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Abstract: The prevalence of the frequent water stress conditions at present was found to be more
frequent due to increased weather anomalies and climate change scenarios, among other reasons.
Periodic drought assessment and subsequent management are essential in effectively utilizing and
managing water resources. For effective drought monitoring/assessment, satellite-based precip-
itation products offer more reliable rainfall estimates with higher accuracy and spatial coverage
than conventional rain gauge data. The present study on satellite-based drought monitoring and
reliability evaluation was conducted using four high-resolution precipitation products, i.e., IMERGH,
TRMM, CHIRPS, and PERSIANN, during the northeast monsoon season of 2015, 2016, and 2017 in
the state of Tamil Nadu, India. These four precipitation products were evaluated for accuracy and
confidence level by assessing the meteorological drought using standard precipitation index (SPI)
and by comparing the results with automatic weather station (AWS) and rain gauge network data-
derived SPI. Furthermore, considering the limited number of precipitation products available, the
study also indirectly addressed the demanding need for high-resolution precipitation products with
consistent temporal resolution. Among different products, IMERGH and TRMM rainfall estimates
were found equipollent with the minimum range predictions, i.e., 149.8, 32.07, 80.05 mm and 144.31,
34.40, 75.01 mm, respectively, during NEM of 2015, 2016, and 2017. The rainfall data from CHIRPS
were commensurable in the maximum range of 1564, 421, and 723 mm in these three consequent
years (2015 to 2017) compared to AWS data. CHIRPS data recorded a higher per cent of agreement
(>85%) compared to AWS data than other precipitation products in all the agro-climatic zones of
Tamil Nadu. The SPI values were positive > 1.0 during 2015 and negative < −0.99 for 2016 and 2017,
indicating normal/wet and dry conditions in the study area, respectively. This study highlighted
discrepancies in the capability of the precipitation products IMERGH and TRMM estimates for low
rainfall conditions and CHIRPS estimates in high rainfall regimes.

Keywords: drought; precipitation products; rainfall estimates; standard precipitation index

1. Introduction

Fluctuations in precipitation and other related climatic conditions can cause substantial
damage to ecological habitats and agricultural production, degrading the economic and
social stability of the region [1–3]. The high spatiotemporal variability and uncertainty
of rainfall [4] significantly affect physical, biological, and human systems [5]. One of
the most extreme climatic phenomena, drought, is known to have devastating effects on
agriculture, water resources, and humid environments [6]. The increased prevalence of
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drought-like conditions worldwide that could last for many years due to climate change
and global warming increased the focus on drought studies in recent years. The incidence
of the drought was predicted to grow in the following decades during 2020–2050 [7]. The
repercussions of the drought on the social, economic, and political facets of our environment
were profound [8]. Hence, appropriate pre-planning besides mitigation activities must be
propagated and instigated to reduce the consequence of its effect [9].

The failure of the northeast monsoon in 2016 triggered one of the worst droughts in
recorded history in the Tamil Nadu state of India, which declared all 32 districts drought-
stricken [10]. In addition to posing a serious threat to agriculture and hydrology, the
drought caused the state to suffer significant economic losses. In Tamil Nadu, it was
observed that drought years became more frequent in recent decades. However, there are
no comprehensive contingency measures to deal with or prepare for the drought. Though
several studies addressed the issue at the district level, evaluating the aspects of drought
and its interventions at agroclimatic zones or block levels would be more important. The
measures for drought forecasting and related contingency besides mitigation planning
depend on the quality and quantity of the precipitation data with fine spatiotemporal
resolution [11–13]. In the past, the severity of droughts was determined by ground-based
observations at specific locations or by estimating the amount of precipitation over a grid
with a predetermined scale using various interpolation techniques [14].

Nevertheless, there are several disadvantages in utilizing ground-based observations.
In general, drought results from a persistent shortage of precipitation relative to the long-
term mean precipitation. Thus, efficient drought monitoring requires long-term data
records, yet data from rain gauges are spatially and temporally scattered across developing
countries [15]. An alternate source of precipitation data for hydrologic prediction that
can address the space–time resolution shortcomings of in situ networks is by adopting
satellite-based precipitation products [16]. By improving the temporal and spatial char-
acteristics of the precipitation data, satellite-based products and related global climate
models can aid in drought monitoring and other related applications i.e., hydrological
modelling [17–20], spatial soil predictions [21,22], and flood forecasting [23,24]. Commonly
used precipitation products utilized in the previous studies were IMERG (integrated multi-
satellite retrievals for GPM) [25], CHIRPS (climate hazards group infrared precipitation
with stations) [26,27], TMPA (TRMM multi-satellite precipitation analysis) [28], CMORPH
(CPC morphing technique) [29], MIRAA (microwave/infrared rain rate algorithm) [30],
and PERSIANN (precipitation estimation from remote sensing information using artificial
neural network) [31]. Previous studies on studying the effectiveness of satellite precipi-
tation products indicated the efficacy of the products over ground observations [32–38].
Derin et al. [39] evaluated nine high-resolution global-scale satellite-based precipitation
products over ten regions, including the western Black Sea Region in Turkey, and con-
cluded that many satellite-based precipitation products typically overestimate the dry
season precipitation and underestimate the wet season precipitation.

Similarly, for the years 1981 to 2014, Bai et al. [40] assessed the daily CHIRPS product
pattern across ten areas in China. They observed that the CHIRPS performed poorly in
arid and semi-arid regions. On the other hand, according to Zhu et al. [41], the last run
of the IMERG V05 product performed well in estimating short-term drought (2015–2017)
over the Xiang River Basin in China. For the monsoon season over India, Prakash and
Gairola [42] validated TRMM3B42 (V7 and RT) and global satellite mapping of precipitation
(GSMaP) against gauge-based IMD precipitation. For large-scale monsoon rainfall, these
two datasets were found to perform well; nevertheless, regional estimates were obtained
with bias. Except for orographic areas such as the Northwest and Northeast Himalayan
region and Southern peninsular India, it was shown that both types of TRMM datasets
overestimated rainfall over the majority of India.

