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Abstract: Streamflow modelling is one of the most important elements for the management of
water resources and flood control in the context of future climate change. With the advancement of
numerical weather prediction and modern detection technologies, more and more high-resolution
hydro-meteorological data can be obtained, while traditional physical hydrological models cannot
make full use of them. In this study, a hybrid deep learning approach is proposed for the simulation
of daily streamflow in two mountainous catchments of the Daqing River Basin, northern China.
Two-dimensional high-resolution (1 km) output data from a WRF model were used as the model input,
a convolutional neural network (CNN) model was used to extract the physical and meteorological
characteristics of the catchment at a certain time, and the long short-term memory (LSTM) model was
applied to simulate the streamflow using the time-series data extracted by the CNN model. To reduce
model input noise and avoid overfitting, the Gamma test method was adopted and the correlations
between the input variables were checked to select the optimal combination of input variables. The
performance of the CNN-LSTM models was acceptable without using the Gamma test (i.e., with all
WRF input variables included), with NSE and RMSE values of 0.9298 and 9.0047 m3/s, respectively,
in the Fuping catchment, and 0.8330 and 1.1806 m3/s, respectively, in the Zijingguan catchment.
However, it was found that the performance of the model could be significantly improved by the use
of the Gamma test. Using the best combination of input variables selected by the Gamma test, the
NSE of the Fuping catchment increased to 0.9618 and the RMSE decreased to 6.6366 m3/s, and the
NSE of the Zijingguan catchment increased to 0.9515 and the RMSE decreased to 0.6366 m3/s. These
results demonstrate the feasibility of the CNN-LSTM approach for flood streamflow simulation using
WRF-downscaled high-resolution data. By using this approach to assess the potential impacts of
climate change on streamflow with the abundant high-resolution meteorological data generated by
different climate scenarios, water managers can develop more effective strategies for managing water
resources and reducing the risks associated with droughts and floods.

Keywords: WRF model; CNN-LSTM; Gamma test; streamflow simulation; hydrometeorological modeling

1. Introduction

Streamflow simulation and prediction in ungauged basins has always been a key area
of hydrological research [1], and streamflow modelling is crucial for the management of
water resources and flood control [2]. Streamflow modelling generally uses meteorological
variables as forcing data to simulate the response of the watershed. The rainfall–runoff
transformation process is highly nonlinear and is determined not only by external meteoro-
logical factors but also by the physical state of the catchment [3].

The Weather Research and Forecasting (WRF) model, an advanced mesoscale nu-
merical weather prediction system, was collaboratively developed by several institutes
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including the National Center for Atmospheric Research (NCAR) and the National Cen-
ters for Environmental Prediction (NCEP) [4]. The WRF model can improve the spatial
and temporal resolution of global prediction products and achieve refined and quanti-
tative predictions of rainfall and other meteorological variables. A combination of the
WRF-downscaled predictions and hydrological models can therefore provide an important
method for streamflow modelling in ungauged or data-limited catchments. Bass et al. [5]
used a regional climate model’s reanalysis-derived meteorological data as forcing data,
simulated the realistic streamflow using WRF and a land surface model, and used a
mathematical approach called the donor-basin method to regionalize parameters in un-
gauged basins. Tyson et al. [6] successfully simulated the streamflow response to snowmelt
using a WRF–UEB hybrid model in the canyon portion of the Logan River watershed.
Naabil et al. [7] used the WRF/WRF-Hydro coupling model to simulate the streamflow
of the Tono Basin in Ghana from 1999 to 2013 and achieved a satisfactory performance,
with a Nash–Sutcliff efficiency (NSE) coefficient of 0.78 and a Pearson’s correlation of 0.89.
Wang et al. [8] coupled the WRF model with the Xinanjiang (XAJ) model to simulate the
daily streamflow of the Shiquan catchment in the upper Han River basin, and comparison
of the results of the uncoupled XAJ, random forest (RF), and XAJ–RF models showed that
the best performance statistics were obtained from the XAJ–WRF model (NSE = 0.951,
R = 0.978). Gu et al. [9] proposed an atmospheric–hydrological modeling system based on
the WRF model and the Storm Water Management Model (SWMM) to simulate urban storm
and flood events. For two heavy rainfall events in the study area, the model performed
well, with the NSE values reaching 0.884 and 0.796, respectively.

