussion

The values of the avalanche formation factors at different levels of avalanche danger
were grouped into clusters with certain average and threshold values. The differences
between the clusters were most clearly expressed for moderate and high avalanche danger
levels. Thus, for a moderate level, the average value of daily precipitation was 12.6 mm, the
sum of 3 days’ maximum air temperatures was −1.2 ◦C, and the coefficient of snowpack
stability was 1.15. For a high level, these values were 35.0 mm, 23.2 ◦C and 0.84, respectively.
These results are of great help to a not very experienced avalanche expert when evaluating
avalanche danger levels.

In the Ile Alatau, the main causes of avalanches were snowfalls and thaws. Avalanches
caused by snowfalls accounted for 42% of the total number of avalanches, 26% of avalanches
were caused only by thaws, and 23% of avalanches occurred during thaws accompanied by
precipitation. The share of other types of avalanches (blizzard and artificial ones) accounted
for only 7% of avalanches.

During the winter period, low and moderate levels of avalanche danger prevailed.
The number of days with such avalanche danger levels averaged 82.4%. However, days
with these levels of avalanche danger accounted for 68% of avalanche deaths. In total, 90%
of such cases occurred with skiers, tourists, and climbers. A considerable level of avalanche
danger was noted in 10.5% of cases. With such an avalanche danger level, 13% of avalanche
incidents occurred. High and extreme levels of avalanche danger occurred in 1.9% of
cases, 3 days during the winter period on average. With such avalanche danger levels,
cases of death are rare, since emergency services close dangerous territories for this period.
However, if we take into account the duration of periods with different levels of avalanche
danger, it turns out that the individual avalanche risk on days with a considerable level of
avalanche danger was 2.5 times higher than on days with a moderate level of danger. On
days with a high level of avalanche danger, the individual avalanche risk was 7.5 times
higher than on days with a considerable danger level.

The largest avalanches occurred at high and extreme levels of avalanche danger. They
damaged insufficiently protected tourist infrastructure facilities. With such avalanche
danger levels, 80% of cases of avalanches that caused material damage occurred. The
risk of property damage from avalanches on days with high and very high levels of
avalanche danger was almost 150 times higher than on days with low and moderate levels
of avalanche danger.

The Artificial Neural Networks module of the StatSoft.13 software package could
be successfully used in the operation of the avalanche warning service in Kazakhstan.
The artificial neural network created with its help, trained on the data from 20 years of
observations of precipitation, snow cover, and air temperature, was capable of correctly
assessing the current level of avalanche danger in 85–90% of cases. For avalanche danger
levels’ forecasts with a lead time of up to 3 days, the accuracy was reduced to 75–80% due
to errors in weather forecasts.

The artificial neural network has been successfully used by the Institute of Geogra-
phy and Water Safety to assess and predict avalanche danger levels when compiling an
avalanche bulletin. The bulletin is compiled for the most visited basins of the Kishi and
Ulken Almaty Rivers and is distributed on a channel of the Telegram social network.

The accuracy of the local forecasts of avalanche danger without differentiation accord-
ing to its levels, developed by the Hydrometeorological Service of Kazakhstan, is currently
85–95% [15], in Russia, 75–85% [60], and in India, 80–85% [61].

The percentage of correct danger level predictions for dry-snow conditions at the
Switzerland Institute for Snow and Avalanche Research was 74–78% [32]. The precision
for predicting the local avalanche danger level by the model developed at the Austrian
Research Centre for Forests was 0.73 [31]. In Colorado Mountains, neural networks correctly
predicted the avalanche activity in 78 to 91% of cases [28].

Prospects for the development of the method for assessing and forecasting avalanche
danger in the Ile Alatau using artificial neural networks lie in the creation of a network
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of automatic stations for the monitoring of the avalanche formation conditions. It is
planned to install 10 automatic meteorological stations at the bottom of the valleys and
23 automatic snow posts on the slopes near avalanche starting zones. Meteorological
stations will measure precipitation, snow water equivalent, air temperature and humidity,
snow temperature, wind direction and speed, and solar radiation. At snow posts, instead
of solar radiation and snow water equivalent, snowdrift will be measured. The monitoring
data will increase the volume of information about the factors influencing avalanche
formation and, as the data are accumulated, will allow to refine the forecast for individual
avalanche sites or groups of similar sites and possibly to predict the avalanche time and
the avalanche size.
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