Various drought indices, such as the standardized soil moisture index (SSI) [43], the
standardized precipitation evapotranspiration index (SPEI) [44], the vegetation drought
response index (Veg-DRI) [45], and the standardized precipitation index (SPI), can be used
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to characterize drought [46]. SPI, also known as a meteorological drought index, is one of
the most widely used indices for monitoring drought conditions [47]. SPI is considered for
its applicability and practical implications over time periods (3, 6, or 12 months). Several
studies compared the effectiveness of SPI-based drought monitoring to that of other indices
in various climatic locations [48–54]. They resulted in increased efficiency of SPI over
other indices in detecting drought incidents. A drought “event” is said to begin when SPI
falls below a specific threshold and to end when SPI exceeds the threshold. Therefore, a
longer drought period results in fewer drought occurrences. According to a study where
classifications made based on NDVI, NDWI, and SPI in the Nammakal district of Tamil
Nadu state, the overall extent where drought vulnerability prevailed was at its maximum
for the year 2016, which was in accordance with rainfall [55]. From 2000 to 2016, in Tamil
Nadu state, an integrated drought monitoring index (IDMI) was developed as a tool to
analyse and monitor the spatio-temporal dynamics of agricultural drought during the
northeast monsoon season. According to the study, the state of Tamil Nadu had extreme
and severe drought conditions in 2016 in proportions of 44.4 and 17.8%, respectively [56].
Research found that the rainfall-based component TRMM had the strongest correlation
with rainfall (0.58) and SPI (0.43) for the Tamil Nadu area from 2000 to 2013, offering an
alternative option in the absence of in situ meteorological data [57]. A study was conducted
in the Kodavanar watershed of Tamil Nadu, displaying signs of drought such as low rainfall
and vegetation stress, employing the Google Earth Engine (GEE) platform, which provides
comprehensive and effective monitoring of drought events in real time. Land surface
temperature (LST), temperature condition index (TCI), normalized difference vegetation
index (NDVI), vegetation condition index (VCI), and vegetation health index (VHI) are
remote sensing indicators used for agriculture drought evaluation [58].

Adequate climatological data are crucial for assessing drought characteristics. Ob-
taining long-term meteorological data from ground stations is a significant challenge in
developing nations such as India, which suffers from a lack of extent and quality of cli-
matological data from ground stations. As a result, it is necessary to improve resources
and approaches for studying and monitoring the various drought characteristics. The
northeast monsoon in Tamil Nadu is extremely sensitive to severe drought episodes; there-
fore, understanding the strengths and weaknesses of various rainfall products is crucial.
The purpose of this study was to evaluate the accuracy of remotely sensed precipitation
products in Tamil Nadu and their implications for specific purpose in drought detection
and monitoring. With these considerations in view, the study was conducted to investigate
the reliability and potential of using high resolution precipitation products along with
ground-based observation and assessing the intensity of meteorological drought using
rainfall departure and standard precipitation index during the northeast monsoon season.

2. Materials
2.1. Study Area

Tamil Nadu has a land area of 13 million hectares and a coastline of 1076 km, account-
ing for approximately 15% of India’s coastline. Tamil Nadu State is in the southernmost
part of India’s peninsular region, between 08◦05′ and 13◦35′ Northern Latitudes and 76◦15′

to 80◦20′ Eastern Longitudes (Figure 1). The Western Ghat mountain ranges run along the
state’s western border, and the Eastern Ghats are a line of discontinuous hills in the state’s
northern parts. The plateau lies between the Western and Eastern Ghats, with elevations
ranging from 45 to 150 m above mean sea level as the land slopes eastward. The Western
Ghats occupy the entire western border with Kerala, essentially keeping much of the South
West Monsoon’s rain-bearing clouds from entering the state. The state receives the most
rainfall from the northeast monsoon than South West Monsoon since the state is located in
the Western Ghats rain shadow region. Arid plains dominate the central and south-central
areas. The western, southern, and north-western regions are hills, with a combination of
vegetation and aridity. Due to its reliance on monsoon rainfall, Tamil Nadu is vulnerable
to droughts. The state has a wide range of climates, from semi-arid to wet rainforests.
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The state has various rainfall periods, which include the advance monsoon period, the
south-west monsoon from June to September with strong southwest winds, the north-east
monsoon from October to December with dominant northeast winds, and the dry season
from January to May. The state’s maximum annual average temperature is around 33 ◦C,
rising to 45 ◦C in the summer. Excluding the hilly areas, the minimum annual average
temperature is 24 ◦C and drops to approximately 10 ◦C during the winter. Throughout
the year, temperatures and humidity remain relatively high. The annual precipitation
of the state reaches an average of 945.9 mm. The rainfall in winter (January–February),
summer (March–May), south west monsoon (June–September), and northeast monsoon
(October–December) seasons varies and approximately accounts about 3.4, 13.9, 34.9, and
47.8 percent of total rainfall, respectively. Tamil Nadu has seven agro-climatic zones:
north-eastern (NEZ), north western (NWZ), western (WZ), high altitude and hilly (HAHZ),
Cauvery delta (CDZ), southern (SZ), and high rainfall zones (HRZ). Furthermore, changes
in the spatial and temporal distribution of rainfall exacerbate distress in the state’s cropping
pattern and intensity.
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Figure 1. The study area of Tamil Nadu with seven agro-climatic zones.

2.2. Data Collection

The datasets used in the study were downloaded between October 2015 and December
2017, corresponding to Julian days 273 to 353. The rainfall data utilized in the study were
collected from rain gauge-based weather stations and satellite precipitation products. The
observations were used to assess the performance of remote sensing-based drought indices
from 2015 to 2017. The research focused on the northeast monsoon season, which had a
significant impact on drought in most parts of Tamil Nadu State.

2.3. Satellite-Based Precipitation Products

This study used four high-resolution satellite rainfall products—TRMM, GPM IMERGM,
CHIRPS, and PERSIANN—to compare and assess their accuracy against observations
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from rain gauges. The product attributes and algorithm structures were also employed
from October to December between 2015 and 2017. Table 1 provides an overview of the
chosen products and a succinct description. The study period was limited from October
to December (northeast monsoon) due to the increased precipitation rates. Furthermore,
rainfall products were selected due to their relatively high spatial resolution, long series,
availability, and applicability.

Table 1. Overview of satellite-based precipitation products.