Data-driven models represent an alternative to hydrological models and have been
proven to be capable of using data to directly learn the relationship between streamflow
and meteorological variables [10]. In recent years, with the development of computing
power and improvements in data diversity, a new data-driven model, the deep learning
long short-term memory (LSTM) model, has been developed and widely used. As a deep
learning model, LSTM networks are designed to work with sequential data, which is a
characteristic of hydrological time-series data. LSTM networks can effectively capture
the temporal dependencies and patterns in the data, which can be useful for predicting
future values [11–13]. Several studies have shown that LSTM models generally outperform
traditional hydrological models. Xiang et al. [14] proposed an LSTM-based hourly flow
prediction model for Clear Creek and the Upper Wapsipinicon River, and the results
showed that the LSTM-based model outperformed linear regression, lasso regression, ridge
regression, support vector regression (SVR), and Gaussian process regression (GPR) for
all the stations in these two catchments. Thapa et al. [15] developed models based on the
LSTM, nonlinear autoregressive exogenous (NARX), GPR, and SVR models for snowmelt-
driven discharge modeling in a Himalayan basin, and the LSTM model achieved the best
results followed by NARX, GPR, and SVR.

In spite of its many advantages, the LSTM model requires one-dimensional input data
and cannot process high-resolution two-dimensional (gridded) meteorological data across
the catchment. The convolutional neural network (CNN), another deep learning model,
has a strong ability to capture the characteristics of spatial data [16,17] and has therefore
been widely used in the image classification, edge detection, and face recognition fields in
recent years [18–20]. Van et al. [21] used the CNN model to build a rainfall runoff model
and compared it with traditional models such as artificial neural networks (ANN), genetic
algorithm-simulated annealing (GA-SA), seasonal autoregressive integrated moving aver-
age (SARIMA), and autoregressive integrated moving average (ARIMA) in the simulation
of streamflow at the Chau Doc and Can Tho stations in the Vietnamese Mekong Delta.
The results showed that the CNN model outperformed the other models. Wang et al. [22]
used CNN and SVM to assess the flood susceptibility of Shangyou County in China, and
the results demonstrated that the CNN model produced more reliable and practical flood
susceptibility maps. In addition, by constructing a CNN model based on SVM, it was
possible to improve the prediction capability of SVM by 0.021–0.051 in terms of the area
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under the curve (AUC). Using a CNN, the two-dimensional hydrometeorological input
data of a catchment can be converted into one-dimensional feature vectors, thus resolving
the dimensionality problem related to the LSTM model input data. Barzegar et al. [23]
compared the performance of the water level prediction by using CNN-LSTM, SVR, and RF
models for Lake Michigan and Lake Ontario. It was found that the CNN-LSTM model out-
performed the SVR and RF models at any given time. Li et al. [24] proposed a CNN-LSTM
model based on rainfall radar maps to compute the runoff in Elbe River basin in Sachsen,
and this CNN-LSTM model achieved good results in streamflow prediction for high-
water periods (KGE = 0.75, NSE = 0.78) and low-water periods (KGE = 0.76, NSE = 0.81).
Tran et al. [25] used PredCNN, a CNN-LSTM based emulator, to simulate the streamflow,
water table depth, and total water storage of Taylor River basin and Little Washita basin,
and the results were found to be consistent with the hydrological model ParFlow.

Overfitting is a common problem in deep learning models, leading to performances
that are outstanding in training samples but unsatisfactory in test datasets. In the case
of sufficient data, i.e., a sufficient number of data points, the main reason for overfitting
is the noise of the input data. The Gamma test is regarded as an effective way to reduce
noise through estimation of the best mean square error of the smoothing model for a given
input [26], and can therefore help to identify the input data combination with the least
noise. Malik et al. [27], Hassan and Hassan [28], and Panahi et al. [29] successfully used
the Gamma test to select the best input combination before comparing the flow simulation
performance of different hydrological models. Zhuo and Han [30] established a new soil
moisture product directly applicable to hydrological modeling from multiple data sources,
used the Gamma test to pre-evaluate selected data inputs, and found the best combination
for data fusion; the new product had a significantly higher NSE of nearly 50% compared
to the two most popular Soil Moisture products. Tian et al. [31] verified that the Gamma
test can not only solve the problem of selecting the best input combination for data-driven
models, but can also help identify the relative importance of input variables.

In this study, a CNN-LSTM hybrid model using WRF downscaling data was proposed
for streamflow simulation, in which the CNN model was used to extract the physical and
meteorological characteristics of the catchment at a certain time, and the LSTM model
was applied to simulate the streamflow using the time-series data extracted by the CNN
model. Prior to model construction, the Gamma test was used to identify appropriate
combinations of variables from the high-resolution WRF meteorological outputs. Finally,
the various combinations determined with the help of the Gamma test as well as an
unscreened combination were each used as inputs for streamflow simulation, and the
Nash–Sutcliffe efficiency coefficient (NSE) and root mean square error (RMSE) were used
as criteria to analyze the performance of the model. The study was conducted on two
mountainous catchments in the upstream area of the Daqing River Basin, North China.
Using this approach under different climate scenarios can help water resource managers
and flood control authorities to better prepare for future climate change impacts.

