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Abstract: In this work, membranes were synthesized by depositing fluoropolymer coatings onto
metal meshes using the hot wire chemical vapor deposition (HW CVD) method. By changing the
deposition parameters, membranes with different wetting angles were obtained, with water contact
angles for different membranes over a range from 130◦ ± 5◦ to 170◦ ± 2◦ and a constant oil contact
angle of about 80◦ ± 2◦. These membranes were used for the separation of an oil–water emulsion
in a simple filtration test. The main parameters affecting the separation efficiency and the optimal
separation mode were determined. The results reveal the effectiveness of the use of the membranes
for the separation of emulsions of water and commercial crude oil, with separation efficiency values
that can reach over 99%. The membranes are most efficient when separating emulsions with a water
concentration of less than 5%. The pore size of the membrane significantly affects the rate and
efficiency of separation. Pore sizes in the range from 40 to 200 µm are investigated. The smaller the
pore size of the membranes, the higher the separation efficiency. The work is of great economic and
practical importance for improving the efficiency of the membrane separation of oil–water emulsions.
It lays the foundation for future research on the use of hydrophobic membranes for the separation of
various emulsions of water and oil products (diesel fuel, gasoline, kerosene, etc.).

Keywords: hydrophobic; fluoropolymer; oil–water separation; stainless steel mesh; superhydrophobic

1. Introduction

The separation of oil and water is an important task for oil production, ecology,
wastewater treatment, and other applications [1–3]. Existing separation techniques have
limitations due to high energy consumption, the formation of secondary pollutants, low
separation efficiency, etc. [4]. The use of membranes for the separation of oil–water emul-
sions was proposed as early as the meddle of the 20th century [5]. Furthermore, attempts
were made to modify the membrane surface by imparting hydrophobic or hydrophilic
properties [6]. Due to this, the separation efficiency of membranes increased significantly,
and the method has begun to compete with others [7]. The rapid development of methods
for the manufacture of separating membranes with different wettability started. Three types
of materials are usually used as the basis of the membrane: metal meshes [8–11],
textiles [12,13], and polymer meshes [14,15]. The modifier is applied to the base in various
ways. The membrane surface modifiers are materials: polymers (fluoropolymer [16,17],
polystyrene [18], polydimethylsiloxane [19,20], polybenzoxazine [21], etc.); minerals (di-
atomite coating [22]; silicon dioxide [23]; graphene oxide [24,25]); and metal oxides [26–28],
metal hydroxides [29], etc. Modifiers are usually applied to the substrate by using the following
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methods: dip coating [30], spray coating [31], spin-coating [32], electrodeposition [33], acid–
alkaline treatment [34], heat treatment [35], plasma deposition [36], ion beam irradiation [37],
chemical etching [38], chemical vapor deposition (CVD) [39], and others [40].

Many materials with different wetting properties are used in the manufacture of
membranes, yet there are no strong theories concerning how wetting affects separation
efficiency and what wetting range is necessary for effective separation. One parameter
of wettability is the water contact angle (WCA). The data presented in various works on
the effect of WCA on the separation process are ambiguous and have a wide range of
results. For example, Hou and Cao [41] obtained a separation efficiency of 98–99% on
fluoropolymer-coated membranes with a WCA of 150◦ ± 2◦, while Dong et al. [42] obtained
a stable separation efficiency of 95% on a membrane with a laser-structured copper surface
with a WCA of 151◦ ± 1◦. Yin [29] obtained a separation efficiency of over 99% and excellent
stability even after 10 uses on a superhydrophobic-copper-hydroxide-coated membrane
with a WCA of 154◦ ± 2◦. Undoubtedly, in addition to the WCA, it is also necessary to
compare other parameters of the membrane (modifier material, pore size, etc. [4]).

The present work considers the possibility of creating separation membranes by de-
positing hydrophobic and superhydrophobic fluoropolymer coatings onto the surface of
metal meshes by applying the hot wire CVD method. A feature of this method is the possi-
bility of obtaining fluoropolymer coatings with different wetting properties. Depending on
the deposition parameters, it is possible to obtain coatings with a contact angle from 120◦

to 170◦ [43]. Thus, this approach makes it possible to study the effect of wettability on
the efficiency and separation rate within the same material. Fluoropolymers were chosen
due to a combination of their unique properties: high hydrophobicity, chemical inertness,
heat resistance, etc. The main purpose of the work is to study the influence of the wetting
properties of hydrophobic fluoropolymer coatings on metal meshes during the membrane
separation process of water–oil emulsions. In addition to the effect of membrane wettability,
this work examines the influence of the membrane pore size on the separation process and the
stability of the properties of the resulting coatings. Studies make it possible to determine the
main parameters of the membrane (WCA, mesh weaving) that affect the rate and efficiency of
separation in order to establish the optimal characteristics of separation membranes. The ad-
vantage of this work is that commercial crude oil was used in the studies, while many works
describe the use of oil simulators. This approach makes it possible to accurately simulate the
use of developed membranes in oil and oil refinery industries.