Data Set Developing Agency Coverage Period Spatial
Resolution

Temporal
Resolution

CHIRPS
Version 2.0

United States Geological
Survey (USGS) and the
Climate Hazards Group at the
University of California

Quasi-global
coverage of
50◦ S–50◦ N,

180◦ E–180◦ W

1981–present 0.25◦ (~27 km) Daily

TRMM 3B42 V. 7

National Aeronautics and
Space Administration (NASA)
and Japan Aerospace
Exploration Agency

Global
50◦ N–S 1998–present 0.25◦ (~27 km) Daily

PERSIANN

Center for Hydrometeorology
and Remote Sensing (CHRS)
at the University of
California, Irvine

Global
60◦ N–S 2000–present 0.25◦ (~27 km) Daily

GPM 3IMERGF
Version 05

National Aeronautics and
Space Administration (NASA)
and Japan Aerospace
Exploration Agency

Quasi global
coverage 2014–present 0.01◦ (~10 km) Daily

2.3.1. Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for
GPM (GPM IMERG)

The GPM mission employs a constellation of satellites from several providers and a
primary satellite calibration to collect data in near real-time on as many passive microwave
(PMW) and infrared (IR) platforms as possible. A combined PMW-IR technique may
increase the value of individual PMW or IR satellite rainfall estimations. When the PMW
and IR platform observation data are received, is the data are merged into half-hour grid
fields using the integrated multi-satellite GPM retrieval system (IMERG) [25]. It comprises
one core observatory satellite and around ten constellation satellites. GPM products are
available in multiple levels and versions. Levels 1–3 depict the various steps of satellite data
processing, where the third level represents the final processed precipitation product. This
study downloaded data from the final run of 2015 to 2017 daily GPM 3IMERGF version
05. IMERG data were provided by NASA/Goddard Space Flight Center PMM [59] and
accumulated on a monthly time scale. The latest V05 version of the IMERG Final Run
product, available since March 2014, was used in the study.

2.3.2. Tropical Rainfall Measurement Mission (TRMM)

The tropical rainfall measurement mission monitors tropical/subtropical precipitation
with 0.25◦ spatial resolution; the monthly and daily accumulations of 3 h TMPA are the most
extensively used outputs (TRMM 3B42). The TRMM satellite featured five instruments:
the visible infrared radiometer (VIRS), the TRMM microwave imager (TMI), the precipi-
tation radar (PR), the cloud and Earth radiant energy sensor (CERES), and the lightning
imaging sensor (LIS) [28,60]. The TRMM satellite’s rainfall measuring instruments includes
TRMM microwave image (TMI) from a nine-channel passive microwave radiometer that
gives information on the integrated column precipitation content, cloud liquid water, cloud
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ice, rain intensity, and rainfall types. The global precipitation climatology center (GPCC)
generates a level 3 product, 3B43, using the TRMM-based Huffman algorithm [61,62]. The
TRMM 3B43 version 7 merged daily product (TMPA) dataset for northeast monsoons
from 2015 to 2017 used in the study was obtained from the Goddard Active Archive
Center (DAAC).

2.3.3. Climate Hazards Group Infrared Precipitation and Stations (CHIRPS)

CHIRPS is a blended product with the following data sources: (i) pentad grid-scale
precipitation climatology (six pentads per month); (ii) quasi-global geostationary thermal
infrared (IR) satellite observations from the Climate Prediction Center (CPC) and the
National Climatic Data Center (NCDC) (B1 IR); (iii) NASA’s tropical rainfall measuring
mission (TRMM) 3B42 product; (iv) atmospheric data center (B1 IR). All data sources were
compiled using five-day rainfall accumulations and in situ precipitation measurements
received from several sources, including national and regional meteorological agencies [26].
For 2015–2017, the CHIRPS product was used with a monthly aggregation covering the
period of ground rainfall data. The monthly scale was chosen because it is ideal for drought
monitoring using drought indices such as the standardized precipitation index [63] and
environmental monitoring [64]. For the study, daily CHIRPS v2.0 data from 2015 to 2017
were collected and aggregated spatially to a resolution of 0.25◦ and accumulated to a
monthly time scale [65].

2.3.4. Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks (PERSIANN)

The PERSIANN precipitation product system contains an adaptive training feature that
updates network parameters whenever independent rainfall estimates are available. The
PERSIANN family includes three satellite estimation products: PERSIANN, PERSIANN-
Cloud Classification System (CCS), and PERSIANN-Climate Data Record (CDR). The
PERSIANN algorithm is a multilayer neural feed-forward network (ANN) model estab-
lished in 1997, based on a multilayer neural feed-forward network (MFN) known as the
modified counter propagation network [31] and synergy between low-earth orbiting (LEO)
satellite information samples and high-frequency samples from geostationary (GEO) satel-
lites [31,66]. This hybrid model is made up of two processes. First, the infrared (10.2–11.2 m)
images are transformed into the hidden layer using an automated clustering procedure,
resulting in a self-organizing feature map (SOFM). For the study, the daily PERSIANN data
from 2015 to 2017 during the northeast monsoon were derived from the CHRS website and
accumulated on a monthly time scale.

2.4. In-Situ Rain Gauge Data

The network of Tamil Nadu Automatic Weather Stations (AWS) rain gauges of the
Agro Climate Research Centre at the Tamil Nadu Agricultural University provided the
surface rain gauge measurement of observed daily rainfall data for the 391 stations for
northeast monsoon periods from 2015 to 2017. The ground observation network com-
prised 385 tipping-bucket rain gauges with a 25 km spatial resolution. Figure 2 shows the
geographical distribution of AWS gauge stations over Tamil Nadu. For 37 years, from
1980 to 2017, the historical daily rainfall data were obtained from the State Ground and
Surface Water Resources Data Centre, Water Resources Department, Tamil Nadu, and were
used for meteorological drought analysis. The ground observations were then spatially
interpolated through the kriging method to identify the spatial distribution of the rain
gauge data. The kriging method was then used to interpolate the rain gauge data into
the spatial distribution. CHIRPS satellite precipitation data were validated for rainfall
deviation analysis using December 2017 rainfall data.
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3. Methodology
3.1. Evaluation of High-Resolution Precipitation Products

This study validated the satellite rainfall products for the northeast monsoon season
from 2015 to 2017 using data from 391 independent weather stations in Tamil Nadu. The
selection of independent weather stations was facilitated based on the relative location
of each station in different agro-climate zones and the availability of good records. Most
satellite rainfall products blend data from ground-based weather stations to improve their
accuracy and reliability. Therefore, validation with an independent data set is crucial in
the study region to identify the best satellite product to supplement reproduction gauge
observations to reproduce the measured data.