2. Study Area

Two mountainous catchments in the Daqing River Basin were selected as the study
area, namely, the Fuping catchment in the south branch and the Zijingguan catchment
in the north branch (Figure 1). The Daqing River Basin is located in North China, which
has a typical semi-arid, semi-humid, warm continental monsoon climate. The Fuping
and Zijingguan catchments cover areas of 2210 and 1760 km2, respectively. The elevation
decreases from northwest to southeast with great variation, which produces a short flood
confluence time. Coupled with high-intensity and short-duration precipitation, this has the
potential to cause severe flood disasters. Most rainstorm events occur in the flood season
(from June to September). There are 8 and 11 gauges located in the Fuping and Zijingguan
catchments, respectively, and the streamflow is measured at the catchment outlets (Figure 1).
These two catchments can represent the underlying surface characteristics of the small
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catchments in the mountainous area of Daqing River Basin, which is prone to flood disasters,
and they are typical representatives of flood-prone mountainous areas in northern China.
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Figure 1. Locations of the study area and the catchments covered by the WRF innermost domain.

3. Methodology
3.1. Weather Research and Forecasting Model (WRF)

WRF version 3.9.1 was used for all the experiments in this study. The WRF model
has different physical parameterization options. Each parameterization option focuses on
different physical processes. Performance of the same option varies by region and with
different storm events [32,33]. In this study, we selected the Purdue–Lin as the cumulus
convection scheme [34], the Rapid Radiative Transfer Model as the longwave radiation
scheme [35], the Dudhia as the shortwave radiation scheme [36], the Noah as the land
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surface scheme [37], the Yonsei University as the microphysical processes scheme [38],
and the Kain–Fritsch as the boundary layer scheme [39]. Tian et al. [40] provided a more
detailed description of the physical parameterization selection for the study area.

In order to carry out a smoothing downscaling to reduce the resolution gap between
the adjacent domains as much as possible (including that between the forcing data and
the outermost domain), a four nested domain was set-up over the Fuping and Zijingguan
catchments, respectively. The innermost domain of the WRF (Figure 1) fully covered each
catchment at 1 km horizontal resolution using a one-way nested mode, and the downscaling
ratio was set at 1:3 [41]. Forty vertical levels were considered for the four nested domains
in the vertical structure, up to a pressure of 50 hPa at the top level. The 1◦ × 1◦ grids
of Final Operational Global Analysis (FNL) 6-hourly global analysis data were obtained
from the National Centers for Environmental Prediction (NCEP) as the forcing data, which
provided the initial and transverse boundary conditions for the simulations. Table 1 lists the
experimental details of the WRF-related configurations. The output data in the innermost
domain downscaled by the WRF model were then used to drive the deep learning model.

Table 1. Configurations of the WRF model.

Subject Chosen Option Subject Chosen Option

Forcing data 6-hourly FNL Fuping domain center 39.0856 N, 113.9899 E
Time step 150 s Zijingguan domain center 39.4430 N, 114.8274 E

Horizontal resolution

Dom1: 27 km

Domain area

Dom1: 613,089 km2

Dom2: 9 km Dom2: 88,209 km2

Dom3: 3 km Dom3: 18,225 km2

Dom4: 1 km Dom4: 6561 km2

Projection Lambert WRF output interval 1 day

3.2. Gamma Test

The Gamma test is a model-independent data analysis method. It solves the problem
of model overfitting based on the noise in the data. Given the input and output data, the
Gamma test allows us to efficiently compute the best estimate of the mean square error of
the output that the smoothing model can obtain directly from the data. This estimate is
called the Gamma statistic and is denoted by Γ. For different input variable combinations,
it is considered that the combination of variables which contains Gamma statistics closest
to 0 is the optimal model. The Gamma test was first proposed by Stefánsson et al. [42] and
then explained in greater detail by Evans and Jones [43]. In the case of a dataset of the form

{(xi, yi), 1 ≤ i ≤ M} (1)

in which xi ∈ RM is defined as the input vectors, confined to a closed bounded set C ⊆ RM,
the scalars yi ∈ R is the corresponding output, and R refers to a real number, it is assumed
that the relationship between input and output can be expressed as

y = f (x) + γ (2)

where f is a suitably smooth function and γ represents an indeterminable part, which
can be regarded as noise. Generally, the mean of γ can be assumed to be zero because
any constant bias can be added into the function f . The Gamma test is used to calculate a
statistic Γ, which can be used to evaluate the variance of the output Var(γ).

For each vector xi (1 ≤ i ≤ M), the Euclidean distance statistic of the input data can be
calculated as follows:

δM(k) =
1
M

M

∑
i=1

∣∣∣xN[i,k] − xi

∣∣∣2 (1 ≤ i ≤ M, 1 ≤ k ≤ p) (3)
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where the modulus notation | · · · | represents the Euclidean distance, and xN[i,k] are the kth
nearest neighbors of input vector xi. Typically, p = 10 [44].

