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Abstract: Persistent Organic Pollutants (POPs) in water can reach levels below ppt (ng L−1), repre-
senting a challenge for risk assessment using long-term exposure. Therefore, sampling devices to
monitor trace levels of organic compounds are suitable due to their sensitivity and low detection
limits. In this work, the field calibration and monitoring for POPs, such as Polycyclic Aromatic Hydro-
carbons (PAHs) and pesticides, in a drinking water reservoir were carried out using semipermeable
membrane devices (SPMDs). The SPMDs were spiked with deuterated PCBs used as PRCs, and their
dissipation was measured at 5, 10, 15 and 24 days. The SPMDs were dialyzed in hexane twice and the
initial amount (N) and final amount (No) of PRCs in extracts were estimated by GC/MS to calculate
the sampling rate (Rs) for target compounds. The PCBs were dissipated more than 30% at 24 days,
and Rs were calculated between 27.8 and 72.7 L day−1 for PAHs and 35.8 and 71.3 L day−1 for
pesticides. Finally, PAH congeners such as Naphthalene, Acenaphthylene, Acenaphthene, Fluorene,
Phenanthrene, Anthracene, Fluoranthene and Pyrene were detected at water concentration (Cw)
ranges between 0.5 and 2.7 ng L−1, whilst chlorpyrifos was the only pesticide detected at 19.0 ng L−1

in the reservoir. This calibration showed that PRCs do not dissipate entirely in 24 days and that
dissipation modelling may be applied for Cw estimation of POPs in reservoirs.

Keywords: semipermeable membrane devices; performance reference compounds; polycyclic aromatic
hydrocarbons; pesticides and passive samplers

1. Introduction

Semipermeable membrane devices (SPMDs) have been widely used as passive sam-
plers for the monitoring of non-polar pollutants in water [1]. SPMDs are passive samplers
applied in the detection and quantification of a wide range of Persistent Organic Pol-
lutants (POPs), including polycyclic aromatic hydrocarbons (PAHs), flame retardants,
organochlorines pesticides, etc., at very low water concentration (Cw) levels. These
POPs are included in the Stockholm Convention because of their persistence, toxicity
and bioaccumulation [2–4].

Non-polar POPs are adsorbed inside SPMDs through lipophilic interactions, which
can be extrapolated to the bioaccumulation process due to the similar uptake principle by
the biota [1]. Thus, SPMDs are usually applied in bioaccumulation factor estimation.

These membranes include the neutral triglyceride triolein, which mimics the par-
titioned steps during bioconcentration, providing qualitative and quantitative data for
non-polar compounds when Gas Chromatography is coupled with Mass Spectrometry dur-
ing analytical analyses [5]. Triolein is sealed in a lay-flat, thin-wallet tube of Low-Density
Polyethylene (LDPE).
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The quantification of POPs in SPMDs is challenging due to the multiple parameters
that can affect the process, including fluxes, sampling time, water volume and temperature.
Hence, the dissolved levels of POPs in water have been estimated by applying dissipation
modelling that follows the kinetics of performance reference compounds (PRCs) which
have similar properties to the target compounds [5]. The PRCs are initially spiked in
SPMDs, and these substances are dissipated during exposure time in the water. Some
deuterated Polychlorinated biphenyls (PCBs) congeners, such as 14, 29 and 50, are selected
as PRCs since they do not occur in the environment under natural conditions [6]. The
initial amount (No) of PRCs decreases during the exposure time in the field according to
Fick’s law [5]. Then, the PRCs’ dissipation can be related to the medium exposition and
the flow rate in the water body [7]. The release of PRCs from SPMDs to water is related to
the n-octanol-water partition coefficient (log kow). Thus, polar compounds dissipate faster
than non-polar ones [8]. However, PRCs should not dissipate completely, allowing one to
apply a dissipation modelling which includes the initial and final concentration of these
substances. Moreover, field calibration should include studying the dissipation of PRCs to
avoid their total loss in the water [9,10].

The use of SPMDs for POP monitoring in Colombian drinking water reservoirs repre-
sents a suitable alternative due to their sensitivity and low detection limits. Additionally,
field data can be compared with bioaccumulation under natural conditions, which is
impossible using conventional methods.