Satellite rainfall products were evaluated at monthly and seasonal time scales by
accumulating daily rainfall data. Analysis to validate the satellite precipitation product
retrievals with gauge data was carried out point-to-point for all seasonal and monthly series
meteorological stations. Since rainfall measurements are taken from a rain gauge network,
an interpolation scheme was used to obtain rainfall from the scattered point values. The
ordinary kriging method was used for interpolating the rain gauge measurements. All
the maps and figures were analysed using ArcGIS 10.6 and the R-Programming interface
1.1.419 (Figure 3).
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3.2. Performance Metrics

The Pairwise comparison statistics techniques such as Pearson’s correlation coefficient
(CC), root mean square error (RMSE), normalized root mean square error (NRMSE) and
agreement (Table 2) were used for quantitative validation of the satellite rainfall estimates
for each set of verification data. Rainfall statistics were calculated monthly and seasonally,
and all analyses were performed in the R environment (RStudio) version 1.1.463.

Table 2. Performance metrics used in this study to evaluate the satellite precipitation products.

Metric Equation Interpretation Reference

Pearson Correlation
Coefficient

CC =
∑N

i=1(HRPPi −HRPP) ·(AWSi−AWS)
∑N

i=1 (HRPPi −HRPP)2 ·(AWSi−AWS)2

The value ranges between −1 to 1, in
which one indicates the perfect score. [50]

Root Mean Square
Error (RMSE) RMSE =

√
1
n ∑n

i=1 (
AWSi−HRPPi

N )2

A lower RMSE value means greater
central tendencies and small extreme
errors. The zero RMSE value is the
perfect score.

[50]

Normalized
Root-Mean-Square
Error (NRMSE)

NRMSE = 100 × (RMSE/Oi) Lower NRMSE values indicate less
residual variance for a model. [67]

Agreement (%) Agreement (%) = 100 × (1 − (RMSE/Oi))
Closer values to 100% indicate strong
agreement, and values closer to 0%
indicate the least agreement.

[68]

Note: AWSi = gauge rainfall measurement, AWS = average gauge rainfall measurement, HRPPi = satellite rainfall
estimate, HRPP = average satellite rainfall estimate, Oi = Observed value, and N = number of data pairs.

3.3. Calculation of Standardized Precipitation Index (SPI)

The standardized precipitation index (SPI) [46] is a multivariate meteorological drought
index based on the probability distribution of precipitation. SPI values are dimensionless
and are computed by fitting a Gamma distribution function to precipitation values during
the time (month) period. In this study, SPI was computed with 1-month accumulation
interval. It provided an easy and flexible way to monitor drought on a different scale,
showing wetness and dryness conditions for any specified location based on the long-term
record for the desired precipitation period. Table 3 presents the categories of the event
corresponding to SPI values. The SPI represents the total difference in precipitation over a
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given period from its climatological mean and is then normalized by the standard deviation
of precipitation over the same period using the formulae:

SPI = a − A/Sd

where a = current precipitation for a given period (week, month), A = long-term normal of
precipitation for the same period, and Sd represent the standard deviation of precipitation
for the given period.

Table 3. Event Classification Based on SPI Values.

SPI Value Category Probability (%)

>2.00 Extremely wet 2.3

1.50–1.99 Severely wet 4.4

1.00–1.49 Moderately wet 9.2

−0.99 to 0.99 Near normal 68.2

−1.00 to −1.49 Moderately dry 9.2

−1.50 to −1.99 Severe dry 4.4

<−2.0 Extremely dry 2.3

Positive SPI values are greater than average precipitation, and negative values are less
than average precipitation. Depending on the SPI, the drought begins when the SPI value
is equal to or below −1, 0 and ends when the value is positive (Table 3, Figure 4). Daily
precipitation data were cleaned and aggregated into monthly data for the study periods to
calculate the SPI values.
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Figure 4. Flow diagram showing the development of drought monitoring system.

The short-term SPI calculation for any location was based on the long-term precipi-
tation record for a desired period because it provided short-term soil moisture and crop
stress (especially during the growing season). Therefore, 37 years preceding 2017 (generally
1980–2017) were analysed for each station, and then, the function was standardized to
obtain the SPI value.
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It could be said that the z-score of the distribution function represents the deviation
event from the rainfall data mean as the SPI value. The missing records were excluded, and
a total of 550 stations were used for the spatial interpolation of the SPI values using the
Spline method. The calculated SPI values were then classified according to the range and
probability per cent represented in Tables 3 and 4. This long-term record was equipped
with a distribution of probability, which was then converted into a normal distribution
so that the mean SPI for the desired time and location was zero. A drought event begins
when the SPI value reaches −1.0 and ends when SPI becomes positive again. Since drought
is a regional phenomenon, SPI values of the rain gauge stations were interpolated using
the Spline interpolation technique in ArcGIS to demarcate its spatial extent. The SPIRITS
software was used to generate SPI images for anomaly assessment.

Table 4. Drought intensity based on the percentage departure of rainfall from the normal value given
by IMD, 1971.

Percentage Rainfall Deviation Rainfall Deviation Category Intensity of Drought

60 and more Large Excess No drought

20 to 59 Excess No drought

+19 to −19 Normal Mild drought

−59 to −20 Deficient Moderate drought

−99 to −60 Large Deficient Severe drought

−100 No Rain Extreme drought

3.4. Calculation of Rainfall Deviation

The monthly drought condition was determined using the criteria suggested by
IMD [69]. It was based on the percentage deviation of rainfall from its long-term mean.
According to the India Meteorological Department (IMD), meteorological drought is the
deviation of actual rainfall from long-term average (normal) records at a given station. It is
calculated using the following formula;

Rfdev = [(Rfi − RFn)/RFn] × 100

where Rfi is the current rainfall for a comparable period (in mm), and RFn is the normal
rainfall (at least 30 years on average) for the same period (in mm). Based on rainfall
deviations, four categories are used to monitor and evaluate rainfall patterns across Tamil
Nadu during the north-eastern monsoon season. The rainfall deviation classification of
IMD is given in Table 4 and Figure 4.

4. Results

Four high-resolution precipitation products, IMERGH, TRMM, CHIRPS, and PER-
SIANN, were evaluated for accuracy and confidence level with AWS network data to
determine the usability and applicability of global precipitation products as alternatives to
ground-based rainfall estimation. In addition, estimates of the global precipitation products
based on agroclimatic zones were investigated to comprehend rainfall distribution and its
influence on ACZs.