We then calculate the Euclidean distance statistic of the corresponding output data:

γM(k) =
1

2M

M

∑
i=1

∣∣∣yN[i,k] − yi

∣∣∣2 (1 ≤ i ≤ M, 1 ≤ k ≤ p) (4)

where y is the corresponding output of the kth nearest neighbor of xi in Equation (3).
In order to calculate Γ, we use the statistics of nearest neighbor distance from 1 to

p (δM(1), γM(1)), (δM(2), γM(2)), · · · (δM(p), γM(p)). A univariate linear regression
model is constructed for these p statistics and fitted using the least square method, and the
intercept of the linear function obtained is the Gamma test statistic Γ.

Another statistic, Vratio, which can be used to evaluate the ability of smooth models to
simulate the data, is calculated as follows:

Vratio =
Γ

δ2(y)
(5)

where δ2(y) is the variance of output y. The forecasting ability is higher when the value of
Vratio is close to zero, whereas a Vratio value close to one indicates that the output is similar
to the random walk.

In addition, when the standard error (SE) value is close to 0, the estimate of the noise
variance of the output will be more reliable, and the complexity of the smoothing function
can be measured by the gradient value.

In this study, Γ was used as the main criterion to determine the importance of the
model input, and the other three factors generated by the Gamma test (i.e., gradient,
standard error of Γ, and Vratio) were used as references. In general, the smallest |Γ| indicates
the best combination of the model inputs.

Because the high-resolution WRF output data corresponding to the streamflow at the
catchment outlet at a certain time are two-dimensional, the optimal variable combinations
cannot be directly selected using the Gamma test. In this study, the method to identify the
optimal variable combinations of model input was divided into two steps:

1. Selecting variables which have significant spatial variabilities or have significant
impacts on the runoff generation in the spatial dimension, i.e., taking the time series
mean value of the runoff generation (i.e., variable 15 + 16) in each grid as the output,
and the time series average values of other meteorological variables in each grid as
the inputs, and then applying the Gamma test to select the most important variables
in the spatial dimension;

2. Selecting variables which have significant temporal variabilities or have significant
impacts on the runoff generation in the temporal dimension, i.e., taking the average
areal values of each variable in each day as the inputs, and the daily streamflow at
the outlet of the catchment as the output, and then applying Gamma test to select the
most important variables in the temporal dimension.

In order to find the best combinations of variables in these two steps, search methods
involving backward and forward selections were coupled with the Gamma test [45]. Back-
ward selection involves the removal of variables from the combination one at a time, and
the Gamma value indicates which combination has the best performance (with the mini-
mum |Γ| value) until there is only one variable left. With forward selection, variables are
increased one at a time, starting with one variable, and the Gamma value indicates which
combination performs best (the minimum |Γ| value) after each increase until all variables
are included. Taking the results of the Gamma tests in these two steps and the analysis
of the correlation between variables, the most appropriate input variable combinations
for the data-driven model were finally determined. In this study, WRF output data from
the Fuping catchment were used for the selection of variables for the Gamma test, and
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streamflow simulations using the CNN-LSTM model were carried out in both the Fuping
and Zijingguan catchments to verify the feasibility of this methodology.

3.3. The CNN-LSTM Hybrid Model

The CNN model proposed by LeCun et al. [46] is mainly used in the field of object
recognition [47], and it has a structure consisting of several convolutional, pooling, and
fully connected layers. In a convolutional layer, different convolutional filters are used
to generate different feature maps using the input data. In a pooling layer, the number
of feature map dimensions are reduced to accelerate the speed of computation. In a fully
connected layer, the feature maps are converted into a one-dimensional vector.

The LSTM network is an advanced type of recurrent neural network (RNN) which
was first introduced by Hochreiter and Schmidhuber [48]. It was designed to overcome
vanishing and exploding gradients and holding memory to capture long-term temporal
dependency in input sequences [49]. Each cell in the LSTM structure has a memory unit
and three gates: the input gate (It), the forget gate (Ft), and the output gate (Ot). The linear
equations in the different steps have different weights (W) and biases (b) in each cell. The
following equations were used in LSTM model [50]:

Input gate (It):
It = σ(Wi·[Ht−1, Xt] + bi) (6)

Forget gate (Ft):
Ft = σ

(
W f ·[Ht−1, Xt] + b f

)
(7)

Output gate (Ot):
Ot = σ(Wo·[Ht−1, Xt] + bo) (8)

Cell Ct:
Ct = Ft × Ct−1 + It × C̃t (9)

C̃t = tanh(Wc·[Ht−1, Xt] + bc) (10)

Output result Ht:
Ht = Ot × tanh(Ct) (11)

where σ is the sigmoid function; Ht−1 is the output of last LSTM unit; Xt is the current
input; Wi, W f , Wo, and Wc are weight matrices; bi, b f , bo, and bc are bias vectors; and Ct−1
is the cell state at time t − 1.

