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Abstract: This study presents a revised and calibrated Soil Conservation Service (SCS) curve number
(CN) rainfall runoff model for predicting runoff in Malaysia using a new power correlation Ia = SL,
where L represents the initial abstraction coefficient ratio. The traditional SCS-CN model with the
proposed relation Ia = 0.2S is found to be unreliable, and the revised model exhibits improved
accuracy. The study emphasizes the need to design flood control infrastructure based on the maxi-
mum estimated runoff amount to avoid underestimation of the runoff volume. If the flood control
infrastructure is designed based on the optimum CN0.2 values, it could lead to an underestimation
of the runoff volume of 50,100 m3 per 1 km2 catchment area in Malaysia. The forest areas reduced
by 25% in Peninsular Malaysia from the 1970s to the 1990s and 9% in East Malaysia from the 1980s
to the 2010s, which was accompanied by an increase in decadal runoff difference, with the most
significant rises of 108% in Peninsular Malaysia from the 1970s to the 1990s and 32% in East Malaysia
from the 1980s to the 2010s. This study recommends taking land use changes into account during
flood prevention planning to effectively address flood issues. Overall, the findings of this study have
significant implications for flood prevention and land use management in Malaysia. The revised
model presents a viable alternative to the conventional SCS-CN model, with a focus on estimating
the maximum runoff amount and accounting for land use alterations in flood prevention planning.
This approach has the potential to enhance flood management in the region.

Keywords: revised rainfall runoff methodology; decadal runoff predictions; inferential statistics;
deforestation; Malaysia

1. Introduction

Water is crucial for supporting life and economic development, but it is a scarce
resource. Freshwater accounts for only 2.5% of the water on Earth, which is suitable for
basic human needs such as drinking, cooking, and bathing. The scarcity of water is a result
of the disparity between its supply and demand. Research on effective water resource
management is essential, and it is also a practical subject. However, water-related disasters
such as floods and droughts can result in the loss of life and property, making it difficult to
manage water resources effectively [1].

The analysis of extreme hydrometeorological events is crucial in characterizing and
comprehending the meteorological conditions that cause severe rainstorms and subsequent
devastating floods. The situation becomes worse when these extreme events overlap. Com-
pound extremes pose significant challenges and dangers to communities, especially when
they involve hydrometeorological events such as floods, surges, droughts, and heatwaves
that can be deadly. To better mitigate and adapt to these compound hydrometeorological
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extremes, it is necessary to have a better understanding of these events and their poten-
tial occurrence. The detection of trends in hydroclimatic variables such as temperature,
precipitation, and streamflow plays a significant role in understanding the variations and
changes in the climate. It is essential to comprehend the connections between the trends in
climate fluctuations and extreme hydrometeorological events in order to plan for water and
agricultural management and anticipate the dangers associated with these events [2–5].

Flooding is a destructive occurrence that happens when water overflows onto land
and rises above its typical level, usually due to excessive rainfall that cannot be absorbed
by the soil, which results in runoff. When the volume of runoff surpasses the capacity of
available flood control infrastructure, water overflows and causes flooding. These events
can have severe consequences for individuals and countries alike, as they threaten lives,
especially of those living in low-lying areas, and result in significant financial losses from
infrastructure damage and recovery efforts. To mitigate these impacts, it is crucial to
understand the relationship between rainfall and runoff, which will improve the accuracy
of runoff estimates and help the government better plan for flood management. For
example, by having precise and reliable rainfall runoff models, governments can ensure
the construction of adequate flood control systems, such as retention ponds and drainage
systems, which will help reduce the risk of future floods [6,7].

Over the past few decades, a significant amount of research activities have been
focused on the analysis and modelling of rainfall runoff, leading to the development of
various types of models. The main objective is to predict the occurrence of floods in
advance and prevent the associated losses. Hydrologic analysis and design rely heavily on
the central aspect of rainfall runoff modelling, which depicts the interconnected surface
and subsurface processes within a watershed. The importance of rainfall runoff modelling
extends beyond hydrology and water resource management, as it aids in planning for
watershed water resources, managing reservoirs, and preparing for drought and potential
flood hazard events. Additionally, it provides insights into catchment yields and responses,
water availability, and changes over time, making it a fundamental issue in watershed
hydrology modelling and research [8–11].

Given the non-linear nature of the process, accurate simulations of the rainfall runoff
process are crucial in hydrology and water resources management, and are highly de-
pendent on the inputs to the simulation model. Despite the complexity associated with
the transformation of rainfall into runoff, runoff analysis is crucial in predicting natural
disasters such as floods and droughts. Furthermore, it plays a crucial role in the design and
operation of water resource projects such as barrages, dams, and water supply schemes, and
is necessary for water resources planning, development, and flood mitigation efforts [8–11].

The curve number (CN) model (Equation (1)) was created in 1954 by the United States
Department of Agriculture (USDA) and Soil Conservation Services (SCS) to study rainfall
and runoff using limited data from less than 200 catchments in the USA.

Q =
(P − Ia)

2

P − Ia + S
(1)

where P = rainfall depth (mm), Q = runoff depth (mm), S = catchment maximum potential
water retention (mm), and Ia = amount of initial abstraction (mm).

The SCS proposed the initial abstraction coefficient ratio (λ) relationship, Ia = λS, but
the equation was weakly supported by data available at the time. To simplify calculations,
the SCS set a constant value of 0.2 for λ in the equation (Figure 1), which became the
conventional SCS-CN rainfall runoff prediction model (Equation (2)) [12–15].

Q =
(P − 0.2S)2

P + 0.8S
(2)

where the restriction of P > 0.2S (or Ia < P) must be obeyed, else there will be no runoff
(Q) occurring.
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The widely used CN runoff model was not specifically designed for many applica-
tions, yet is cited in hydrological manuals and incorporated into software. The accuracy
and reliability of the model are important for related software and handbooks [16–21].
Researchers from various countries have challenged the use of a fixed value of 0.2 for the
initial abstraction coefficient ratio (λ) in the equation Ia = λS, suggesting different ranges for
λ that vary by region [22–24]. Using a fixed value of 0.2 can lead to inaccurate predictions of
runoff amounts. Over 60 years, studies have aimed to find the optimal λ value to improve
the model’s accuracy and reliability, but none have re-evaluated the relationship between
Ia and S. The conventional model uses a linear correlation of Ia = 0.2S, which, if different,
could change the entire model and require re-evaluation and re-derivation.

Urban flooding is a growing issue, causing loss of life, economic losses, and extensive
destruction. Floods are the most frequent natural disaster globally, with climate change
increasing rainfall frequency and intensity. Urbanization and construction activities lead
to increased impervious surfaces, limiting natural infiltration and evapotranspiration
and converting rainfall into runoff. These factors, along with human resource demands
on water quality and quantity, have led to harmful ecological and economic impacts on
catchment water resources. Climate change, human activities, and land use changes impact
the amount of surface water flow, known as runoff depth, with urbanization having a
negative impact, and land conversion to grass or forest having a positive impact. Changes
in vegetation and forest area can also significantly impact the runoff regime [25–33].

Based on previous studies, the linear correlation model of Ia = 0.2S proposed by
the SCS was not statistically significant using the original data from 1954. Instead, the
best linear models found were Ia = 0.112S [34] and Ia = 0.111S [35]. Thus, it is crucial to
reassess the recalibration of the SCS-CN rainfall runoff model before using it, given the
discreditation of the linear correlation of Ia = 0.2S.

In this paper, the SCS-CN rainfall runoff model was revised and calibrated using the
power correlation Ia = SL, which has previously been explored by the authors in a separate
study [12], to predict runoff in Peninsular Malaysia and East Malaysia. The results of
this study demonstrate the potential for the newly calibrated power regressed model to
be used to model decadal rainfall runoff conditions in Malaysia. Additionally, the study
established a correlation between deforestation and urbanization on runoff increment in
both Peninsular Malaysia and East Malaysia.
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2. Materials and Methods

2.1. New Power Correlation of Ia = SL

To date, no research has been conducted to calibrate the SCS-CN model using a non-
linear correlation between Ia and S. Therefore, this study re-evaluates the runoff prediction
ability of the conventional SCS-CN rainfall runoff model (Equation (2)) against the newly
derived SCS model using a power correlation equation (Ia = SL) to simplify the funda-
mental SCS model (Equation (1)) and calibrate it using local rainfall runoff datasets with
statistical methods. The newly formulated runoff predictive model will only have two
fitting parameters, namely S and L, to maintain its parsimonious form as SCS fundamental
Equation (1). The proposed parameter L is also a dimensionless parameter similar to
SCS’s λ.

The previous SCS conventional rainfall runoff model, Equation (2), was simplified
with Ia = 0.2S. However, past studies found Equation (2) to be insignificant at the α = 0.01
level, making it necessary to re-derive the model to improve the accuracy of its runoff
predictions [34,35].