4.1. Spatial Distribution of Precipitation Products and AWS Data

The spatial distribution of accumulated precipitation was derived from the high-
resolution precipitation products IMERGH, TRMM, CHIRPS, and PERSIANN, and from
the AWS stations of Tamil Nadu; all of which are depicted in Figure 5. IMERGH recorded
a minimum of 149.75, 32.07, and 80.05 mm during the northeast monsoon of 2015, 2016,
and 2017, respectively. The corresponding maximum values were 1453.63, 253.40, and
700.59 mm, respectively. A minimum precipitation of 144.31, 34.40, and 75.01 mm were
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recorded with TRMM during the northeast monsoon of 2015, 2016, and 2017, respectively.
Maximum values of 1400.07, 250.98, and 686.95 mm were recorded in the corresponding
years. Accumulated precipitation data with CHIRPS recorded a minimum of 296.34, 95.24,
and 171.65 mm during the northeast monsoon of 2015, 2016, and 2017, respectively. The
corresponding maximum values were 1563.72, 421.12, and 722.88 mm, respectively. During
the northeast monsoon of 2015, 2016, and 2017, PERSIANN recorded minimum precipita-
tion of 219.87, 59.83, and 171.65 mm and maximum precipitation values of 1411.29, 243.87,
and 722.88 mm in the respective years. AWS recorded a minimum of 151.65, 31.82, and
73.29 mm during the northeast monsoon of 2015, 2016, and 2017, respectively. Maximum
values of 1755.31, 450.39, and 939.58 mm were recorded in the corresponding years.
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During 2015, IMERGH, TRMM, CHIRPS, and PERSIANN recorded the maximum
values of 1453.63, 1400.07, 1563.72, and 1411.29 mm of precipitation, respectively, as against
1755.31 mm recorded with AWS. Minimum precipitation of 149.5, 144.31, 296.34, and
219.87 mm was recorded with the respective high-resolution precipitation products, and
AWS recorded 151.65 mm precipitation, contrary to the precipitation products. IMERGH,
TRMM, CHIRPS, and PERSIANN recorded the maximum values of 253.40, 250.98, 421.12,
and 243.87 mm of precipitation, respectively, during 2016, as against 450.39 mm recorded
with AWS. Minimum values of 32.07, 34.40, 95.24, and 59.83 mm of accumulated precip-
itation were recorded with the corresponding satellite precipitation product in contrast
with AWS, which recorded 31.82 mm of precipitation. During 2017, the maximum pre-
cipitation values of 700.59, 686.95, 722.88, and 722.88 mm were recorded with IMERGH,
TRMM, CHIRPS, and PERSIANN, respectively, when compared with 939.58 mm precip-
itation recorded in AWS. Minimum precipitation of 80.05, 75.01, 171.65, and 171.65 mm
was recorded with the respective precipitation products, and AWS recorded 73.29 mm of
precipitation uncontrived to the high-resolution precipitation products.

4.2. Seasonal Precipitation Evaluation of Four High Resolution Precipitation Products

Comparing the precipitation products with that of AWS was facilitated through the
computation of CC, RMSE, NRMSE, and Per Cent Agreement (Table 5 and Figure 6). From
the assessed statistical measures, the correlation coefficient (CC) ranged from 0.77 to 0.85,
and the highest CC of 0.85 was observed with IMERGH, followed by TRMM (0.84) and
CHIRPS (0.78). The lowest CC of 0.77 was observed with PERSIANN in 2015. During NEM
2016, TRMM and IMERGH recorded higher values for CC i.e., 0.85 and 0.84, respectively,
followed by PERSIANN (0.53). During the drought year of 2016, CHIRPS registered the
lowest CC of 0.45 among the satellite precipitation products compared to AWS data. Similar
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to 2015, IMERGH recorded higher CC of 0.861, followed by TRMM (0.86) and CHIRPS
(0.753) during NEM 2017. The least CC of 0.712 was observed with PERSIANN. The
seasonal RMSE recorded the least for IMERGH, with a value of 58.49 mm, followed by
TRMM, which recorded an RMSE of 96.57 mm. CHIRPS and PERSIANN were in the
lower order with RMSE of 127.4 and 134.73 mm during the northeast monsoon of 2015.
In the case of northeast monsoon of 2016, TRMM registered the lowest RMSE of 17.47
mm, followed by IMERGH (19.11 mm), whereas CHIRPS recorded the highest RMSE
of 43.13 mm next to PERSIANN (29.83 mm). Similarly, TRMM and IMERGH registered
comparatively lesser RMSE during northeast monsoon 2017 with values of 44.52 and 45.09,
followed by PERSIANN and CHIRPS with higher values of 69.51 and 81.29 mm of RMSE.

Table 5. NEM statistical evaluation of satellite precipitation products during 2015–2017.

Northeast Monsoon 2015

Index IMERGH TRMM CHIRPS PERSIANN

CC 0.853 0.835 0.781 0.77

RMSE 58.49 96.57 127.24 134.73

NRMSE 10.24 17.46 18.05 18.88

Agreement 89.76 82.54 81.95 81.12

Northeast Monsoon 2016

Index IMERGH TRMM CHIRPS PERSIANN

CC 0.844 0.854 0.449 0.525

RMSE 19.11 17.47 43.13 29.83

NRMSE 19.01 17.75 20.53 19.42

Agreement 80.99 82.25 79.47 80.58

Northeast Monsoon 2017

Index IMERGH TRMM CHIRPS PERSIANN

CC 0.861 0.86 0.753 0.712

RMSE 45.09 44.52 81.29 69.51

NRMSE 19.05 19.32 18.63 19.07

Agreement 80.95 80.68 81.37 80.93
Note: CC: Correlation Coefficient; RMSE: Root Mean Square Error; NRMSE: Normalized Root Mean Square Error.

4.3. Accuracy Assessment of High-Resolution Satellite Precipitation Products at the Regional Scale

The agreement between the high-resolution precipitation and the data collected from
AWS was determined to evaluate the performance of the precipitation products to ground
reality. The results of correlation coefficient (R2), RMSE, and NRMSE were derived for
the products during the northeast monsoon season of 2015, 2016, and 2017 in seven agro-
climatic zones of Tamil Nadu (Table 6). Irrespective of the agro-climatic zones, the R2 value
for IMERGH during NEM 2015 was more than 0.8 except for high altitude and hilly Zones
(0.68), which revealed that the IMERGH product performance was high and dependable for
use. Even though RMSE values were high in HAHZ and NEZ and the other zones recorded
less value, the agreement of the data with AWS values was more than 74 per cent indicating
the high correlation of the data with ground truth. Similar results of the agreement were
found for all the other precipitation products with more than 70 per cent. TRMM data were
found to have higher R2 values of more than 0.6 in all the northeast monsoon seasons of
2015, 2016, and 2017, irrespective of the agro-climatic zones assessed.
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Figure 6. Spatial distribution of seasonal precipitation of high-resolution precipitation products
during (A) 2015, (B) 2016, and (C) 2017 from interpolated gauge station at the spatial resolution of
0.25 degree.