In this study, the hybrid model was designed by integrating the CNN and LSTM
layers. The CNN layers extract the features from each image, and then the LSTM network
captures the long short-term dependency and sequential relationships [51]. Figure 2 shows
the proposed CNN-LSTM architecture in which the feature vector from the CNN layer was
taken as the input to the LSTM network.
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Figure 2. Structure of the convolutional neural network (CNN) integrated with the long short-term
memory (LSTM) network used in this study [52].

3.4. Data Preparation and Model Training

In this study, the FNL, gauge observation, and streamflow data were collected between
2007 and 2019. Because the rainfall in the catchments mainly occurred during the flood
season, all the data used in this study were collected from 1 June to 30 September each
year (because of a lack of observation data, the data period from 1 to 12 June 2019 was
excluded). Firstly, 1◦ × 1◦ grids of FNL 6-hourly global analysis data were used to drive
the WRF model. The WRF model ran for the entire flood season once a year, and the
time interval of the WRF model outputs was on a daily base. Secondly, referring to the
studies of Hingerl et al. [53], Fairbairn et al. [54], and Kratzert et al. [55], 16 variables were
initially selected from the WRF output for use as the CNN-LSTM model input, as shown
in Table 2. Then, based on the correlation between variables and with the assistance of
the Gamma test, the most appropriate combinations of the WRF output variables were
selected. Finally, for the selected variable combinations, CNN-LSTM models were used
to simulate the streamflow and verify the effect of the Gamma test. For the purposes of
training and testing, the total available data were subdivided into two nonoverlapping sets.
The first data set containing data measured over 9 years (2007–2015) was used to train the
CNN-LSTM model. The second data set, consisting of 4 years of data (2016–2019), was
employed to test the performance of the established models. Overall, about 70% of the data
were used for training and 30% for testing.

Table 2. WRF downscaled variables used as the CNN-LSTM model inputs.

No. Variables No. Variables

1 Surface skin temperature 9 Downward long wave flux
2 Surface pressure 10 Downward short wave flux
3 Specific humidity 11 Latent heat flux
4 Precipitation 12 Albedo
5 Soil moisture (0–10 cm) 13 Orographic variance
6 Soil moisture (10–40 cm) 14 Terrain height
7 Soil moisture (40–100 cm) 15 Surface runoff
8 Wind speed 16 Underground runoff

The input to the CNN-LSTM model was composed of a matrix of 81 × 81 from the
innermost domain data output of the WRF. Each input variable was used as a different
channel for the input. The CNN model consisted of five convolutional layers, four pooling
layers, and one fully connected layer. The output from the fully connected layer was fed
into an LSTM model as a one-dimensional feature vector.
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3.5. Model Evaluation Criteria

In this study, the streamflow simulation performances of the data-driven models
were evaluated using two criteria, i.e., root mean square error (RMSE) and Nash–Sutcliffe
efficiency (NSE). The closer the RMSE value is to 0, the better the degree of model fitting.
The Nash–Sutcliffe Efficiency (NSE) is used to quantitatively describe the accuracy of the
hydrological model [56]. The NSE value is between 1 and negative infinity. An NSE value
of 1 corresponds to a perfect match of simulated flows to observed data. A negative NSE
value indicates an unacceptable model performance. These criteria were calculated as
shown below:

NSE = 1− ∑T
t=1
(
Qt

o −Qt
m
)2

∑T
t=1
(
Qt

o −Qo
)2 (12)

RMSE =

√
∑T

t=1(Qt
o −Qt

m)
2

T
(13)

where Qt
m and Qt

o represent the simulated and observed streamflow at time step t, respec-
tively. Qo represents the means of the observed streamflow.

4. Results and Discussion
4.1. Model Input Selection Based on Gamma Test
4.1.1. Variable Selection in the Spatial Dimension

In this section, the Gamma test was used to select the combination of variables (from
numbers 1–14 in Table 2) that had significant impacts on the generation of the grid runoff of
the catchment, and the results of the forward and backward selection are shown in Table 3.
As explained in the two-step variable selection, Variables 15 and 16 were treated as the
model outputs for spatial variable selection, so these two variables are not considered in
the spatial dimension. It was found that the variable combination of 2, 3, 4, 5, 7, 8, 9, 11,
12, 13, and 14 had the best performance (with the minimum |Γ| value). Correlations of the
variables in the spatial dimension are also shown in Figure 3, in which it can be seen that
the correlations between variables 1, 2, 3, and 9 and those between variables 5, 6, and 7 were
relatively stronger (>0.90). A strong correlation indicates some degree of substitutability
between the variables. Therefore, it is suggested that strongly correlated variables are not
necessarily involved at the same time in the input combination.
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Table 3. Backward and forward selection of variables in the spatial dimension using the Gamma test.