2.2. Study Sites in Malaysia

This study utilized data collected by the Department of Irrigation and Drainage (DID),
a Malaysian federal agency. DID’s Hydrological Procedure no. 11 (DID-HP 11) gathered
474 pairs of rainfall runoff data from watersheds across Malaysia from 1964 to 2016, while
DID’s Hydrological Procedure no. 27 (DID-HP 27) collected 227 pairs of rainfall runoff
data from 1970 to 2000 [36,37]. The study combined both datasets, resulting in a total of 701
rainfall runoff datasets (rainfall range: 7–575 mm) collected from 1964 to 2016 for analysis.
Thus far, this study has utilized the most extensive and up-to-date compilation of rainfall
runoff data provided by the Malaysian federal agency, which encompasses a wide range of
rainfall amounts. Figure 2 shows the catchment areas in Malaysia.

Water 2023, 15, x FOR PEER REVIEW  4  of  24 
 

 

2. Materials and Methods 

2.1. New Power Correlation of Ia = SL 

To date, no research has been conducted to calibrate the SCS-CN model using a non-

linear correlation between Ia and S. Therefore, this study re-evaluates the runoff prediction 

ability of the conventional SCS-CN rainfall runoff model (Equation (2)) against the newly 

derived SCS model using a power correlation equation (Ia = SL) to simplify the fundamen-

tal SCS model (Equation (1)) and calibrate it using local rainfall runoff datasets with sta-

tistical methods. The newly formulated runoff predictive model will only have two fitting 

parameters, namely S and L, to maintain its parsimonious form as SCS fundamental Equa-

tion (1). The proposed parameter L is also a dimensionless parameter similar to SCS’s λ. 

The previous SCS conventional rainfall runoff model, Equation (2), was simplified 

with Ia = 0.2S. However, past studies found Equation (2) to be insignificant at the α = 0.01 

level, making  it necessary  to re-derive  the model  to  improve  the accuracy of  its runoff 

predictions [34,35]. 

2.2. Study Sites in Malaysia 

This  study  utilized  data  collected  by  the Department  of  Irrigation  and Drainage 

(DID), a Malaysian  federal agency. DID’s Hydrological Procedure no. 11  (DID-HP 11) 

gathered 474 pairs of rainfall runoff data from watersheds across Malaysia from 1964 to 

2016, while DID’s Hydrological Procedure no. 27 (DID-HP 27) collected 227 pairs of rain-

fall runoff data from 1970 to 2000 [36,37]. The study combined both datasets, resulting in 

a total of 701 rainfall runoff datasets (rainfall range: 7–575 mm) collected from 1964 to 2016 

for analysis. Thus far, this study has utilized the most extensive and up-to-date compila-

tion of rainfall runoff data provided by the Malaysian federal agency, which encompasses 

a wide range of rainfall amounts. Figure 2 shows the catchment areas in Malaysia.   

. 

Figure 2. Location where the rainfall runoff datasets were collected for Peninsular Malaysia and East 

Malaysia [36,37]. 

2.3. Decadal Analysis of Rainfall Runoff Models in Malaysia 

In this study, decadal rainfall runoff analyses were conducted. The analysis covered 

Peninsular Malaysia and East Malaysia. For Peninsular Malaysia, data from 1970 to 2000 

were divided into three decadal models: 1970s (70PM), 1980s (80PM), and 1990s (90PM). 

For East Malaysia, data from 1985 to 2016 were divided into three decadal models: 1985–

1989 (85EM), 1990–1999 (90EM), and 2000–2016 (2KEM). After dividing the data into dec-

ade models, a decadal analysis was conducted to compare and analyze the trends in runoff 

conditions in Malaysia during each decade with the help of inferential statistics. 

Figure 2. Location where the rainfall runoff datasets were collected for Peninsular Malaysia and East
Malaysia [36,37].

2.3. Decadal Analysis of Rainfall Runoff Models in Malaysia

In this study, decadal rainfall runoff analyses were conducted. The analysis covered
Peninsular Malaysia and East Malaysia. For Peninsular Malaysia, data from 1970 to
2000 were divided into three decadal models: 1970s (70PM), 1980s (80PM), and 1990s
(90PM). For East Malaysia, data from 1985 to 2016 were divided into three decadal models:
1985–1989 (85EM), 1990–1999 (90EM), and 2000–2016 (2KEM). After dividing the data into
decade models, a decadal analysis was conducted to compare and analyze the trends in
runoff conditions in Malaysia during each decade with the help of inferential statistics.

This study used statistical analysis to determine the optimal values of S and L for each
decadal group. The bootstrapping method with the bias corrected and accelerated (BCa)
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procedure was conducted with 2000 random sampling (with replacement) at alpha = 0.01
through International Business Machine Corporation’s (IBM)’s Statistical Packages for
Social Sciences (SPSS, version 21.0) statistical software to determine the total abstraction
value (S), dimensionless initial abstraction ratio coefficient (L), and generated respective 99%
confidence intervals (CI) for S and L. These results were then utilized to formulate a new
SCS-CN rainfall runoff model and for the calculation of the CN value. The normality of the
datasets was tested using the Kolmogorov–Smirnov and Shapiro–Wilk tests to determine
whether the mean or median confidence intervals should be chosen for optimizing S and L
for each dataset [38]. The Shapiro–Wilk test was given priority as it was more significant
for sample sizes less than 2000, and all datasets in this study had a sample size of less than
2000. If the Shapiro–Wilk and Kolmogorov–Smirnov tests had a p-value of less than 0.05, it
indicated that the datasets were not normally distributed, and the median CI was used for
variable optimization, and vice versa [38].

The data distribution free bootstrap BCa technique was used in this study due to its
robustness for analyzing rainfall runoff data [39–41]. Furthermore, the analytical module
for bootstrap BCa is readily available in the IBM SPSS statistical software, making it a
convenient choice for conducting the analysis needed in this study. The BCa method has
the benefit of correcting biases and being able to produce the confidence interval of a
particular variable at a selected significance level, which is very useful for further statistical
analysis [39–42].

The calibration of the SCS runoff model was aimed to have zero bias in its overall
prediction results by using a supervised numerical algorithm to find the best values of L
and S that fulfilled the zero bias optimization constraint, within the 99% confidence interval
of the bootstrap BCa. If zero bias optimization could not be achieved within the confidence
interval, the optimization was set to maximize the Nash–Sutcliffe index (E). The accuracy
and performance of the models were evaluated for each dataset based on the Nash–Sutcliffe
index (E).

This study employs the Nash–Sutcliffe index (E), bias, and the Kling–Gupta efficiency
(KGE) index to assess the predictive performance of the models. Equations (3)–(5) were
used to calculate the E, bias, and KGE, respectively [12,43–46].

E = 1 −
∑n

i=1

(
Qpredicted − Qobserved

)2

∑n
i=1

(
Qpredicted − Qmean

)2 (3)

BIAS =
∑n

i=1

(
Qpredicted − Qobserved

)
n

(4)

KGE = 1 −

√
(r − 1)2 +

(
σsim

σobs
− 1
)2

+

(
µsim
µobs

− 1
)2

(5)

where σsim = the modelling results’ standard deviation, σobs = the observed dataset’s
standard deviation, µsim = average of modelling results, µobs = average of observed dataset,
and r = correlation between modelling results and observed dataset.

In earlier research, the general formula for S was derived from Equation (1), which
allowed for the computation of S through a closed form equation based on the P and Q
data pairs [23,24,47,48]. To date, the power model Ia = SL substitution into Equation (1) in
this study did not produce any closed form equation for S. Therefore, a numerical analysis
technique is the only way to determine the value of S. The simplified formula for S is given
in Equation (6) (the steps to derive and simplify the general formula for S based on the
power regression model are outlined in Appendix A).

(2SL + Q − 2P)
2
= 4SQ + Q2 (6)

The numerical analysis technique was used to find the optimum values of L and S
(denoted as SL), according to the P and Q data pairs in this study by applying Equation
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(6). On the other hand, the S0.2 values for each data pair were also calculated using the
general equation for S (Appendix B and shown in Equation (7)) [22–24,34,35,47–49] for
curve number calculation.

S0.2 = 5
(

P + 2Q −
√

4Q2 + 5PQ
)

(7)

The SL and S0.2 values were calculated separately according to the P and Q data pairs
using Equations (6) and (7). The SPSS regression module was utilized to find the best
correlation between SL and S0.2 datasets and determine the best correlation equation for
the study site. This was done to examine the relationship between SL and S0.2 and convert
SL back to its equivalent S0.2 value to obtain the conventional SCS curve number (CN0.2),
which is commonly used by SCS practitioners. This correlation technique was introduced
in [48]. The objective was to find the strongest correlation between SL and S0.2, with the
highest adjusted R-squared value (R2

adj), using SPSS statistical software [48,50,51] (the
process is summarized in Appendix C). For example, the best correlation equation from
SPSS between SL and S0.2 for the 1970s dataset in Peninsular Malaysia (modeled as 70PM)
was identified in SPSS as:

S0.2 = (S0.168) 0.851 (8)
As introduced by the SCS, the equation to calculate the SCS curve number value is

CN0.2 =
25, 400

254 + S0.2
(9)

where CN0.2 = the conventional curve number when λ = 0.2 and S0.2 = the total abstraction
amount (mm) when λ = 0.2.