It was found that the CHIRPS and PERSIANN products had a high variation in the R2

value, indicating the inconsistency of predicted precipitation over different agro-climatic
zones. For example, the R2 value was as low as 0.1 and 0.22 in HRZ during 2015 for
PERSIANN and CHIRPS data, respectively. Similarly, the PERSIANN data recorded very
low R2 values irrespective of the years and agro-climatic zones analysed and a high RMSE
in most of the zones, which affirmed the less predictable precipitation product compared
to the other three products under evaluation. Further, PERSIANN is a pure satellite
precipitation product based on the artificial neural network (ANN) model by the Centre
for Hydrometeorology and Remote Sensing (CHRS) of California. Therefore, the product
depends on the statistical relationship between IR and the precipitation rate exhibiting
considerable uncertainty [66].
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Table 6. Values of the R2, RMSE, NRMSE, and Agreement of seasonal evaluation of high-resolution
precipitation products for the seven agro-climatic zones.

Northeast Monsoon 2015 Northeast Monsoon 2016 Northeast Monsoon 2017

Cauvery Delta Zone (CDZ)

Index IMERGH TRMM CHIRPS PER-
SIANN IMERGH TRMM CHIRPS PER-

SIANN IMERGH TRMM CHIRPS PER-
SIANN

CC 0.99 0.71 0.92 0.69 0.87 0.86 0.83 0.25 0.82 0.82 0.95 0.71

RMSE 36.85 78.59 77.05 93.33 18.04 17.19 28.05 33.38 49.18 46.02 55.04 85.04

NRMSE 23.26 16.62 25.19 10.57 17.68 14.00 10.49 18.15 19.73 21.04 10.44 18.80

Agreement 76.74 83.38 74.81 89.43 82.32 86.00 89.51 81.85 80.27 78.96 89.56 81.20

High Altitude and Hilly Zone (HAHZ)

CC 0.68 0.67 0.89 0.79 0.72 0.73 0.75 0.56 0.92 0.92 0.89 0.70

RMSE 129.43 136.24 53.93 75.60 21.98 20.84 21.95 22.63 38.48 37.94 34.71 55.52

NRMSE 25.52 28.33 9.63 16.79 20.04 18.80 11.16 18.82 16.03 18.10 8.20 19.40

Agreement 74.48 71.67 90.37 83.21 79.96 81.20 88.84 81.18 83.97 81.90 91.80 80.60

High Rainfall Zone (HRZ)

CC 0.98 0.96 0.22 0.10 0.60 0.70 0.81 0.45 0.34 0.34 0.71 0.59

RMSE 21.16 43.61 59.15 139.17 27.62 26.43 25.72 38.62 67.75 64.76 46.13 124.01

NRMSE 16.39 23.95 8.37 24.99 22.75 20.89 10.37 20.80 33.55 31.01 9.34 23.15

Agreement 83.61 76.05 91.63 75.01 77.25 79.11 89.63 79.20 66.45 68.99 90.66 76.85

Northeastern Zone (NEZ)

CC 0.79 0.78 0.83 0.52 0.89 0.93 0.68 0.53 0.83 0.80 0.81 0.47

RMSE 149.40 146.96 80.78 222.17 15.07 11.44 19.63 31.18 62.79 64.59 72.79 104.69

NRMSE 19.43 18.53 8.20 19.45 18.96 17.02 10.58 22.63 18.29 17.67 11.06 21.87

Agreement 80.57 81.47 85.80 80.55 81.04 82.98 89.42 77.37 81.71 82.33 88.94 78.13

North-western Zone (NWZ)

CC 0.99 0.99 0.80 0.44 0.94 0.92 0.58 0.48 0.70 0.71 0.44 0.40

RMSE 60.25 31.17 49.13 109.30 7.33 8.18 19.44 23.41 60.66 63.27 52.57 50.55

NRMSE 19.63 13.62 10.86 19.73 18.19 20.50 13.57 21.57 31.13 31.42 14.17 17.64

Agreement 80.37 86.38 89.14 80.27 81.81 79.50 86.43 78.43 68.87 68.58 85.83 82.36

Southern Zone (SZ)

CC 0.86 0.75 0.58 0.35 0.84 0.84 0.64 0.26 0.84 0.86 0.85 0.71

RMSE 75.22 70.15 68.17 106.34 23.49 22.71 20.52 33.07 39.74 37.62 30.88 51.90

NRMSE 14.56 14.07 10.61 18.90 17.37 16.73 9.87 18.69 19.86 19.52 9.10 18.30

Agreement 85.44 85.93 89.39 81.10 82.63 83.27 90.13 81.31 80.14 80.48 90.90 81.70

Western Zone (WZ)

CC 0.83 0.78 0.68 0.56 0.78 0.80 0.82 0.71 0.86 0.80 0.72 0.30

RMSE 54.53 54.50 51.66 41.74 17.04 14.33 13.29 25.26 22.55 24.33 26.50 32.22

NRMSE 18.18 15.95 11.42 20.45 21.08 19.66 8.02 19.85 13.74 15.30 9.93 14.98

Agreement 81.82 84.05 88.58 85.69 78.92 80.34 89.98 80.15 86.26 84.70 90.07 85.02

Note: CC: Correlation Coefficient; RMSE: Root Mean Square Error; NRMSE: Normalized Root Mean Square Error.

4.4. Drought Assessment Based on the Standardized Precipitation Index

Standardized precipitation index (SPI) computes rainfall deviation from the long-term
historical mean for three months, viz., October, November, and December, for different
agro-climatic zones of Tamil Nadu during the years 2015 to 2017 and it is presented in
Table 7 and Figure 7. It is a known fact that a dry spell occurs when the SPI values are found
to be negative, while the non-dry spells are indicated by positive values [70]. Thereby,
it could be inferred that the negative values of SPI indicate the drought condition, and
positive values affirm the non-drought condition.
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Table 7. Agroclimatic zone-wise SPI for different months during 2015–2017.