Rankings Combination of Variables Index
Removed/Added Γ Gradient Standard Error Vratio

17 1,2,3,4,5,6,7,8,9,10,11,12,13,14 None −0.00185 0.09375 0.00139 −0.00739
7 1,2,3,4,5,6,7,8,9,11,12,13,14 10 0.00046 0.09747 0.00079 0.00182
6 1,2,3,4,5,7,8,9,11,12,13,14 6 −0.00030 0.11748 0.00106 −0.00121
1 2,3,4,5,7,8,9,11,12,13,14 1 0.00004 0.11931 0.00068 0.00016
3 2,3,4,5,7,8,9,11,12,14 13 0.00009 0.14111 0.00067 0.00035
8 2,3,4,5,7,8,11,12,14 9 0.00054 0.14198 0.00099 0.00217
12 2,3,4,5,7,8,11,12 14 0.00126 0.14024 0.00087 0.00504
14 2,4,5,7,8,11,12 3 0.00137 0.16144 0.00107 0.00547
15 2,4,5,7,8,12 11 0.00164 0.18716 0.00102 0.00655
20 2,4,5,8,12 7 0.00290 0.27572 0.00092 0.01160
22 2,4,5,12 8 0.00367 0.41271 0.00045 0.01470
24 2,4,5 12 0.00862 0.53273 0.00101 0.03448
25 4,5 2 0.02305 0.88020 0.00132 0.09219
27 4 5 0.05331 −13.29160 0.00150 0.21322
26 4,5 4 0.02305 0.88020 0.00132 0.09219
23 3,4,5 3 0.00690 0.58707 0.00083 0.02761
21 3,4,5,12 12 0.00315 0.41890 0.00074 0.01259
19 3,4,5,12,14 14 0.00248 0.35439 0.00102 0.00993
16 3,4,5,10,12,14 10 0.00176 0.27234 0.00050 0.00704
11 1,3,4,5,10,12,14 1 0.00116 0.25718 0.00067 0.00464
13 1,3,4,5,10,11,12,14 11 0.00133 0.21165 0.00138 0.00530
5 1,3,4,5,6,10,11,12,14 6 0.00014 0.16723 0.00133 0.00058
2 1,3,4,5,6,8,10,11,12,14 8 0.00008 0.13437 0.00092 0.00030
4 1,3,4,5,6,7,8,10,11,12,14 7 −0.00013 0.10444 0.00085 −0.00054
9 1,3,4,5,6,7,8,9,10,11,12,14 9 −0.00071 0.10468 0.00086 −0.00284
10 1,3,4,5,6,7,8,9,10,11,12,13,14 13 −0.00091 0.09054 0.00146 −0.00364
18 1,2,3,4,5,6,7,8,9,10,11,12,13,14 2 −0.00185 0.09375 0.00139 −0.00739

4.1.2. Variable Selection in the Temporal Dimension

In this section, the Gamma test was used to select the combination of variables from
numbers 1–13, 15, and 16 in Table 2 (13 and 14 were not taken into consideration because
they were constants on a time scale) that had significant impacts on the generation of
the streamflow in the temporal dimension, and the results of the forward and backward
selection are shown in Table 4. The variable combination of 1, 2, 3, 4, 6, 7, 8, 15, and 16 was
found to have the best performance (with the minimum |Γ| value). Variable correlations in
the temporal dimension are shown in Figure 4. It can be seen that the correlations between
variables 5, 6, and 7 were relatively stronger (>0.90).

Table 4. Backward and forward selection of variables in the temporal dimension using the Gamma test.

Rankings Combination of Variables Index
Removed/Added Γ Gradient Standard Error Vratio

23 1,2,3,4,5,6,7,8,9,10,11,12,15,16 None 0.0434 0.1134 0.0127 0.1737
17 1,2,3,4,5,6,7,8,9,11,12,15,16 10 0.0263 0.1425 0.0134 0.1052
12 1,2,3,4,5,6,7,8,11,12,15,16 9 0.0217 0.1593 0.0116 0.0867
5 1,2,3,4,5,6,7,8,12,15,16 11 0.0098 0.1926 0.0089 0.0392
2 1,2,3,4,6,7,8,12,15,16 5 0.0047 0.2261 0.0145 0.0187
1 1,2,3,4,6,7,8,15,16 12 −0.0009 0.3560 0.0140 −0.0035
8 1,3,4,6,7,8,15,16 2 0.0152 0.4026 0.0072 0.0606

13 1,3,6,7,8,15,16 4 0.0217 0.5087 0.0115 0.0867
15 1,3,6,7,15,16 8 0.0222 0.8977 0.0128 0.0887
20 3,6,7,15,16 1 0.0327 1.4236 0.0077 0.1309
25 6,7,15,16 3 0.0445 3.1299 0.0059 0.1779
22 7,15,16 6 0.0375 8.4031 0.0073 0.1499
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Table 4. Cont.