Many reservoir may be affected by antropogenic activities in worldwide [11]. Similarly,
La Fe, an important reservoir that supplies drinking water to more than two million people
in Medellin, the second largest and most industrialized city in Colombia, is being affected
by anthropogenic activities. In a previous contribution, it was shown that pesticides applied
during agricultural activities and PAHs from mobile combustion emissions are present in
tributaries of the La Fe reservoir [12]. The PAHs represent a risk for human health, wildlife
and the environment [13–15].

This study focused on the field calibration of SPMDs to estimate the levels of pesticides
and PAHs to assess their possible impacts on a Colombian water reservoir’s quality. In
addition, we aim to estimate the range of time at which the dissipation was not complete
during the SPMDs’ deployment in the drinking water reservoir.

2. Materials and Methods
2.1. Chemicals and Reagents

Organophosphate (OP) Pesticide Mix (Purity > 99.5%), Priority pollutant PAHs in
acetonitrile (Sigma-Aldrich, St. Louis, MO, USA) and deuterated PCB 14, PCB 29 and
PCB 50 were purchased from Chemservice, West Chester, PA, USA, and used as PRCs.
Solvents such as hexane and acetone were supplied by Burdick and Jackson, Morristown,
NJ, USA. SPMDs, large canisters and spider holders were all provided by Environmental
sampling technologies Laboratory (Est-Lab), St Joseph, MI, USA. The SPMDs used as
passive samplers were previously spiked with PCB 14, 29 and 50 at concentrations of
200 ng L−1 by the provider.

2.2. Gas Chromatography /Mass Spectrometric Analysis

A electron-impact and single-quadrupole GC–MS from Thermo Scientific Ultra TRACE
GC-ISQ (Waltham, MA, USA) was used for pollutant detection and quantification. Organophos-
phorus (OP) pesticides (parathion, chlorpyrifos and diazinon), PAHs (Naphthalene, Ace-
naphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene)
and PCBs (14, 29 and 50) were separated on an Rtx 5sil-MS (30 m × 0.25 mm I.D, 0.25 m
film thickness) capillary column from Restek (Bellefonte, PA, USA) using helium gas as
a carrier at a flow rate of 1 mL min−1. The column was kept for 1 min at 50 ◦C; then, the
temperature was increased to 320 ◦C at a rate of 25 ◦C min−1 and held for 1 min. The
injector and interface temperature were maintained at 270 ◦C, and the source tempera-
ture was held at 250 ◦C. The injection volume was 1 µL. The instrument was operated in
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SCAN mode. Selection Ion Monitoring (SIM) scanning mode was implemented for target
compounds. The linearity of the method was evaluated by five-point calibration curves
for organophosphate pesticides and PAHs. The Cw of target POPs was determined using
PRC dissipation modelling through a five-point PCB calibration curve. This procedure was
carried out in triplicate at low and high levels.

2.3. Study Area and Sampling

The study area is located east of the city of Medellín, Colombia (reservoir). See
Figure 1.
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Figure 1. Location of reservoir for drinking water supply (Medellín, Colombia).

The sampling place was located at a bridge crossing of an important tributary for the
reservoir. A passive sampler protector tube (PSPT) was fastened to the bridge column to
avoid damage to the passive samplers (see Figure 2). The sampling was carried out in a
low-rainfall dry season.

In the PSPT (Figure 2a), three large canisters containing the SPMDs were deployed
(Figure 2b,c). Each canister was collected and analyzed at 5, 10, 15 and 24 days. All samples
were stored in the freezer at −20 ◦C until the extraction and cleanup.

2.4. Extraction and Cleanup of Passive Samplers

A Standard Operating Procedure (SOP) was carried out for handling the SPMDs;
blanks were used to estimate the initial concentration of PRCs and contamination during
the handling procedure.
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Figure 2. (a) The PSPT fastened to the bridge column with a protection grill, including a padlock.
(b) Large deployment canisters. (c) SPMDs attached to a spider holder.