ACZ 15
October

15
November

15
December

16
October

16
November

16
December

17
October

17
November

17
December

Southern Zone Mi D Mi W Mi W SD ED Mi D Mi D Mi D Mi D

Northeast Zone Mi D Mi W Mi D ED ED Mi D Mi D Mi D Mi D

High Rainfall Zone MD N N SD ED Mi D MW Mi D MW

Cauvery Delta Zone Mi D Mi D Mi D SD ED Mi D Mi D Mi D Mi D

Western Zone Mi D SW MW SD ED Mi D N Mi D N

High Altitude and
Hilly Zone Mi D SW SW SD ED Mi D Mi W Mi D Mi W

North-western Zone Mi D SW Mi D ED MD Mi D N Mi D N

Note: Mi D—Mildly dry; Mi W—Mildly wet; MD—Moderately dry; MW—Moderately wet; SW—Severely wet;
SD—Severely dry; ED—Extremely dry; N—Normal.

Based on SPI values for October, the high rainfall zone was deemed moderately dry
in 2015, while the remaining blocks were found to be mildly dry. During November,
the Cauvery delta zone was categorized as mildly dry, while the high rainfall zone was
determined to be normal, the southern zone and north-east zone were classified as mildly
wet, and the remaining zones were classified as severely wet. For December, the northeast
zone, Cauvery delta zone, and north western zone were classified as mildly dry, the high
rainfall zone as normal, and the southern zone, western zone, high altitude, and hilly zone
as mildly, moderately, and severely wet based on SPI values. During October 2016, the
northeast zone and north western zone recorded SPI classes of extremely dry, while the
rest zones were classified as severely dry. Except for the north western zone, which was
moderately dry in November, the remaining six zones were classified as extremely dry. For
December, all the zones were in mildly dry condition. All the zones were classified under
mildly dry conditions in October and November 2017. For December, the southern zone,
northeast zone and Cauvery delta zone were mildly dry. While the western zone and north
western zone were grouped as normal, and high altitude and hilly zone and high rainfall
zone registered SPI classes of mildly and moderately wet, respectively, during 2017.

4.5. Assessment of Meteorological Drought Based on Rainfall Departure

According to the India Meteorological Department IMD [39], meteorological drought
is the deviation of actual rainfall from long-term average (normal) records at a given station.
During 2015, the high rainfall agro-climatic zone was found to have excess rainfall during
October, November, and December, and was classified under the no drought category,
whereas the other zones of Tamil Nadu fell under the moderate drought category. On the
other hand, the rainfall deviation during the northeast monsoon for the years 2016 and 2017
was mostly classified under the deficient and large deficient categories, indicating that the
drought severity in Tamil Nadu varied between moderate and severe drought conditions.
From the percentage departure, it could be concluded that 2016 and 2017 fell under severe
drought and moderate drought conditions, respectively. In contrast, 2015 was observed to
have mild drought in the western, high altitude, and hilly and north western zones of Tamil
Nadu, and the remaining zones were classified under no drought. The same methodology
to identify the drought years was followed by Karinki and Sahoo [71]. Furthermore, the
rainfall deviation map was generated for each district to know the district-wise drought
severity condition. The number of districts falling into different severity categories is
summarized and shown in Table 8.
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Table 8. Summary of the number of districts falling into different severity categories.

Drought Severity Class
Number of Districts

15
October

15
November

15
December

16
October

16
November

16
December

17
October

17
November

17
December

No drought 1 31 20 0 0 6 6 3 2

Mild drought 6 1 9 0 0 6 7 8 4

Moderate drought 24 0 3 12 3 15 17 20 18

Severe drought 1 0 0 20 29 5 2 1 8

From Table 8, it could be inferred that during the years 2016 and 2017, most districts
were classified under moderate and severe drought conditions. The year 2015 depicted
moderate drought conditions prevailing during October, whereas no drought was found
during November and December.

5. Discussion

Among the satellite precipitation products evaluated, the range of minimum and
maximum values recorded precipitation was similar for IMERGH and TRMM. The other
two products, CHIRPS and PERSIANN estimation, were in a higher range during the
years. While comparing AWS estimates, IMERGH, and TRMM were on par with the
minimum range predictions, the other two products were over-estimated. IMERG, TMPA,
and Global Satellite Mapping of Precipitation (GSMaP, v. 6) estimations were compared to
gauge-based data over India daily for the southwest monsoon season (June to September
2014) by Prakash et al. [72]. The results showed that the IMERG product performed a clear
improvement in missed and false precipitation bias over India, accurately representing the
mean monsoon precipitation and its variability. The Monsoon Core Region of India was
studied using TMPA 3B42 V7 data sets from 1998 to 2013 and IMERG rainfall products from
2014 to 2017. It was observed that the satellite rainfall data sets provided adequate data
sets with low bias and good agreement [73]. CHIRPS product was found to estimate on par
with AWS data in the maximum range, while the other three products were underestimated
(Figures 8–10). In coastal areas of subtropical climates, CHIRPS performed better, and the
findings of this study are in good agreement with those of the TRMM product, which offered
superior performance in detecting convective precipitation in tropical or subtropical regions
during warm seasons [40]. When detecting no-precipitation or minimal precipitation events,
the CHIRPS product outperformed, i.e., the product successfully identified more than 90%
of these events [74]. The results indicate that IMERGH and TRMM precipitation products
could be used during low rainfall conditions and CHIRPS in high rainfall conditions. Our
findings are consistent with a research from northern Iraq, where zone I (Z-I) had more
severe droughts than zones II (Z-II) and III (Z-III). In comparison, the TRMM fits the Z-I
and Z-II drought assessments better, whereas the CHIRPS fits the Z-III drought analysis
better [75,76]. Even at a 5 mm/d threshold, GPM worked best for numerical evaluation of
precipitation and event detection [50].