Rankings Combination of Variables Index
Removed/Added Γ Gradient Standard Error Vratio

26 7,15 16 0.0484 19.2761 0.0054 0.1935
27 15 7 0.0786 669.5949 0.0193 0.3142
18 12,15 12 0.0302 0.6141 0.0106 0.1206
10 12,15,16 16 0.0215 0.5812 0.0136 0.0859
7 7,12,15,16 7 0.0150 0.3520 0.0052 0.0599
16 4,7,12,15,16 4 0.0223 0.3043 0.0098 0.0891
19 1,4,7,12,15,16 1 0.0308 0.3104 0.0056 0.1231
21 1,4,6,7,12,15,16 6 0.0343 0.2357 0.0077 0.1371
14 1,3,4,6,7,12,15,16 3 0.0218 0.2727 0.0093 0.0870
9 1,3,4,5,6,7,12,15,16 5 0.0152 0.2696 0.0060 0.0608
3 1,3,4,5,6,7,8,12,15,16 8 0.0077 0.2371 0.0072 0.0309
6 1,2,3,4,5,6,7,8,12,15,16 2 0.0098 0.1926 0.0089 0.0392
4 1,2,3,4,5,6,7,8,10,12,15,16 10 0.0094 0.1801 0.0094 0.0374
11 1,2,3,4,5,6,7,8,10,11,12,15,16 11 0.0217 0.1593 0.0116 0.0867
24 1,2,3,4,5,6,7,8,9,10,11,12,15,16 9 0.0434 0.1134 0.0127 0.1737
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4.1.3. Variable Combination Schemes as the Model Input

According to the results set out in Tables 3 and 4, and taking the variable correlations
into account, five variable combination schemes (as shown in Table 5) were finally selected
as the CNN-LSTM model input. Scheme 1 contains all the variables involved in the
optimal combinations in the spatial and temporal dimensions in Tables 3 and 4. Scheme 2
contains the variables involved in the top five combinations ranked in Table 3 (3, 4, 5, 11,
12, and 14) and Table 5 (1, 3, 4, 6, 7, 8, 15, and 16). According to the correlation between
variables, schemes 3, 4, and 5 were then formulated after deleting the variables with
strong correlations.

Table 5. Variable combination schemes for the CNN-LSTM model input.

Scheme ID Combination of Variables

1 1,2,3,4,5,6,7,8,9,11,12,13,14,15,16
2 1,3,4,5,6,7,8,11,12,14,15,16
3 2,4,5,6,7,8,11,12,14,15,16
4 1,3,4,5,7,8,11,12,14,15,16
5 2,4,5,7,8,11,12,14,15,16
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4.2. Performance of the CNN-LSTM Model

After determining the combinations of input variables, the CNN-LSTM model was
used to simulate the streamflow at the catchment outlet. In this study, the CNN-LSTM
models were constructed using the five schemes described in Section 4.1.3. The 16 variables
in Table 2 were also used as inputs to the model for comparison purposes. The results
for the Fuping and Zijingguan catchments are shown in Figures 5 and 6, respectively. In
Figures 5 and 6, the observed rainfall refers to the average value of the rain gauge calculated
by the Thiessen polygon method, and the WRF rainfall refers to the mean areal rainfall in
all the catchment grids.
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For the Fuping catchment (Figure 5), the performances of the CNN-LSTM models with
all input combination schemes were satisfactory (NSE > 0.9). The streamflow processes were
simulated accurately, and the peak times were consistent with the gauge measurements.
The only exception was 2016, for which the peak discharge was inconsistent with the
observed value. For all models constructed with different input schemes, the simulated
peak discharges in 2016 were lower than the observed values. Scheme 4 had the best
performance of all the input combination schemes, with the highest NSE value (0.9618) and
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the lowest RMSE value (6.6366 m3/s), and outperformed the model that included all the
WRF variables.

It can be seen from Figure 5 that the peak discharges of the Fuping catchment in 2016
for all the input schemes were lower than the observed values. There are two possible
reasons for this: firstly, that the WRF simulated rainfall was lower than the observed
rainfall, leading to a lower simulated peak; secondly, that during the training period (2007–
2015) there was no such large discharge, i.e., the maximum peak discharge in the Fuping
catchment was 66.4 m3/s, whereas the peak discharge in 2016 reached 392 m3/s, leading to
an unsatisfactory simulation of the peak discharge by the CNN-LSTM model.

For the Zijingguan catchment (Figure 6), the scheme 4 streamflow process was sim-
ulated accurately, and the peak time was also consistent with the gauge measurement.
The rest of the schemes performed well for 2016 but showed higher error levels when
simulating the streamflow processes for other years. In terms of the evaluation criteria,
scheme 4 had the best NSE (0.9515) and RMSE (0.6366 m3/s) values. From the scatter
diagram in Figure 6, it can be seen that scheme 4 performed best when the streamflow was
small (less than 10 m3/s) but its simulated peak discharge was inferior to scheme 3.