SPMDs were extracted following the procedure reported elsewhere [16]. First, the
passive samplers were washed with a soft toothbrush and water to remove fouling and
dried with a paper tissue. Then, the samplers were dialyzed in hexane for 24 h twice.
After this, the hexane fraction was concentrated in a rotary evaporator. The residue was
dissolved in 1 mL of acetone before being centrifuged for 5 min at 2500 RPM, and then the
sample was injected in GC/MS. The recovery study was based on the extraction of PRCs
previously spiked in the SPMDs by the suppliers, which certified the initial concentration.
Therefore, four blanks were extracted to estimate the PRC levels of using dialysis extraction.
The % of recovery was calculated according to Equation (1):

Recovery =
initialconcentration(bysuppliers)
SPMDsconcentration(byAnalysis)

× 100 (1)

2.5. PRC Dissipation Modelling for Calibration and Water Concentration

The PRCs’ dissipation was based on the final (N) and initial concentration (No) of
deuterated PCBs 14, 28 and 50. The N/No ratio was applied to estimate the release rate
constant (ke), which includes the initial and final concentration of these substances [9] (see
Equation (2)):

ke = −
ln
(

N
No

)
t

(2)

where t is the field sampling time. ke was then applied to find the sampling rates (Rs)
according to Equation (3):

Rs = Vskswke (3)

where ksw is the SPMDs–water partition coefficient and Vs is the triolein volume in the
SPMDs. ksw was determined using the Huckins equation [1]:

log ksw = a0 + 2.321 log kow − 0.1618 (log kow)
2. (4)

where a0 = −2.61 in PCBs, PAHs and 4,4’-DDE and −3.20 in polar pesticides.
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Finally, the Cw was estimated using Equation (5):

Cw =
N

VsKSW

(
1 − exp

(
− Rst

VsKSW

)) (5)

where Rs is the sampling rate calculated according to Equation (3); this value depends on
the dissipation of PRCs [6].

3. Results and Discussion
3.1. GC–MS Identification

Retention times (Rt) for each analyte, the PCBs used as a PRCs and the ions selected
as qualifiers (Q1) and quantitative purposes (Q2) are summarized in Table 1. The ions for
the SIM method were selected according to fragment ions with higher molecular weight
(HMW), higher abundance and high selectivity.

Table 1. GC–MS SIM mode for identification and quantitation of analytes. N.D., Not detected using
SPMDs in SIM mode analysis.

Peak No. Analytes Rt (min)
Monitor Ions, m/z (Intensity %)

Target Ion Q1 Q2

1 Naphthalene (NAPH), 5.81 128 127 129
2 Acenaphthylene (ACEN) 7.37 152 151 153
3 Acenaphthene (ACE) 7.54 154 152 153
4 Fluorene (FL) 7.97 166 165 167
5 PCB-14 8.58 224 152 222
6 Diazinon (DZN) 8.79 137 179 N.D.
7 Phenanthrene (PHE) 8.92 178 176 179
8 Anthracene (ANT) 8.97 178 89 179
9 PCB-29 9.10 256 186 258

10 PCB-50 9.19 292 220 290
11 Chlorpyrifos (CPF) 9.58 314 197 256
12 Parathion (PTN) 9.63 N.D. N.D. N.D.
13 Fluoranthene (FLU) 10.20 202 101 203
14 Pyrene (PYR) 10.44 202 101 203

3.2. Quantitative Analysis for Analytes

Quantitative analysis was carried out using PRC dissipation modelling. However, in
order to apply the modelling, the masses of different pesticides and PAHs were determined
by a calibration curve in hexane following the spiking procedure mentioned above. Correla-
tions (r2) were found to be higher than 0.950 for all compounds at the concentrations tested,
implying good linearity in the MS detector’s response. The parameters for quantitative
procedures to determine the masses of different analytes and PRCs are shown in Table 2.

The calibration curve showed r2 values higher than 0.980, indicating good linearity for
quantification purposes. Additionally, the recoveries after SOPs were between 96% and
103%. The SOP applied here has been previously shown to be adequate for sampling a
large range of non-polar compounds using SPMDs [16–18].

3.3. The Study of Blanks and SPMD Recoveries

All blanks, including field and laboratory blanks, were extracted according to the
SOPs. No blank was found to be contaminated with any target compound studied in this
paper. Therefore, all detected compounds during the passive sampling were considered
waterborne.

The comparison between the deployment of SPMDs in the reservoir, field blank and
laboratory blank is presented in Figure 3.



Water 2023, 15, 1428 6 of 12

Table 2. Rs estimated at 24 days of sampling deployment. Molecular weight (MW), Linear regression
(LR), correlation (r2). N.D., Not detected using SPMDs in SIM mode analysis.