2. Experimental Methods
2.1. Materials and Reagents

AISI 304 stainless steel meshes (Mesh 100, Mesh 180, Mesh 300, and Mesh 400) were
purchased from Sunshinelantian Store (Anping, China). The precursor gas was a mixture
consisting of hexafluoropropylene oxide (C3F6O) and 1.3% argon produced by LLC “Poly-
mer Kirov-Chepetsk Chemical Plant” (TU standard 95-783-80) (Kirov-Chepetsk, Russia).
The used nichrome filament (diameter 0.5 mm) consisted of 77%—Ni; 20%—Cr; and 1.5%—Fe,
and the remaining 1.5% included Ti, Al, Si, C, Mn, P, and S (GOST 12766.1-90) produced by
ZAO “Sverdlovsk Metallurgical Plant” (Ekaterinburg, Russia). The commercial crude oil
(GOST R 51858-2002) was purchased from Rikom LLC (Novosibirsk, Russia).

2.2. Membrane Fabrication

Separation membranes were made by depositing a hydrophobic fluoropolymer coating
on variously woven stainless steel meshes with a diameter of 40 mm. The meshes (Mesh 100,
Mesh 180, Mesh 300, and Mesh 400) had a flow area of 40, 65, 90, and 200 µm, respectively.
The surface of the samples was subjected to preliminary cleaning and processing to remove
persistent organic (grease, oil, etc.) and non-organic (metal dust) compounds. Grease, oil,
and dust were removed by the preliminary cleaning of meshes in an Ultrasonic Cleaner
JP-010S (Skymen Cleaning Equipment Shenzhen Co., Shenzhen, China) with surfactants
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(sodium lauryl sulfate, 0.1 mol/L) at 90 ◦C for 30 min. After that, the samples were rinsed
with distilled water and then alcohol and dried with a stream of dry argon.

Coatings were deposited using the hot wire chemical vapor deposition (HW CVD)
method [43–48]. The main idea of the method is to activate the precursor gas flow with
a resistively heated catalytic metal filament, that is, an activator. The experimental setup
is described in detail in study [43]. This work used a nichrome filament (Ni80/Cr20) as
an activator and hexafluoropropylene oxide (C3F6O) as a precursor gas. As a result of
activation, radicals formed. These radicals then reach the surface, where they form a coating
via polymerization. The structure of the resulting coating depends on the temperature of
the activator filament Tf, the precursor gas pressure P, the distance between the activator
and the substrate R, the deposition time t, and the temperature of the substrate holder Ts.
The influence of these parameters on the structure of the deposited coating is described in
detail in [43]. The wettability of membranes depends on the structure of the fluoropolymer
coating. According to the Wenzel and Cassie–Baxter law, roughness is important for this [49,50].
During the formation of a fluoropolymer coating, depending on the deposition parameters,
nano- and microroughnesses can form. It is their size and shape that determine the wetting
properties of the surface in this case.

Three types of fluoropolymer coatings were chosen, which were previously obtained
by the authors for other applications [43–45]. Depending on morphology, the coatings have
different stable wetting properties when WCA = 130◦, 150◦, and 170◦. Thus, each coating
is hydrophobic but differs significantly in WCA value from others. The coatings had the
same thickness of about 1 µm. The deposition parameters are presented in Table 1.

Table 1. Parameters of the coating deposition process in the manufacture of separation membranes.

WCA, ◦ Tf, ◦C P, Pa R, mm Ts, ◦C t, min

Type 1 130 640 67 50 30 180

Type 2 150 580 67 50 30 90

Type 3 170 680 133 50 100 60

2.3. Membrane Characterization

The morphology of the resulting fluoropolymer coatings on the surface of a metal
mesh was studied using a JEOL JSM6700F scanning electron microscope (Tokyo, Japan).
The morphology of the obtained samples was studied at a magnification of ×140 (general
view of the membrane network), ×20,000, and ×50,000 (morphology of the fluoropolymer
coating). Imaging parameters were selected individually depending on the electrical
properties of the sample, namely, the accelerating voltage was 5–15 keV, and the operating
focal length was 3.0–15.1 mm.