Similar to the Fuping catchment, scheme 4 also showed the best performance of all
the input schemes for the Zijingguan catchment. It can be seen from the scatter diagram
in Figure 6 that the performance of scheme 4 for small discharges was better than that
of other schemes, but its simulations of larger discharges were lower than the observed
values. Because scheme 4 had the largest NSE value and the smallest RMSE value of all
the schemes, and it can be seen from the scatter plot that the consistency of the observed
and simulated streamflow of scheme 4 was superior to the other schemes, the performance
of scheme 4 was considered to be the best overall. This might be due to a change in the
runoff generation mechanism caused by an increase in soil moisture. The runoff generation
process in the study area is accompanied by a mixed mechanism of the infiltration capacity
excess and the storage capacity excess. Since the rainfall in the catchment mostly occurs
in a few storm events, most of the other times the soil moisture is at a low level. During
a storm, the infiltration and excess runoff generation happens first, and with the increase
of the soil moisture, the storage excess then becomes dominant. However, the flow in
the Zijingguan catchment is relatively small, and large flow peaks are not common. This
distinctive hydrological regime is difficult to capture using the model with the current
availability of training data.

For both the Fuping and Zijingguan catchments, scheme 4 had the highest NSE and
the lowest RMSE value, and the number of variables in scheme 4 was relatively small (11).
The lower number of input variables indicates a lower complexity of the constructed model
and the faster operation speed in real-time forecasting. Considering this, scheme 4 was
chosen as the best scheme for the combination of input variables for the two catchments.

In this study, the Gamma test was used to select combinations of input variables for
the CNN-LSTM model in order to achieve the best performance. However, the Gamma test
cannot identify the best combination for two-dimensional input data, and the selection of
the variables still requires the use of correlation analysis. Nevertheless, the Gamma test
had a positive effect on the modeling results and can be regarded as a helpful tool for the
selection of input variables for data-driven models.

It should be mentioned that in real-time forecasting, the WRF forcing data used in this
study (i.e., FNL) should be replaced with the real-time updated forecast data (e.g., GFS).
Real-time forecasting is more complicated when the forcing data is updated, in normal
cases, every 6 h. In such cases, the CNN-LSTM model should be restarted in accordance
with the updating of the forcing data. In addition, a powerful data assimilation system of
WRF-3DVar together with the streamflow updating scheme should also be implemented in
order to improve the forecast skill of the hybrid system.

In the next step, on the basis of meteorological and hydrological data obtained over a
longer period of time, data mining techniques can be used to conduct clustering research
on historical flow processes according to different runoff mechanisms, and to identify
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thresholds for changes in runoff mechanisms, so that the deep learning model can be
trained separately to simulate larger flood events more accurately.

5. Conclusions

In this study, a deep learning model based on a CNN-LSTM hybrid model was
proposed for the simulation of daily streamflow in two different catchments of the Daqing
River Basin. High-resolution (1 km) output data of the WRF model were used as the
model input, and the Gamma test was shown to be highly effective in the selection of
the most appropriate combination of input variables for the model. It can be seen from
Table 3 that, in the spatial dimension, among the variables of each grid, precipitation is
the most important variable for runoff generation in the spatial dimension. This is easy to
understand, since precipitation varies the most over the study catchments and plays the
most direct role in generating the streamflow. Its spatial distribution also influences the
routing process and determines the time-to-peak of the flood. Similarly, it can be seen from
Table 4 that, in terms of the temporal dimension, the surface runoff generated in each grid
is the most important variable to the formation of the streamflow at the catchment outlet.

The CNN-LSTM model demonstrated an acceptable performance using all the WRF
input variables, with NSE and RMSE values of 0.9298 and 9.0047 m3/s, respectively, in the
Fuping catchment, and 0.8330 and 1.1806 m3/s, respectively, in the Zijingguan catchment.
Use of the Gamma test further improved the performance of the CNN-LSTM model. Using
the best-performing combination scheme indicated by the model (scheme 4), the NSE
increased to 0.9618 and the RMSE decreased to 6.6366 m3/s for the Fuping catchment,
and for the Zijingguan catchment the NSE increased to 0.9515 and the RMSE decreased
to 0.6366 m3/s. These results indicate the feasibility of using the WRF-downscaled high-
resolution data for streamflow simulation in data-limited or ungauged catchments.

In this study, the Gamma test selection was based on data collected in the Fuping
catchment. Scheme 4, which performed best in Fuping, also showed the best performance
in Zijingguan, indicating that the selected input combination schemes may be applicable to
catchments of the same scale and with similar hydrometeorological regimes. In the next
step, we will add data from similar small-scale catchments in the surrounding area and try
to build a regional universal streamflow model.

With the advantages of high resolution and consideration of detailed physical pro-
cesses, regional climate models have become key tools for climate prediction. Taking
the outcome of a regional climate model as the forcing data and using deep learning
approaches, future extreme flood events under different scenarios can be predicted and
water resource change trends can be assessed. This study provides an important reference
for hydrometeorological modeling in ungauged or data-limited catchments, which has
significance for flood control planning and management of water resources in the context
of future climate change.
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