Peak No. Analyte Names MW log kow Rs (L day−1) LR (µg mL−1) r2

1 NAPH 128.2 3.5 27.8 0.05–1.00 0.982
2 ACEN 152.2 4.1 50.3 0.12–1.00 0.980
3 ACE 154.2 4.2 55.1 0.06–1.20 0.992
4 FL 166.2 4.4 60.1 0.01–1.00 0.989
5 PCB-14 223.1 5.3 72.6 0.002–0.1 0.999
6 DZN (N.D.) 304.3 3.3 35.8 0.01–0.50 0.987
7 PHE 178.2 4.5 62.3 0.09–1.30 0.980
8 ANT 178.2 4.5 64.4 0.02–1.00 0.980
9 PCB-29 257.5 5.6 69.8 0.002–0.1 0.998

10 PCB-50 291.9 5.6 69.3 0.002–0.1 0.992
11 CPF 350.6 4.9 71.0 0.01–0.50 0.987
12 PTN (N.D.) 330.4 3.8 40.1 0.01–0.50 0.987
13 FLU 202.3 5.2 72.7 0.05–0.75 0.980
14 PYR 202.1 5.3 72.5 0.07–1.00 0.987
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Figure 3. (a) SCAM chromatogram for a typical PCB congener used as a PRC in acetone. (b) SCAN
chromatogram of the typical SPMD blank at ten days. (c) SCAN chromatogram of the SPMD
deployment during ten days, including PRCs and some target analytes.

Finally, the initial average concentration found in the SPMD blanks for PCB-14, PCB-29
and PCB-50 congeners were applied in the dissipation modelling to estimate the analytes’
concentration in the water. The relative standard deviations (% RSD) were 2.1, 1.7 and
4.0 for PCB-14, PCB-29 and PCB-50, respectively, implying a good precision of the sample
extraction method, evidenced by the low RSD values.
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3.4. Dissipation of PRCs from SPMDs—Calibration Study

Dissipation plots for PCB congeners are shown in Figure 3. The release “half-life”
(t50 day−1) for each PCB was calculated by applying one phase decay regression (r2 > 0.97)
plot as 4.3, 4.7 and 7.0 for PCB-14, PCB-29 and PCB-50, respectively. According to Huckins,
this type of exchange kinetics is constant for a set of conditions and chemicals [5]. A
characteristic curvilinear kinetics approaching the equilibrium after 10 days was found for
the PRC dissipation modelling (see Figure 4).
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Figure 4. Dissipation of PCB congeners from SPMDs used as a passive sampler: PCB-14 (open circles),
PCB-29 (open squares) and PCB-50 (filled triangles).

Biofouling was observed in the SPMD sampling. However, this did not affect the
kinetic dissipation model for PRCs (see Figure 4). Typically, short-term biofouling does not
have an important effect on Rs. However, extended periods of biofouling may affect Rs,
altering the reservoir’s calculated Cw [19]. Extreme biofouling effects should be considered
when extended sampling periods are applied.

On the other hand, the reservoirs show lower water flow velocity, which does not
affect the Rs (flow velocities below 10 cm s−1). Additionally, it has been found that both
values lack correlation [6]. At low flow velocity values, inertial currents originating from
the inflow orifices may be much larger than the calculated linear velocities. Then, the flow
at the SPMD–water interface controls the exchange rates in the boundary layer [5]. Field
calibration using PRCs allows for the reduction of all kinetic phases into one equation
based on the dissipation modelling for these substances (Equation (5)). More lipophilic
substances were found to have higher Rs values due to their dependence of log kow (see
Equations (3) and (4)). Similarly, higher-molecular-weight compounds showed higher Rs,
which may be related to mass-resistant processes [20].

To avoid overestimations of target POP levels in water due to different exchange
kinetics (linear, curvilinear and equilibrium), Equation (5) was applied to calculate the Cw
of PAHs and pesticides. Target POPs’ Rs values were estimated using Equations (2) and (3).
The results are presented in Table 2. Rs values were found to be higher than those reported
in the literature, possibly due to the higher flow rates (8 cm s−1) used here compared to
previous studies (0.004–0.006 cm s−1) [21]. Higher flow rates may increase the dissipation
of PRCs from SPMDs; thus, release rate constants (ke) impact the calculated Rs. For instance,
reported Rs values for some PAHs such as ACE, PHE, FLU and PYR are 68.0, 104.9, 125.2
and 130.1 L day−1, respectively, at 90 cm s−1, which are closer to the values presented in
Table 2 [22].
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3.5. SPMDs Used for Pesticides and PAH Monitoring

PAHs with low molecular weight were detected in SPMDs during the passive sampling
deployment. Initial Cw values are presented in Table 3.