Equation (9) can also be expressed as Equation (10).

S0.2 = 254
(

100
CN0.2

− 1
)

(10)

By substituting the best correlation equation (Equation (8)) back into the SCS curve
number (Equation (9)), the conventional curve number for the 70PM can then be calculated
with Equation (11).

CN0.2 =
25, 400

254 +
(
(S0.234)

0.88
) (11)

The relationship between SL and S0.2 is crucial in evaluating the effectiveness of the
rainfall runoff model established using the power regression model (Equation (11)). The
correlation equation linking SL and S0.2 is essential in converting SL back to its equiva-
lent S0.2 value so that the conventional SCS curve number (CN0.2) can be calculated with
Equation (9) for use by SCS practitioners again [47,48,51]. The suitability of the correla-
tion equation for the datasets was determined by calculating the adjusted coefficients of
determination (R2

adj) for each correlation equation.
The trend in runoff over the decades in Peninsular Malaysia and East Malaysia was

analyzed to determine the changes in runoff amounts over time in both regions. The runoff
predictions made by the newly calibrated model based on the power regression equation
(Ia = SL) were determined for each decade. To find the runoff predictions for the newly
calibrated model, the general equation for runoff (Q) was derived by incorporating Ia = SL

into Equation (1), resulting in Equation (12).

QL =

[
P − S L

L

]2[
P − S L

L + SL

] (12)

where P > SL
L, else QL = 0.

The correlation equation between SL and S0.2 that was determined using SPSS was
substituted into the runoff equation (Equation (12)) to determine the QL values for each
study site. Since the best correlation equation for each site may not be the same, each site
had its own specific equations to represent its runoff equation, expressed in terms of CN0.2
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values, after substituting the S correlation equations and Equation (10) back into the general
runoff equation (Equation (1)). The derivation of the general runoff model for the power
regressed model is summarized in Appendix E.

The interdecadal runoff differences were determined once the runoff estimates were
obtained for each decadal group. For example, the interdecadal runoff difference in Penin-
sular Malaysia between the 1970 and 1980 was obtained by subtracting the runoff amount
from the decadal models of the 1970s (named as 70PM) from that of the 1980s (80PM). A
positive interdecadal runoff indicates that the runoff increased from the 1970s to the 1980s,
while a negative difference indicates a decrease. The interdecadal runoff difference between
the 1970s and 1980s, 1980s and 1990s (model named 90PM), and 1970s and 1990s were
identified for Peninsular Malaysia, while the interdecadal runoff between 1985 (named
as 85EM) and 1990s (90EM), 1990s (90EM) and 2000s (2KEM), and 85EM and 2KEM were
identified for East Malaysia.

The Sen’s slope was also calculated for each interdecadal runoff difference model to
understand the trend in the runoff changes. The Sen’s slope represents the median of all
slopes in the interdecadal runoff difference model and can help estimate the percentage
change in runoff estimates based on any rainfall depth and within the selected CN0.2 range.
By calculating the Sen’s slope for each decadal model, practitioners can compare changes
in runoff magnitude among the models and observe whether the trend in runoff changes
throughout the decades shows an uptrend or downtrend.

2.4. Analysis of the Impact of Deforestation on the Rainfall Runoff Conditions in Malaysia

In the past, studies have shown the impact of deforestation and afforestation on runoff
trends. To understand the effect of forest area in Malaysia on the runoff amount from
rainfall events, the forest area data in both Peninsular Malaysia and East Malaysia were
collected. The analysis aimed to understand the relationship between changes in forest
area and changes in runoff through the decades in both regions.

For Peninsular Malaysia, forest area data from 1970 to 2000 were used in a comparison
with available runoff data within the same time frame. For East Malaysia, forest area data
from 1985 to 2016 was included to examine the relationship between changes in forest area
and changes in runoff.

The best fit model between the annual runoff and annual forest area was identified to
show the relationship between the two and the impact of changes in forest area reduction
on the runoff amount. The adjusted coefficient of determination (R2

adj) was used to assess
the fitness of the best fit model to the data [50].

3. Results
3.1. Decadal Analysis of Runoff Trends in Peninsular Malaysia and East Malaysia

This paper combines datasets from DID-HP 11 and DID-HP 27 to create three decadal
models: the 70PM, 80PM, and 90PM for Peninsular Malaysia. In East Malaysia, the
combined datasets from DID-HP 11 and DID-HP 27 also created three decadal models: the
85EM, 90EM, and 2KEM.

S and L were calculated from the data pairs of P and Q in each decadal model, and the
BCa 99% CI was used to generate confidence intervals for both parameters. The optimal
values for S and L were then identified from these intervals. Tables 1 and 2 show the results
of the statistical analysis for all decadal datasets in Peninsular Malaysia and East Malaysia,
respectively. The Ia to S ratio, Nash–Sutcliffe index (E), bias, and Kling–Gupta efficiency
index (KGE) were also calculated based on the optimal S and L values (Appendix C explains
the method for formulating the model).
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Table 1. The optimum S (SL), L, Ia to S ratio, Nash–Sutcliffe index, bias, and KGE index for each
decadal dataset in Peninsular Malaysia.

Decadal Model L SL (mm) Ia/S E BIAS KGE

70PM 0.168 187.81 0.013 0.941 0 0.968
80PM 0.228 183.31 0.018 0.906 0.497 0.947
90PM 0.232 175.30 0.019 0.892 0 0.925

Table 2. The optimum S (SL), L, Ia to S ratio, Nash–Sutcliffe index, bias, and KGE index for each
decadal dataset in East Malaysia.

Decadal Model L SL (mm) Ia/S E BIAS KGE

85EM 0.332 152.23 0.035 −0.387 −1.910 0.307
90EM 0.274 121.11 0.031 0.788 0 0.713
2KEM 0.316 152.40 0.032 0.730 0 0.866

In Peninsular Malaysia, the Nash–Sutcliffe index ranges from [0.892, 0.941] and the
Kling–Gupta efficiency (KGE) index ranges from [0.925, 0.968], indicating that the new
power regressed model provides accurate runoff estimates. The bias is also relatively low,
ranging from [0, 0.497]. In East Malaysia, the 85EM decadal group shows a negative value
for the Nash–Sutcliffe index; however, a KGE of 0.307 implies that the model performs
better than its benchmarked mean value [36]. For the other decadal groups in East Malaysia,
the Nash–Sutcliffe index ranges from [0.730, 0.788] and the KGE ranges from [0.713, 0.866],
indicating that the new power regression model provides accurate estimates with a bias of
0. Both the Peninsular Malaysia and East Malaysia decadal datasets calculated Ia to S ratios
(Tables 1 and 2) that are in line with previous studies, which support the claim that the Ia to
S ratio should be around 0.05 (5%) or less [16,18,23,24,34,35,47,49,51,52].

With the calculated optimum values of S and L for each decadal dataset, the corre-
sponding runoff equation can be determined, as shown in Appendix E. The best correlation
equations for S0.2 and SL in this study are tabulated in Tables 3 and 4.

Table 3. The S correlation equation for each decadal group in Peninsular Malaysia.

Decadal Model Correlation Equation R2
adj p-Value

70PM S0.2 = S0.168
0.851 0.987 <0.001

80PM S0.2 = S0.228
0.881 0.998 <0.001

90PM S0.2 = S0.232
0.889 0.998 <0.001

Table 4. The S correlation equation for each decadal group in East Malaysia.

Decadal Model Correlation Equation R2
adj p-Value

85EM S0.2 = S0.332
0.891 0.997 <0.001

90EM S0.2 = S0.274
0.887 0.998 <0.001

2KEM S0.2 = S0.316
0.896 0.998 <0.001

The results in Table 3 show that the S correlation equations for Peninsular Malaysia
have high adjusted R-squared values, ranging from 0.987 to 0.998, and Table 4 shows
that the S correlation equations for East Malaysia also have high adjusted R-squared
values, ranging from 0.997 to 0.998. This indicates that the S correlation equations fit the
dataset well, with a p-value of less than 0.001. With the S correlation equations for each
decadal dataset, the runoff prediction models can be identified and the interdecadal runoff
difference model can be obtained accordingly, as described in Section 2.3.

The study employed the Sen’s slope to determine the trend in runoff across different
decades in Malaysia, encompassing all recorded rainfall events in DID HP 11 and 27 with
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rainfall depths ranging from 7 mm to 575 mm. As the interdecadal runoff differences were
found to be non-normally distributed, the study deemed the Sen’s slope appropriate for
analysis. Furthermore, the distributions of slopes for all interdecadal models in Peninsular
Malaysia and East Malaysia were also non-normally distributed, leading to the use of the
median values as the representative value for all scenarios.