The per cent agreement between precipitation from precipitation production and
observed values from AWS showed that IMERGH registered the highest agreement per cent
of 89.76, followed by 82.54 by TRMM. CHIRPS and PERSIANN followed in line with lower
values of 81.95 and 81.12 per cent, respectively, in 2015. In 2016, TRMM edged past IMERGH
with the agreement of 82.25 and 80.99 per cent. On the other hand, PERSIANN and CHIRPS
recorded comparatively lesser agreement of 80.58 and 79.47 per cent, respectively. During
2017, all the satellite precipitation products registered comparatively higher agreement of
more than 80 per cent regarding AWS observations, with CHIRPS recording the maximum
agreement of 81.37 per cent, followed by IMERGH, PERSIANN, and TRMM agreement of
80.95, 80.93, and 80.68 per cent.
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Among the HRPPs evaluated, CHIRPS data were found to have very good agreement
with that of the AWS data, indicating the ability to accurately locate the spatial centres and
accumulation of precipitation [77]. Such strong agreement between the identified drought
and historical drought implies that CHIRPSv2 is a promising rainfall dataset that might be
utilised to construct a drought monitoring and early warning system in Ethiopia [51,78]. The
highest performance of CHIRPS over other products may be attributed to the development
of the products derived from merging IR-derived precipitation with the climate hazards
group precipitation climatology and blending with the ground station observation using
the inverse distance weighted (IDW) method [27]. Irrespective of the study years, CHIRPS
data agreement with AWS data was high compared to other precipitation products in all
the agro-climatic zones of Tamil Nadu. In Cyprus, Katsanos et al. [65] carried out validation
tests on CHIRPS products and reported good agreements with ground-based rain gauge
data. Similarly, Pedreros et al. [79] found a higher correlation with ground-based data when
validating CHIRPS over Colombia, particularly in drier months. Hessels [80] compared
several open-source satellite products for the Nile basin and determined that CHIRPS was
efficient for hydro-meteorological applications.

The general observation was that the SPI values were positive during the northeast
monsoon of 2015 and varied between normal and extremely wet conditions, implying the
possibility of normal vegetation growth during these months. On the other hand, the SPI
values were negative for northeast monsoon of 2016 and 2017, representing mildly dry to
extremely dry condition prevalence in the study region. According to Kumar et al. [56], the
distinct intra-seasonal variability of 3-month SPI and IDMI was seen in 2016, which might
be ascribed to the receipt of around 62.0% lower rainfall than the mean rainfall of Tamil
Nadu’s northeast monsoon season. The dry condition might indicate stressed vegetation
due to a lack of water [71]. In an investigation, the SPI values plummeted from 0.03 to−0.15,
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indicating an extremely dry condition triggered by insufficient precipitation [81]. From the
results, it could be inferred that 2016 and 2017 were drought years during the northeast
monsoon, and 2015 was non-drought. According to a study of rainfall anomalies during
the Maha season in Sri Lanka, SPI values vary during drought and non-drought periods.
The SPI value is low during the drought season, as seen in this case [82]. Since the 1-month
time scale of SPI was used for assessing the drought years, the years identified as drought
years could be designated agriculture drought years. SPI at block level resulted in 40, 120,
and 127 blocks under extremely dry, severely dry, and moderately dry, respectively, during
October 2016, and 91, 155, and 85 blocks under extremely dry, severely dry, and moderately
dry, respectively, during November 2016, indicating severe drought conditions. SPI based
on CHIRPSv2 accurately detected drought and non-drought years in river basins [51]. This
variation benefited in determining the trend and the years when the area was more prone
to drought owing to precipitation at block level.

From the results, it was concluded that the rainfall departure is the simplest method
and was found to be efficient in identifying the meteorological drought in less time [83].
Pandit [84] evaluated the drought in the Maharashtra region of Solapur by comparing
SPI and rainfall deviation. The study found a relationship between the positive values of
rainfall deviation and the positive values of SPI, representing moisture or wetness for that
specific year.

6. Conclusions

Drought can be observed effectively using drought indices, viz., Palmer drought sever-
ity index or the standardized precipitation index, calculated with in situ meteorological
data from weather stations. The Palmer drought severity index utilizes the long-term
historical rainfall data and mean temperature, which works based on a simple water bal-
ance model. In contrast, the standardized precipitation index adopts a temporally moving
window method by aggregating the precipitation amount facilitating the outputs to be
drawn at flexible time scales. In areas with sparse meteorological stations, drought condi-
tions of unknown locations are estimated through spatial interpolation of known sampled
data. However, the interpolation of meteorological data provides the details of the current
drought condition, but it has high uncertainties since the interpolation is affected by many
factors. Thus, remote sensing gained more attention for monitoring droughts, since it can
be used to derive meteorological and biophysical information about terrestrial surfaces. In
areas with limited meteorological stations, the remote sensing approach is the only source
for drought monitoring. Using satellite-based rainfall estimates for drought monitoring has
several advantages. Satellite derived rainfall products are useful for drought forecasting
by overcoming the problem of unevenly distributed and erratic ground rain gauge mea-
surements. These may provide an alternative for traditionally recorded rainfall at weather
stations and enable global coverage to monitor large areas. Their daily coverage helps
to monitor of the onset of drought events. On the other hand, they have few limitations;
for example, rainfall estimates can have higher uncertainties, i.e., overestimation of low
rainfall and under estimation of high rainfall values. These satellite-based rainfall products
validation must be performed using in situ rain-gauge observations. The main findings
from this study are:

• High-resolution precipitation products, IMERGH and TRMM, were on par with the
minimum range predictions compared to AWS data. In contrast, the other two prod-
ucts (i.e.,) PERSIANN and CHIRPS overestimated the rainfall. On the other hand, the
CHIRPS product was found to estimate on par with AWS data in the maximum range,
while the other three products were underestimated. Therefore, IMERGH and TRMM
precipitation products could be used during low rainfall conditions and CHIRPS in
high rainfall conditions.

• The rainfall deviation during the northeast monsoon for the years 2016 and 2017 was
mostly classified under deficient and large deficient categories showing moderate to
severe drought conditions, with twelve, three, and fifteen districts under moderate
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drought, and twenty, twenty-nine, and five districts under severe drought condition
during October, November, and December 2016. During 2017, seventeen to twenty
districts were under moderate drought conditions, and eight were under severe
drought conditions.

• It is concluded that 2016 and 2017 were drought years in the northeast monsoon, and
2015 was a non-drought year in Tamil Nadu, India.

7. Future Scope

Further investigation is required on spatial patterns of rainfall using satellite products,
in-depth research, or pixel-to-pixel analysis. It is possible to evaluate studies on establishing
NDVI and NDWI using high resolution optical datasets to assess drought at the block or
village level. The evaluation of the various satellite products during recent severe drought
occurrences ought to be explored.
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