Table 3. The Cw estimated for each PAH congener after 5 days of SPMDs’ exposure in the water body
of the reservoir.

PAH Congener Cw (5 Days Sampling) ng L−1

NAPH 0.7
ACEN 1.2
ACE 0.7
FL 0.8

PHE 2.3
ANT 0.5
FLU 1.8
PYR 1.3

In general, Cw was found to increase linearly with sampling time, except for ACEN
and FL; this might be related to their lower molecular weight. The linear regression is
presented in Figure 5.
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Figure 5. Uptake plot for PAHs. Concentration values estimated for target pollutant compounds in a
principal tributary of La Fe reservoir. NAPH (×), ACEN (�), ACE (∆), FL (H), PHE (�), ANT (#),
FLU (�) and PYR (N). The concentration factor was calculated as the ratio between the minimum
concentration value found for each target compound and all estimated concentrations. Cw was
calculated by multiplying the initial concentration by the concentration factor.

Detected PAHs in the reservoir arise from high traffic flow and the combustion of
carbon-containing fuels. In addition, the water body is navigated frequently, increasing the
probability of contamination from combustion byproducts. The increasing level of PAHs
may be related to the continuous input of these substances from the watershed and the
linear–curvilinear uptake phase estimated using PCB dissipation modelling.

PYR, FLU, NAPH and PHE represented higher percentages of the total PAHs (more
than 80%), which is in good agreement with previous reports [12]. High-molecular-weight
(HMW) PAHs, such as benzo[b] fluoranthene (BbF), benzo[k] fluoranthene (BkF) and
benzo[a] pyrene (BaP), were also detected in SPMDs, which may be related to the low
solubility of these congeners in water. These compounds have been previously detected at
low levels using SPMD devices. A previous study in the Great Barrier Reef with an extended
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SPMD deployment time (50 days) allowed the detection of HMW PAHs > 202 g mol−1 at
pg L−1 [23]. Note that the extension of time could increase the sensitivity for HMW PAHs.

In a previous contribution, PAHs’ Cw were found to range between 4.2 and 32.8 ng L−1

in an important tributary for the La FE reservoir, using silicon rubber as a passive sam-
pler [12]. Similarly, PHE presented the highest Cw detected (504–3358 pg L−1). PAHs are
mainly produced by fossil fuel combustion, and their levels in water may be initially related
to atmospheric deposition. PAHs may reach urban stormwater through road runoff, which
in turn reaches the water reservoirs [24,25].

It is important to implement advanced technologies, such as advanced oxidation
processes, in water treatment plants in order to remove PAHs, since conventional treatment
processes cannot remove POPs entirely [26]. We have reported the presence of PAHs
and pollutants such as Levonorgestrel in effluents of wastewater treatment plants using
conventional removal processes [12,27]. This reveals that complex fractions containing
parent compounds and metabolites may reach natural water, posing several risks to ecosys-
tems, including biota and humans [28]. Among the detected PAHs, PYR poses the most
significant ecological risk, followed by ANT, FLU, PHE and NAPH [29]. For instance, ANT,
FLU and PYR can induce changes in gestational hormone levels in a placental cell line [30].
These PAHs were found to represent the highest percentage of the total PAHs detected in
this study.

For pesticides, an initial SCAN mode was performed in order to identify them in
the SPMDs’ deployment during the sampling time. Additionally, calibration curves were
included for all target compounds.