The results show that the collective Sen’s slope for each interdecadal model in Penin-
sular Malaysia is 0.032 (with a confidence interval of [0.022, 0.043]) for the 70PM to 80PM
model, 0.013 (with a confidence interval of [0.010, 0.020]) for the 80PM to 90PM model,
and 0.045 (with a confidence interval of [0.032, 0.062]) for the 70PM to 90PM model; all
models are significant with p < 0.01. For East Malaysia, the collective Sen’s slope for each
interdecadal model is 0.007 (with a confidence interval of [−0.003, 0.063]) for the 85EM
to 90EM model, 0.010 (with a confidence interval of [0.003, 0.014]) for the 90EM to 2KEM
model, and 0.018 (with a confidence interval of [0.009, 0.021]) for the 85 to 2KEM model; all
models are also significant with p < 0.01.

According to Figure 3, the highest overall Sen’s slope runoff difference (%) in Peninsu-
lar Malaysia is between the 70PM and 90PM interdecadal runoff model, followed by the
70PM–80PM model, and the lowest is the 80PM–90PM model. As shown in Figure 4, the
highest overall Sen’s slope runoff difference (%) in East Malaysia is between the 85EM and
2KEM interdecadal runoff model, followed by the 90EM–2KEM model, and the lowest is
the 85EM–90EM model.
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The Sen’s slope is used to estimate the percentage increase in runoff relative to the
rainfall depth. For instance, the Sen’s slope runoff difference (%) between the 70PM and
90PM model in Peninsular Malaysia is 0.045, which means that the expected increase in
runoff with 100 mm of rainfall is 4.5 mm (4.5% of the rainfall depth).

The optimum S value and BCa 99% CI for each decadal model in Peninsular and East
Malaysia were determined using the S correlation equations and Equation (9). This enabled
the calculation of the optimum CN0.2 and its BCa 99% CI. For example, the optimum S value
for the 70PM decadal model in Peninsular Malaysia is 187.81 mm, with a corresponding
S0.2 of 86.09 mm. Using Equation (9), the calculated CN0.2 is 74.68. The optimum value and
99% BCa CI for CN0.2 are shown in Table 5 using Equation (9) and S correlation equations.
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Table 5. The optimum S, optimum CN0.2, and its corresponding BCa 99% CI for both Peninsular
Malaysia and East Malaysia.

Peninsular Malaysia

Decadal Model

BCa 99% CI for S
(mm) BCa 99% CI for CN0.2

Optimum
S (mm) Lower Upper Optimum

CN0.2
Lower Upper

70PM 187.81 137.59 194.85 74.69 74.09 79.36
80PM 183.31 137.60 183.31 72.04 72.04 76.83
90PM 175.30 120.37 191.21 71.99 70.41 78.22

East Malaysia

85EM 152.23 50.89 152.23 74.26 74.26 88.45
90EM 121.11 63.55 127.29 78.29 77.53 86.47
2KEM 152.40 50.49 166.95 73.76 72.15 88.32

The maximum runoff amount is a critical reference for engineers, as floods occur when
the runoff exceeds the capacity of flood control infrastructure. By using Equations (10) and
(12) and the S correlation equation, the maximum runoff amount can be estimated within
the 99% BCa CI of CN0.2 for the maximum rainfall depth (details of the calculation can be
found in Appendix E). The results of the runoff estimation obtained from the optimum
CN0.2, the maximum runoff amount estimated from the upper limit of the BCa 99% CI of
CN0.2, and the difference between both estimated results are tabulated in Table 6 for both
Peninsular Malaysia and East Malaysia to show the runoff depth difference based on the
highest rainfall depth recorded for each decade between the optimum CN0.2 and the upper
limit CN0.2.

The results shown in Table 6 highlight the importance of building flood control infras-
tructure based on the maximum estimated runoff amount. The differences between the
runoff estimates based on the optimum CN0.2 values and the upper limit of the BCa 99%
CI for CN0.2 demonstrate the potential consequences of not designing the flood prevention
infrastructure based on the maximum estimate. For example, in the 2KEM decadal model,
the calculated runoff difference was 50.10 mm, which translates to an underestimation of
50,100 m3 of runoff volume per 1 km2 area if the design is based on the optimum CN0.2.
The reason for assuming a 1 km2 watershed area is to facilitate the visualization of the
consequences of incorrect estimations that may be referred to by practitioners or engineers.
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This is equivalent to nearly 20 Olympic-sized swimming pools volume difference for 1 km2

watershed (the calculation of runoff volume is detailed in Appendix F). If the flood control
infrastructure is designed based only on the reference of optimum CN0.2, it may not have
enough capacity to handle the runoff volume difference of 50,100 m3/km2 watershed area
in the case of a maximum runoff event, leading to possible flooding. The results in Table 6
serve as a warning to practitioners that the design of flood prevention infrastructure should
not solely rely on the optimum CN0.2 runoff estimation, but also take into consideration
the maximum estimated runoff amount to reduce the risk of flooding.

Table 6. The highest recorded rainfall depth, the runoff estimation obtained from the optimum CN0.2,
the maximum runoff amount estimated based on the BCa 99% CI of CN0.2, and the runoff difference
between both estimated results through each decade for both Peninsular Malaysia and East Malaysia.

Peninsular Malaysia

Decadal Model
(Appendix E)

Highest
Rainfall Depth
Recorded (mm)

Estimated
Runoff Depth
based on the

Optimum CN0.2
(mm)

Maximum
Runoff Depth

Estimated with
Upper CN0.2
Limit (mm)

Estimated
Runoff Depth

Difference
(mm)

70PM 485 353.46 380.50 27.04
80PM 420 290.27 314.15 23.88
90PM 306 192.29 217.31 25.02

East Malaysia

85EM 175 88.13 131.33 43.20
90EM 575 472.20 515.16 42.96
2KEM 224 129.48 179.58 50.10

The results shown in Table 6 highlight the importance of building flood control infras-
tructure based on the maximum estimated runoff amount. The differences between the
runoff estimates based on the optimum CN0.2 values and the upper limit of the BCa 99%
CI for CN0.2 demonstrate the potential consequences of not designing the flood prevention
infrastructure based on the maximum estimate. For example, in the 2KEM decadal model,
the calculated runoff difference was 50.10 mm, which translates to an underestimation of
50,100 m3 of runoff volume per 1 km2 area if the design is based on the optimum CN0.2.
The reason for assuming a 1 km2 watershed area is to facilitate the visualization of the
consequences of incorrect estimations that may be referred to by practitioners or engineers.
This is equivalent to nearly 20 Olympic-sized swimming pools volume difference for 1 km2

watershed (the calculation of runoff volume is detailed in Appendix F). If the flood control
infrastructure is designed based only on the reference of optimum CN0.2, it may not have
enough capacity to handle the runoff volume difference of 50,100 m3/km2 watershed area
in the case of a maximum runoff event, leading to possible flooding. The results in Table 6
serve as a warning to practitioners that the design of flood prevention infrastructure should
not solely rely on the optimum CN0.2 runoff estimation, but also take into consideration
the maximum estimated runoff amount to reduce the risk of flooding.

3.2. Impact of Human Activities on Runoff Amount in Malaysia

The results of both the Kolmogorov–Smirnov and Shapiro–Wilk tests indicate that the
runoff data for both Peninsular Malaysia and East Malaysia are not normally distributed
(p < 0.01), so the median runoff for each year will represent the overall annual runoff.
Over the decades, the forested areas in both Peninsular Malaysia and East Malaysia have
decreased. The changes in forested areas and the runoff difference under maximum rainfall
conditions over the decades in both regions are presented in Tables 7 and 8.
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Table 7. The decadal changes in the amount and the corresponding percentage of forest area and
runoff difference in Peninsular Malaysia.

Interdecadal Period
Forest Area Model Runoff Difference,

Qv, observed

(‘000 Ha) (%) (mm) (%)

1970s–1980s −1736.47 −21.69% 5.71 42.26%
1980s–1990s −381.18 −6.00% 8.91 46.36%
1970s–1990s −2032.94 −25.39% 14.62 108.22%

Table 8. The decadal changes in the amount and the corresponding percentage of forest area and
runoff difference in East Malaysia.

Interdecadal Model
Forest Area Runoff Difference, Qv, observed

(‘000 Ha) % (mm) (%)

1987s–1990s −771 −5.71% 0.25 1.75%
1991s–2000s −1057 −7.89% 4.35 29.90%
1987s–2010s −1167 −9.24% 4.60 32.17%

Tables 7 and 8 present the decreasing trend in forest areas in Malaysia over the
decades, with the most significant declines of 25% in Peninsular Malaysia from the 1970s
to the 1990s and 9% in East Malaysia from the 1980s to the 2010s. This reduction in
forest area is accompanied by an increase in the decadal runoff difference, with the most
significant rises of 108% in Peninsular Malaysia from the 1970s to the 1990s and 32% in
East Malaysia from the 1980s to the 2010s. To examine the connection between changes in
forest area and changes in runoff amount, the best correlation models between forest area
and runoff amount for both regions were identified, along with the adjusted coefficient of
determination (adjusted R-squared) for each model, and are shown in Table 9.

Table 9. The best correlation models for each dataset and the corresponding adjusted R-squared.

Study Site Dataset Best Correlation Model R2
adj

Peninsular Malaysia Runoff and FA Q = e(
19629.67

FA ) 0.947
East Malaysia Runoff and FA Q = e(

38499.45
FA ) 0.949

Note: Q is the runoff amount (mm) and FA is the forest area (‘000 Ha).

The best correlation model that links the forest area and runoff for both Peninsular
Malaysia and East Malaysia demonstrates a significant negative correlation between the
two. A high adjusted R-squared in the range of [0.947, 0.949] and a p-value of less than 0.001
indicate a strong correlation between the forest area reduction and the increase in runoff.
This observation aligns with prior studies, which suggest that deforestation or reduction in
forest area results in an increase in runoff [28–30,33].

4. Discussion

4.1. Validity of Ia = 0.2S and the Newly Proposed Correlation of Ia = SL

Previous research has shown that the linear correlation (Ia = 0.2S) proposed by the
SCS in 1954 to simplify its rainfall runoff model, which is widely used as the conventional
SCS runoff prediction (Equation (2)), lacks statistical verification even within its own
datasets [23,34]. This has led to numerous reports of inaccuracies and inconsistencies in the
model’s runoff predictions by studies worldwide [17,18,24,34,38,49,51–55].

The SCS proposed a linear correlation of Ia = 0.2S in 1954 to simplify Equation (1) [13–15],
but two studies have shown it to be statistically insignificant even to the original SCS
dataset. These studies found that the best correlation should be Ia = 0.111S or Ia = 0.112S,
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instead of Ia = 0.2S [34,35]. Unlike previous studies, which calibrated the SCS-CN runoff
predictive model based on Ia = λS, this study assessed the use of a non-linear correlation
between Ia and S in the form of Ia = SL to simplify Equation (1) and revise the SCS-CN
rainfall runoff model to improve its runoff estimates.

The use of Equation (2) in education raises serious concerns. It could lead students to
adopt a simplified and flawed approach for runoff prediction, which would have a wide
impact on related fields such as water resource management, environmental science, and
civil engineering. As Equation (2) was found to be statistically insignificant even to its
original dataset, this can mislead students into following a faulty rainfall runoff model.
Additionally, continued use of Equation (2) in educational resources such as textbooks,
software, government agency handbooks, and training perpetuates the use of an unreliable
runoff prediction method. Updating and enhancing the SCS-CN model for educational
purposes is crucial to ensure that students and professionals have accurate and effective
tools for runoff prediction. Only with the corrected rainfall runoff model can the reliability
and accuracy of the model, along with the related software, be improved and applied in
industry in the future.

4.2. Application of Newly Calibrated Runoff Predictive Models

This study uses the largest collected rainfall runoff dataset from watersheds in Malaysia
under the DID-HP 11 and DID-HP 27 programs for analysis. The results showed that the
power regression model was better at predicting runoff compared to the conventional
SCS-CN rainfall runoff (Equation (2)), where the accuracy and the consistency of the model
had been improved significantly. The comparison of the model performance is summarized
in Appendix D. The ratios of Ia to S were found to be mostly 5% or lower and far from the
SCS’s proposed value of 0.2 (20%) [17,18,24,34,38,49,51–55]. This shows that the calibrated
and revised models are able to produce outcomes that are in line with the published results
from past research. In addition, the newly revised model has been tested with multiple
datasets across different catchments in Malaysia, China, and Greece and has demonstrated
enhanced runoff estimation accuracy to formulate the CN runoff model with the power
correlation of Ia = SL [12].

This study also highlights the importance of designing flood control infrastructure
based on the maximum estimated runoff amount. The runoff estimates based on the upper
limit of the BCa 99% CI for CN0.2 were significantly higher than the estimates based on the
optimum CN0.2 values. Not designing flood prevention infrastructure based on the maxi-
mum estimate could result in an underestimation of the runoff volume of approximately
20 Olympic-sized swimming pools per 1 km2 area (Table 6). This revised CN model has
the potential to improve water resource management by providing more accurate runoff
predictions for different soil and hydrological conditions. This can aid in making better
informed decisions about water availability and flood hazards, as accurate quantification
of runoff is crucial for managing water resources, particularly for predicting floods.

The revised CN model allows for a more precise calculation of runoff from a specific
region considering various soil and hydrological conditions. This information is critical for
effective water resource management, as it predicts water availability and helps assess flood
risks, reducing harm to infrastructure, lives, and finances caused by floods. It is crucial for
professionals in the field to be familiar with the improved SCS rainfall runoff model and
consider using it in their work. This revised model has the ability to give more accurate and
reliable predictions of runoff, which can greatly enhance water resource management and
flood prediction outcomes. With the enhanced rainfall runoff model, potential flood issues
can be coped with in a much more efficient way, helping practitioners reduce financial loss
caused by flood damage and poor flood prevention planning.

4.3. Decadal Runoff Trend Analaysis in Both Peninsular Malaysia and East Malaysia

The increasing trend in runoff in both Peninsular Malaysia and East Malaysian water-
sheds over the decades is a matter of concern for flood mitigation. The amount of runoff,
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which is a measure of the flow of water, is an important factor in the prediction of flood
hazards. By using the BCa 99% CI for CN0.2 calculation in both regions, it is possible to
determine the maximum runoff across the decades, which indicates that the maximum
runoff amount has increased over time. This trend highlights the need to be proactive in
mitigating the risk of flooding. It is important for engineers and hydrologists in Malaysia
to take note of this trend and plan flood control infrastructure accordingly. Proper planning
and management of flood control infrastructure can help to mitigate the impact of floods
and reduce the risk of damage to people, property, and the environment.

This study examined the link between deforestation and runoff. A correlation between
decreasing forest area and increasing runoff amounts in Peninsular Malaysia and East
Malaysia over the decades was established (Tables 7–9). This demonstrates that deforesta-
tion has contributed to the increase in runoff. These results align with previous research
indicating that deforestation can lead to higher runoff. Therefore, it is crucial for federal
agencies to implement effective forest management strategies, such as afforestation or
reforestation, to mitigate runoff and potential flood problems.

It is crucial to understand the impact of deforestation on runoff, as this can have signif-
icant implications for water resource management and flood mitigation. By implementing
proper forest management strategies, the negative effects of deforestation can be mitigated,
which can help to reduce the risk of flooding and improve water resource management.
This highlights the importance of considering the relationship between deforestation and
runoff in order to make informed decisions about the management of forested areas.

4.4. Exploring the Application of Machine Learning for Rainfall Runoff Prediction

In the last few decades, machine learning has become increasingly popular in hydrol-
ogy research. Several machine learning techniques, including long short-term memory
(LSTM), adaptive neuro-fuzzy inference systems (ANFIS), multilayer perceptron (MLP),
wavelet neural networks (WNN), ensemble prediction systems (EPS), support vector ma-
chines (SVM), support vector regression (SVR), and artificial neural networks (ANN), have
been introduced by researchers to enhance the precision and effectiveness of predictive
models. Hybrid machine learning approaches, such as ANFIS and WNN, have also been
found to offer improved accuracy and performance for long-term and short-term rainfall
runoff models [44]. Furthermore, machine learning can be applied to resolve the issue of
a lack of time series data for flow hydrographs due to the absence of gauged stations by
using flood modelling methods, such as the reverse flood routing model, HEC-RAS, and
GIS flood maps. The new rainfall runoff model proposed in this study may also benefit
from being combined with machine learning techniques [19–21].

5. Conclusions

This study employed a new correlation (Ia = SL) to calibrate the SCS rainfall runoff
prediction framework (Equation (1)) using inferential statistics. It assessed the accuracy of
the newly calibrated model, analyzed the decadal runoff trends in Malaysia, and studied
the effect of deforestation on the runoff trends. The main findings are:

1. This study demonstrated the unreliability of the SCS’s proposed relation of Ia = 0.2S,
indicating a need to update the SCS runoff prediction model. The new power cor-
relation of Ia = SL shows improved accuracy in runoff prediction. The results align
with previous global studies, indicating an Ia to S ratio of around 5% or less, which is
significantly different from the traditional value of 0.2 (20%) proposed by the SCS. On
average, the power regression model exhibits a 138% higher predictive accuracy than
the conventional SCS-CN model, as measured by the KGE index.

2. This study emphasizes designing flood control infrastructure based on the maximum
estimated runoff amount. Not using this estimate could result in a 50,100 m3 underes-
timation of the runoff volume per 1 km2 watershed area in Malaysia, as indicated by
the difference between the optimum CN0.2 values and the upper limit of the BCa 99%
CI for CN0.2.
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3. This study found a strong correlation between decreasing forest area and increasing
runoff difference in Malaysia over time. Peninsular Malaysia saw a 25% reduction in
forest area from the 1970s to the 1990s, and East Malaysia experienced a 9% reduction
from the 1980s to the 2010s. This was accompanied by an increase in decadal runoff
difference, with the most significant increases of 108% in Peninsular Malaysia from
the 1970s to the 1990s and 32% in East Malaysia from the 1980s to the 2010s.