CPF was the only pesticide absorbed by SPMDs. This can be related to the fact that CPF
has a log kow > 4.6, enhancing its adsorption in this membrane, while the other pesticides
have lower log kow values, increasing their affinity with water. To overcome this, other
researchers have applied a balanced hydrophilic–lipophilic sorbent-embedded cellulose
acetate membrane (HECAM) to increase the range of organophosphorus monitored by
passive sampling [31]. In an earlier report, the Cw of legacy pesticides such as dieldrin
were found to be between 401 and 1919 pg L−1 in an important tributary using an LDPE
polymer membrane deployed for more than 50 days [12]. CPF is widely applied around
the reservoir’s watershed due to intensive crop farming such as tree tomato (Solanum
betaceum), avocado (Persea Americana) and livestock grazing. In Colombia, CPF comprises
about 10% of the total sales of pesticides, which can be associated with its occurrence and
detection in water [32]. This substance is not strongly adsorbed by the soil, thus favouring
the leaching process [33].

The CPF uptake process was found to fit an exponential curve (r2 = 0.992) in contrast to
the PCBs’ dissipation process. While dissipation may show the existence of the elimination
process, CPF monitoring exhibits the uptake process (see Figure 6).
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The CPF may be adsorbed into SPMDs to reach the equilibrium, and Figure 6 shows
a faster uptake in the passive sampler. However, this pesticide may be transformed
under natural conditions to 3,5,6-trichloro-2-pyridinol (TCP). A previous report found
that CPF is hydrolyzed to TCP at pH values higher than 9.0, showing a half-life close
to 12.45 h, indicating the faster transformation and release of TCP in water [34]. TCP’s
solubility in water increases, and thus its distribution may be higher. However, this
substance is not monitored by SPMDs. Although the environmental effects of CPF and
TCP are not entirely understood, CPF has been reported as a breast cancer risk factor at
low levels [35]. Additionally, the mixture of CPF/TCP induces acute toxicity in Dapnia
pulex [34]. Therefore, no conventional water treatment processes such as AOPs are suitable
for CPF/TCP removal or elimination.

Although DZN, PTN and organochlorine (OC) pesticides were considered in the
monitoring, they were not detected. OC pesticides were banned 30 years ago in Colombia;
however, these pesticides are persistent and can remain in the environment for a long time.
In this research, no OC pesticides were detected. However, their metabolites should be
considered in future studies. Although some analytes were not detected, the Rs for some
of them were estimated by applying the PRC dissipation modelling using the Estimated
Water Concentration Calculator from SPMD data using PRCs from USGS (Excel file Version
5.1) [36]. Colombia does not have traditional seasons (i.e., winter/summer); we have dry
or rainy seasons. Passive sampling was carried out during the dry season. Although the
stational variation was not evaluated in this study, no differences in POPs levels during
different seasons (dry or rainy season) have been found previously [12]. However, climatic
events such as La Niña or El Niño might affect pollutant concentrations, and the differences
in dry or rainy seasons are especially quite pronounced.

Similarly, OCs have been widely detected in USA, China and other countries in
water bodies using SPMDs [37,38]. The sensitivity of this method can be improved by
deploying several SPMDs. In this paper, only three SPMDs were deployed in the field. Some
disadvantages of pollutant monitoring using SPMDs have been reported in the literature.
For instance, SPMD preparation involves the addition of triolein inside the polyethylene
tube, which increases difficulties in lab handling. In addition, after deployment, the
extract purification should include the removal of triolein because traces can increase the
background noise, affecting the baseline during chromatographic analysis [39].

4. Conclusions

PRC dissipation was carried out under one-phase decay regression. The dissipation
modelling showed that all PRCs were not dissipated completely. The appropriate sampling
time was estimated to be between 15 and 30 days. Although biofouling may be present in
SPMD membranes, the field calibration showed that biofouling is quantitatively reflected
by the dissipation. A directly proportional relation between Rs molecular weight and log
kow was found, which can be explained by mass-resistance processes and lipophilic affinity.

Pollutant monitoring after calibration allowed the detection of PAHs at levels higher
than 0.5 ng L−1, while the CPF was detected at levels close to 20 ng L−1, showing the
anthropic influence on the reservoir via the watershed. These results highlight the impact
of the widespread use of pesticides and combustion of fossil fuels by cars on water quality.
The use of SPMDs allowed us to infer that bioaccumulation processes might occur in this
reservoir because of the similarity of triolein with the organism’s lipidic tissue. Therefore,
future studies should include the analysis of autochthonous biota in the reservoir.

Finally, it is recommended to use SPMDs for non-polar pollutants in a reservoir.
However, cleaning steps should be performed to remove triolein to avoid background
noise during chromatographic analysis.
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