4. The proposed methodology requires a minimum dataset of 25 data pairs for accurate
inferential results and relies on the bootstrap BCa method for optimizing key variables
and formulating a new runoff predictive model. Therefore, using statistical software
with this method is essential. Future studies may consider incorporating machine
learning methods to further enhance the model’s performance.
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Appendix A

Past studies rearranged Equation (1) into a general formula for S to obtain the cor-
responding S values according to P and Q datasets. However, the SCS proposed that
Ia = 0.2S and simplified Equation (1) to Equation (2), whereby P must be > 0.2S for runoff
(Q) to occur.

In this study, the power regression model was incorporated into the SCS-CN rainfall
runoff model with the aim of obtaining a simplified closed-form general formula for S in
the newly calibrated runoff model. The newly proposed power correlation between Ia and
S in the form of Ia = SL was substituted into Equation (1):

Q =
(P−SL)

2

(P−SL+S)

Q
(

P − SL + S
)
= (P − SL)

2

QP − QSL + SQ = P2 − 2PSL + S2L

QP − P2 = S2L + (Q − 2P)SL +

(
Q − 2P

2

)2
− SQ −

(
Q − 2P

2

)2

(SL + Q−2P
2 )

2
= 1

4

(
4SQ + 4PQ + Q2 − 4PQ + 4P2 − 4P2

)
(2SL + Q − 2P)

2
= 4SQ + Q2

(A1)

The general formula for S in its simplest form is presented in Equation (A1), as no
further simplification is possible. Currently, there is no closed form for the general formula
for S from the revised model, so a numerical analysis technique will be used to determine
the S value using the general formula for S, also referred to as Equation (6) in the article.

Appendix B. Refer to Section 2.4, Equation (6) in [47] and Section 2, Equation (8) in [56]

We managed to rearrange Equation (1) into a general formula for S in our past studies
(when Ia = λS) as below [47,56]:
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Sλ =

[
P − (λ−1)Q

2λ

]
−
√

PQ − P2 +
[
P − (λ−1)Q

2λ

]2

λ
(A2)

If λ = 0.2, Equation (A2) can be simplified to become Equation (7).
Equation (7) represents the general equation for S when λ = 0.2, allowing for calculation

of S0.2 from P and Q values. Equation (7) is identical to Hawkins’ previous study [35,49].
By using Equation (7), S0.2 can be calculated for each P–Q pair from all study sites and the
correlation between S0.2 and Sλ can be established using SPSS. The correlation equation
can then be integrated into the SCS-CN curve number model to determine CN0.2 for
each dataset.

Appendix C

In this study, the SCS model calibration steps and CN0.2 value derivation are summa-
rized as below:

1. The SCS stated that Ia = λS, while the effective rainfall (Pe) = P − Ia, and therefore
Equation (1) (Q = P−Ia

P−Ia+S ) can be expressed as:

Q =
Pe

2

Pe + S
or S =

Pe
2

Q
− Pe

This study follows the same framework, except that Ia = SL instead of Ia = λS

2. Given a P–Q dataset, the corresponding Li and Si values to Pi and Qi can be calculated
through numerical analysis technique with Equation (6) or (A1). To date, there is no
closed form for the general equation for S. Therefore, a numerical analysis technique
will be used to solve for the corresponding Si values.

3. With bootstrap, a BCa procedure (selects 95–99% confidence interval level) to generate
the confidence interval (CI) for derived Li and Si datasets and check for its dataset
normality in SPSS (or other statistical software):

(a) If the dataset is normally distributed, the optimum S and L values are found
from the mean BCa CI to formulate a new runoff predictive model.

(b) Otherwise, the S and L optimization process will refer to the median BCa CI
(denote the optimum value of both parameters as Loptimum and Soptimum).

4. To formulate the new SCS-CN rainfall runoff model, both Loptimum and Soptimum

values are substituted into Equation (1) with Ia = SL.
5. The corresponding Si values with the same P–Q dataset are computed, along with the

Loptimum value with Equations (A1) or (6) through numerical analysis technique.
6. Given (Pi, Qi) data pairs and λ = 0.2, S0.2i values are computed with Equations (A3) or (7).
7. S0.2i (from step 6) and Si (from step 5) values are correlated to obtain a correlation

equation between S0.2i and Si via SPSS for curve number (CN0.2) value derivation.
8. The S correlation equation from step 7 is substituted into the SCS curve number

formula (CN0.2 = 25,400
S0.2+254 ) to derive the CN0.2 value.

Note: Refer to the example discussion from Section 2.3 in the article.

Appendix D

The performance of the decadal model was evaluated in Section 3.1 and shown in
Tables 1 and 2. To compare the runoff predictive ability of the newly calibrated model and
Equation (2), the performance of the latter had to be determined first. In Equation (2), the
value of λ was set to 0.2, as suggested by the SCS, and the optimum S value was determined
with the constraint of S being greater than 0.

The optimum S value for the conventional model was determined and then the
Nash–Sutcliffe index, the bias, and the KGE index were also calculated. A comparison of
the performance between the recalibrated model and the conventional model was then
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made using the Nash–Sutcliffe index (E), the bias, and the Kling–Gupta efficiency index
(KGE) for each decadal model in Peninsular Malaysia and East Malaysia, as shown in
Table A1.

The results in Table A1 show that, for all the decadal models, the KGE index of the
power regressed model is higher than that of the conventional SCS-CN model. Since the
KGE index considers both the bias and the flow variability error, it provides a more accurate
and meaningful evaluation compared to the Nash–Sutcliffe index (E), which is not sensitive
to bias. The overall results indicate that the power regressed model improves the accuracy
and consistency of the rainfall runoff model, as demonstrated by its higher E index, reduced
bias, and higher KGE index.

Table A1. Comparison of the performance of the recalibrated model with the conventional model,
based on the Nash–Sutcliffe index (E), the bias, and the Kling–Gupta efficiency index (KGE) for each
decadal model in Peninsular Malaysia and East Malaysia, with the constraint Ia < P applied to the
conventional SCS-CN model.

Decadal Model
Power Regressed Model Conventional SCS-CN Model

E Bias KGE E Bias KGE

70PM 0.941 0 0.968 0.876 12.29 0.579
80PM 0.906 0.497 0.947 0.506 24.85 0.346
90PM 0.892 0 0.925 0.801 10.75 0.733
85EM −0.387 −1.910 0.307 −0.108 9.49 −0.401
90EM 0.788 0 0.713 0.316 12.22 0.195
2KEM 0.730 0 0.866 0.302 12.72 0.391

Notes: A positive Bias in Equation (2) indicates that the conventional SCS-CN model overestimated the runoff
depths for all datasets in this study. On average, the power regression model shows a 138% improvement in
predictive accuracy compared to the conventional SCS-CN model, as measured by the KGE index.

The 95% and 99% BCa confidence intervals of λ for each decadal model in Peninsular
Malaysia and East Malaysia were determined with the SPSS according to the methodology
of one of our past studies [38] and tabulated in Table A2.

Table A2. The BCa confidence intervals of λ for each decadal model in Peninsular Malaysia and East
Malaysia for the conventional SCS-CN model.

Decadal Model Std. Dev.
95% BCa CI for λ 99% BCa CI for λ

Lower Upper Variation Lower Upper Variation

70PM 0.123 0.057 0.082 44.04% 0.053 0.089 66.32%
80PM 0.088 0.014 0.018 27.48% 0.014 0.020 40.91%
90PM 0.132 0.032 0.046 46.07% 0.032 0.054 69.27%
85EM 0.259 0.028 0.072 158.77% 0.025 0.080 218.59%
90EM 0.078 0.006 0.009 42.03% 0.006 0.009 66.27%
2KEM 0.176 0.014 0.053 274.04% 0.014 0.061 349.23%

The variability of the BCa confidence interval and the non-zero standard deviation
values showed that the λ value is not a constant, as proposed by the SCS, but a variable.
The proposed value of λ by SCS (λ = 0.2) does not fall within any 95% and 99% confidence
intervals in this study (Table A2). This indicates that the conventional SCS-CN model,
Equation (2), is not even statistically valid at the alpha = 0.05 level and therefore cannot be
adopted for runoff estimates for any dataset in this study.

Appendix E

As an example, this section shows the procedure to formulate the runoff prediction
model for East Malaysia’s 2KEM dataset model.

The runoff equation for the 2KEM dataset model is as follows, when the optimum L = 0.316:
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Q0.316 =

[
P − S0.316

0.316]2
[P − S0.316

0.316 + S0.316]

The best S correlation equation for the 2KEM dataset model was identified in SPSS as follows:

S0.2 = S0.316
0.896

where the equation can be rearranged as:
S0.316 = S0.2

1.115

By substituting the S correlation back into the runoff equation, the runoff equation is
shown as below:

Q0.316 =

[
P − (S0.2

1.115 )
0.316

]2[
P − (S0.21.115 )

0.316
+ (S0.21.115 )

]
The above runoff equation can be re-expressed using the CN0.2 as shown below.

Equation (10) will be utilized to express S0.2 in terms of CN0.2, and the resulting runoff
model in terms of P and CN0.2 will be expressed as follows. After further simplification of
the equation, the simplified recalibrated runoff equation in terms of P and CN0.2 for the
2KEM dataset model is presented as follows:

Q0.316 =

[
P −

((
254
(

100
CN0.2

− 1
))1.115

)0.316
]2

[
P −

((
254
(

100
CN0.2

− 1
))1.115

)0.316
+
(

254
(

100
CN0.2

− 1
))1.115

]

Q0.316 =

[
P −

(
7.032

(
100

CN0.2
− 1
)0.352

) ]2

[
P −

(
7.032

(
100

CN0.2
− 1
)0.352

)
+
(

480.164
(

100
CN0.2

− 1
))1.115

]
With a similar derivation approach, decadal models in this study can be derived as

shown in Table A3:

Table A3. Equations for each decadal model in Peninsular Malaysia and East Malaysia.

Peninsular Malaysia

Decadal Datasets Decadal Model Equations

1970s
(70PM) Q0.168 =

[
P−
(

2.947
(

100
CN0.2

−1
)0.195

) ]2

[
P−
(

2.947
(

100
CN0.2

−1
)0.195

)
+

(
619.458

(
100

CN0.2
−1
)1.161

)]

1980s
(80PM) Q0.228 =

[
P−
(

4.186
(

100
CN0.2

−1
)0.259

) ]2

[
P−
(

4.186
(

100
CN0.2

−1
)0.259

)
+

(
530.489

(
100

CN0.2
−1
)1.133

) ]

1990s
(90PM) Q0.232 =

[
P−
(

4.237
(

100
CN0.2

−1
)0.261

) ]2

[
P−
(

4.237
(

100
CN0.2

−1
)0.261

)
+

(
501.913

(
100

CN0.2
−1
)1.123

) ]
East Malaysia

1985s
(85EM) Q0.332 =

[
P−
(

7.959
(

100
CN0.2

−1
)0.375

) ]2

[
P−
(

7.959
(

100
CN0.2

−1
)0.375

)
+

(
518.869

(
100

CN0.2
−1
)1.129

) ]

1990s
(90EM) Q0.274 =

[
P−
(

5.505
(

100
CN0.2

−1
)0.308

) ]2

[
P−
(

5.505
(

100
CN0.2

−1
)0.308

)
+

(
507.502

(
100

CN0.2
−1
)1.125

)]
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Table A3. Cont.

Peninsular Malaysia

Decadal Datasets Decadal Model Equations

2000s
(2KEM) Q0.316 =

[
P−
(

7.032
(

100
CN0.2

−1
)0.352

) ]2

[
P−
(

7.032
(

100
CN0.2

−1
)0.352

)
+

(
480.164

(
100

CN0.2
−1
)1.115

) ]

Appendix F

According to Table 6 in Section 3.1, the optimum value of CN0.2 in the 2KEM dataset
in East Malaysia is 73.76. With the highest recorded rainfall depth of 224 mm in the same
decade, the estimated runoff can be calculated using Equation (10) for the S correlation and
Equation (12) as 129.48 mm. As per Appendix E, the runoff equation for the 2KEM dataset
model in terms of P and CN0.2 has been recalibrated and is presented as follows:

Q0.316 =

[
P −

((
254
(

100
CN0.2

− 1
))1.115

)0.316
]2

[
P −

((
254
(

100
CN0.2

− 1
))1.115

)0.316
+
(

254
(

100
CN0.2

− 1
))1.115

]

As the optimum (collective representation of) CN0.2 = 73.76 and with a rainfall depth
of 224 mm, the estimated runoff obtained is as follows:

Q0.316 =

[
224−

(
(254( 100

73.76−1))
1.115)0.316

]2

[
224−

(
(254( 100

73.76−1))
1.115)0.316

+(254( 100
73.76−1))

1.115
]

Q0.316 =

[
224−(90.361.115)

0.316]2[
224−(90.361.115)

0.316
+90.361.115

]
Q0.316 = [224−4.89]2

[224−4.89+151.68]

Q0.316 = [219.11]2

[370.79]

Q0.316 = 129.48 mm

A higher CN0.2 value will result in a higher runoff amount; thus, to obtain the maxi-
mum runoff amount, the 99% BCa upper limit and the CN0.2 will be selected to estimate
the maximum runoff amount. As shown in Section 3.1 (Table 5), the 99% BCa lower and
upper limit of CN0.2 for the 2KEM model were 72.15 and 88.32 respectively.

Since the corresponding 99% BCa upper limit of the CN0.2 = 88.32, the estimated
runoff amount can also be obtained with a similar approach as shown above, resulting in a
value of 179.58 mm. Comparing both the runoff amount estimated based on the collective
representation (optimum CN0.2) and the 99% BCa upper limit of CN0.2, a runoff difference
(Qv) of 50.10 mm is observed.

If Qv = 179.58–129.48 mm = 50.10 mm, thus

Qv =
50.10
1000

m

Qv = 0.05010 m

For the calculation of the runoff volume, for illustration purposes, the watershed is set
to be an area of 1 km2. Then, the calculation of the volume in the watershed can be shown
as follows:
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1 km = 1000 m
1 km2 = (1000)2 m2

Runoff Volume Difference = Watershed Area × Runoff Depth Difference
Runoff Volume Difference = 1 km2 × Qv

Runoff Volume Difference = (1000)2 m2 × 0.05010 m
Runoff Volume Difference = 50, 100 m3/1 km2 watershed area

Therefore, for a one square kilometer watershed, the difference in runoff volume
between the maximum runoff estimate and the estimated runoff based on the optimum
CN0.2 is 50,100 cubic meters, or 50.1 million liters. This shows that practitioners should
consider not only the runoff estimate based on the optimum CN0.2 value, but also the
maximum estimated runoff, when designing flood control infrastructure, in order to reduce
the risk of overflow due to inadequate capacity of flood control structures such as dams
and flood walls.

Appendix G

To emphasize the significance of calibrating the rainfall runoff model using a new
correlation model as proposed in this study, Figures A1 and A2 were created to demonstrate
the impact of not implementing an appropriate correlation model in Peninsular Malaysia
and East Malaysia. The decadal model which recorded the maximum rainfall was selected
for both Peninsular Malaysia (70PM) and East Malaysia (90EM) to highlight the differences
in runoff between the CN0.2 values.

In Section 3.1, Tables 1 and 2 show that the L values for 70PM and 90EM were 0.168
and 0.274, respectively. The initial abstraction value (Ia) for both 70PM and 90EM can be
determined by the following equations:

70PM : Ia = S0.168 (A3)

90EM : Ia = S0.274 (A4)

From Table A3 in Appendix E, the calibrated runoff model was derived in terms of
CN0.2 as follows for 70PM and 90EM (the derivation of the calibrated runoff model is
summarized in Appendix E).

70PM : Q0.168 =

[
P −

(
2.947

(
100

CN0.2
− 1
)0.195

) ]2

[
P −

(
2.947

(
100

CN0.2
− 1
)0.195

)
+

(
619.458

(
100

CN0.2
− 1
)1.161

)] (A5)

90EM : Q0.274 =

[
P −

(
5.505

(
100

CN0.2
− 1
)0.308

) ]2

[
P −

(
5.505

(
100

CN0.2
− 1
)0.308

)
+

(
507.502

(
100

CN0.2
− 1
)1.125

)] (A6)

Meanwhile, the conventional SCS-CN rainfall runoff model can be derived in terms of
CN0.2 as follows:

Q0.2 =
(P − 0.2S)2

(P − 0.2S + S)
Q0.2 =

(P − 0.2S)2

(P + 0.8S)

With Equation (10), the conventional SCS-CN rainfall runoff will be expressed in terms
of CN0.2 (Equation (A7)) as follows:

Q0.2 =

(
P − 0.2

(
254 ×

(
100

CN0.2
− 1
)))2(

P + 0.8
(

254 ×
(

100
CN0.2

− 1
)))
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Q0.2 =

(
P − 50.8

(
100

CN0.2
− 1
))2(

P + 203.2
(

100
CN0.2

− 1
)) (A7)

Once the calibrated runoff models for both decadal models and the conventional
SCS-CN model were identified, the models were used to determine the runoff difference
(Qv) between the runoff obtained from the conventional rainfall runoff model and the one
obtained from the calibrated model under the conditions of maximum rainfall amount. For
Peninsular Malaysia, the maximum rainfall amount (P) was nearly 490 mm, while for East
Malaysia, the maximum rainfall amount (P) was approximately 580 mm.

The runoff difference (Qv) was calculated by Equations (A8) and (A9) as follows:

70PM : Qv = Q0.2 (A7)− Q0.168 (A5) (A8)

90EM : Qv = Q0.2 (A7)− Q0.274 (A6) (A9)

The Qv obtained from Equation (A8) and Equation (A9) were plotted against different
CN0.2 values, respectively. Figures A1 and A2 show the runoff differences between the
conventional SCS-CN rainfall runoff model (Equation (2)) and the calibrated model across
different CN0.2 values in both Peninsular Malaysia in the 1970s and East Malaysia in
the 1990s.

From the observations in Figures A1 and A2, the highest runoff difference (Qv) in
Peninsular Malaysia was nearly 65 mm at a maximum rainfall amount (P) of 490 mm,
while in East Malaysia, the highest runoff difference (Qv) was nearly 45 mm at a maximum
rainfall amount (P) of 580 mm. This indicates a significant overprediction of the runoff
depth if the calibrated model is not used.
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Figure A1. The runoff difference between the conventional SCS-CN rainfall runoff model and the
calibrated model across different CN0.2 values in Peninsular Malaysia during the 1970s. Note: 490 mm
is the highest recorded rainfall amount in Peninsular Malaysia.
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Figure A2. The runoff difference between the conventional SCS-CN rainfall runoff model
(Equation (2)) and the calibrated model across different CN0.2 values in East Malaysia during the
1990s. Note: 580 mm is the highest recorded rainfall amount in East Malaysia.

As mentioned in Appendix E, a difference of 1 mm in runoff can result in a runoff
volume difference of 1000 m3/1 km2 in the watershed area in Malaysia. This highlights the
crucial need to revise and calibrate the rainfall runoff model using the power regression
model of Ia = SL. As illustrated in Figures A1 and A2, without proper model calibration,
a volume difference of nearly 65,000 m3 or 45,000 m3 in runoff could be overestimated in
both Peninsular Malaysia and East Malaysia. This may lead to potential opportunity loss
for flood prevention planning based on an overprediction of the conventional SCS-CN
rainfall runoff model (Equation (2)).

References
1. Yang, T.H.; Liu, W.C. A General Overview of the Risk-Reduction Strategies for Floods and Droughts. Sustainability 2020, 12, 2687.

[CrossRef]
2. Zhang, W.; Luo, M.; Gao, S.; Chen, W.; Hari, V.; Khouakhi, A. Compound Hydrometeorological Extremes: Drivers, Mechanisms

and Methods. Front. Earth Sci. 2021, 9, 673495. [CrossRef]
3. Garner, G.; van Loon, A.F.; Prudhomme, C.; Hannah, D.M. Hydroclimatology of Extreme River Flows. Freshw. Biol. 2015, 60,

2461–2476. [CrossRef]
4. Morin, E.; Harats, N.; Jacoby, Y.; Arbel, S.; Getker, M.; Arazi, A.; Grodek, T.; Ziv, B.; Dayan, U. Studying the Extremes:

Hydrometeorological Investigation of a Flood-Causing Rainstorm Over Israel. Adv. Geosci. 2007, 12, 107–114. [CrossRef]
5. Nyeko-Ogiramoi, P.; Willems, P.; Ngirane-Katashaya, G. Trend and Variability in Observed Hydrometeorological Extremes in the

Lake Victoria Basin. J. Hydrol. 2013, 489, 56–73. [CrossRef]
6. Fattorelli, S.; Fontana, G.D.; Ros, D. Flood Hazard Assessment and Mitigation. In Floods and Landslides: Integrated Risk Assessment;

Springer: Berlin/Heidelberg, Germany, 1999; pp. 19–38.
7. Tsakiris, G. Flood Risk Assessment: Concepts, Modelling, Applications. Nat. Hazards Earth Syst. Sci. 2014, 14, 1361–1369.

[CrossRef]
8. Sitterson, J.; Knightes, C.; Parmar, R.; Wolfe, K.; Avant, B.; Muche, M. An Overview of Rainfall-Runoff Model Types. In

Proceedings of the International Congress on Environmental Modelling and Software, Collins, CO, USA, 24–28 June 2018; p. 41.
9. Nagure, A.S.; Shahapure, S.S. Effect of Watershed Characteristics on a Rainfall Runoff Analysis and Hydrological Model Selection-

A Review. In Proceedings of the 2021 International Conference on Computing, Communication and Green Engineering (CCGE),
Pune, India, 23–25 September 2021; IEEE: New York, NY, USA, 2021.

10. Rezaie-Balf, M.; Zahmatkesh, Z.; Kim, S. Soft Computing Techniques for Rainfall-Runoff Simulation: Local Non–Parametric
Paradigm vs. Model Classification Methods. Water Resour. Manag. 2017, 31, 3843–3865. [CrossRef]

11. Vafakhah, M.; Janizadeh, S.; Bozchaloei, S.K. Application of Several Data-Driven Techniques for Rainfall-Runoff Modeling.
Ecopersia 2014, 2, 455–469.

12. Lee, K.K.F.; Ling, L.; Yusop, Z. The Revised Curve Number Rainfall-Runoff Methodology for an Improved Runoff Prediction.
Water 2023, 15, 491. [CrossRef]

13. N.E.D.C. Engineering Hydrology Training Series. In Module 205-SCS Runoff Equation; N.E.D.C.: London, UK, 1997;
Available online: https://d32ogoqmya1dw8.cloudfront.net/files/geoinformatics/steps/nrcs_module_runoff_estimation.pdf
(accessed on 8 July 2022).

http://doi.org/10.3390/su12072687
http://doi.org/10.3389/feart.2021.673495
http://doi.org/10.1111/fwb.12667
http://doi.org/10.5194/adgeo-12-107-2007
http://doi.org/10.1016/j.jhydrol.2013.02.039
http://doi.org/10.5194/nhess-14-1361-2014
http://doi.org/10.1007/s11269-017-1711-9
http://doi.org/10.3390/w15030491
https://d32ogoqmya1dw8.cloudfront.net/files/geoinformatics/steps/nrcs_module_runoff_estimation.pdf


Water 2023, 15, 1392 23 of 24

14. Soil Conservation Service (S.C.S.). National Engineering Handbook; Section 4; US Soil Conservation Service: Washington, DC, USA,
1964; Chapter 10. Available online: https://directives.sc.egov.usda.gov/RollupViewer.aspx?hid=17092 (accessed on 10 July 2022).

15. USDA; NRCS. National Engineering Handbook, Part 630 Hydrology; US Soil Conservation Service: Washington, DC, USA, 1964;
Chapter 10.

16. Mishra, S.K.; Suresh Babu, P.; Singh, V.P. SCS-CN Method Revisited. In Advances in Hydraulics and Hydrology; Water Resources
Publications: Littleton, CO, USA, 2007.

17. Tan, W.J.; Ling, L.; Yusop, Z.; Huang, Y.F. New Derivation Method of Region Specific Curve Number for Urban Runoff Prediction
at Melana Watershed in Johor, Malaysia. IOP Conf. Ser. Mater. Sci. Eng. 2018, 401, 012008. [CrossRef]

18. Yuan, L.; Sinshaw, T.; Forshay, K.J. Review of Watershed-Scale Water Quality and Nonpoint Source Pollution Models. Geosciences
2020, 10, 25. [CrossRef] [PubMed]

19. Mosavi, A.; Ozturk, P.; Chau, K. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536.
[CrossRef]

20. Fu, M.; Fan, T.; Ding, Z.; Salih, S.Q.; Al-Ansari, N.; Yaseen, Z.M. Deep Learning Data-Intelligence Model Based on Adjusted
Forecasting Window Scale: Application in Daily Streamflow Simulation. IEEE Access 2020, 8, 32632–32651. [CrossRef]

21. Kaya, C.M.; Tayfur, G.; Gungor, O. Predicting Flood Plain Inundation for Natural Channels Having No Upstream Gauged
Stations. J. Water Clim. Chang. 2019, 10, 360–372. [CrossRef]

22. Hawkins, R.H.; Moglen, G.E.; Ward, T.J.; Woodward, D.E. Updating the Curve Number: Task Group Report. In Proceedings of the
Watershed Management 2020, Henderson, NV, USA, 20–21 May 2020; American Society of Civil Engineers: Reston, VA, USA, 2020;
pp. 131–140.

23. Hawkins, R.H.; Yu, B.; Mishra, S.K.; Singh, V.P. Another Look at SCS-CN Method. J. Hydrol. Eng. 2001, 6, 451–452. [CrossRef]
24. Hawkins, R.; Ward, T.J.; Woodward, E.; van Mullem, J.A. Continuing Evolution of Rainfall-Runoff and the Curve Number

Precedent. In Proceedings of the 2nd Joint Federal Interagency Conference, Las Vegas, NV, USA; 2010; pp. 1–12.
25. Qin, T. Urban Flooding Mitigation Techniques: A Systematic Review and Future Studies. Water 2020, 12, 3579. [CrossRef]
26. Cooper, R.J.; Hiscock, K.M.; Lovett, A.A. Mitigation Measures for Water Pollution and Flooding. In Landscape Planning with Ecosys-

tem Services; von Haaren, C., Lovett, A., Albert, C., Eds.; Landscape series; Volume 24, Springer: Dordrecht, The Netherlands, 2019.
[CrossRef]

27. Xie, J.; Chen, H.; Liao, Z.; Gu, X.; Zhu, D.; Zhang, J. An Intergrated Assessment of Urban Flooding Mitigation Strategies for
Robust Decision Making. Environ. Model. Softw. 2017, 95, 143–155. [CrossRef]
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