Figure 1 shows micrographs of a metal mesh after the deposition of hydrophobic
fluoropolymer coatings and their water- and oil-wetting properties. The morphology of the
fluoropolymer coating is different for each type of coating. However, the morphology is
homogeneous over the entire mesh surface for each type of coating.

The wetting properties of the resulting membranes were determined by measuring
the water contact angle (WCA) or oil contact angle (OCA) using a DSA-E100 drop-shape
analyzer (KRUSS, Hamburg, Germany). A drop of a characteristic volume of 3 µL was
placed on the membrane surface. The image of the drop was captured using the shadow
technique. The program recognizes the contour, and then the geometric model of the
contour is selected. The baseline (contact line) was set in the program to more accurately
determine the contact angle. The measured angle between the tangent to the drop contour
and the baseline is the contact angle. Two methods were used to analyze the drop’s
contour: the Young–Laplace method and the conic section method. Both methods evaluate
the full contour of a lying drop. To accurately determine the wettability of the membranes,
measurements were carried out in five different places, three times for each. The OCA of the
obtained coatings was found to be similar at ~80◦ ± 2◦, while the WCA was found to depend
strongly on the morphology of the coating, varying in the range from ~130◦ ± 5◦ to 170◦ ± 2◦.
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Figure 1. Micrograph of the surface of membranes with various fluoropolymer coatings: (a,b) Type 
1, (c,d) Type 2, and (e,f) Type 3. Insets include WCA values and photographs of water and oil drop-
lets on the membrane surface. 
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Figure 1. Micrograph of the surface of membranes with various fluoropolymer coatings: (a,b) Type 1,
(c,d) Type 2, and (e,f) Type 3. Insets include WCA values and photographs of water and oil droplets
on the membrane surface.

2.4. Emulsion Preparation

The emulsion for experiments was prepared by mixing commercial crude oil and
distilled water in various proportions. The use of commercial crude oil made it possible to
accurately simulate the use of membranes in real conditions because oil contains a large
number of various low- and high-molecular fractions, salts, and other impurities. All these
components can interact with the membrane surface in different ways. For experiments,
emulsions were prepared with different volume concentrations of water and oil. The mix-
ture was stirred with a Braun MQ-5237 BK kitchen blender (Bucharest, Romania) for two
minutes. The initial water content in commercial oil is less than 0.5% (GOST R 51858-2002),
and it is neglected. The concentration was determined from:

ϕw =
Vw

ΣVe
× 100%, (1)

where ϕw is the concentration of water in the emulsion, Vw is the volume of water mixed
into the oil, and ΣVe is the total volume of the prepared emulsion. In the experiments,
the values of concentration ϕw were as follows: 5%, 10%, 25%, 50%, and 90%. For each
separation cycle, an emulsion was prepared in a volume of ΣVe = 50 mL.

2.5. Emulsion Separation Arrangement and Mechanism

The experimental arrangement used for the separation tests is shown in Figure 2a.
A membrane filter is fixed on a laboratory stand. This filter consists of two tightly connected
glass tubes, between which the obtained membranes were installed. The membrane’s
diameter was 33 mm.
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Figure 2b shows a scheme of the separation mechanism. It is assumed that the
separation on the membrane is caused by the fact that the capillary pressure of oil and
water in the pores is different.
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Figure 2. (a) Experimental stand for separation. (b) Schematic showing the oil–water separation
mechanism on the superhydrophobic mesh. (c) Schematic of the separation process.

The pressure can be calculated by using the Young–Laplace Equation (2) [51]:

∆P =
2 σ

R
=

4 σ sin (θA − 90◦)
D

= − l σ cosθA
A

, (2)

where σ is the surface tension of the liquid–air interface, R is the meniscus radius, D is the
center of the cross-section of adjacent, parallel stainless-steel wires, l is the mesh thickness,
A is the cross-sectional area of the pore, and θA is the wetting angle of the liquid at the
surface. It follows from this equation that in the absence of external pressure on the
emulsion, WCA θA > 90◦, water will not be able to spontaneously penetrate the pores
because there is a pressure drop when ∆P > 0, which prevents it. However, for oil, the value
is θA < 90◦, so the pressure drop becomes ∆P < 0, and the oil will spontaneously penetrate
the pores; that is, it will pass through the membrane. The process of the separation of
water–oil emulsion will take place.

For the obtained membranes with various fluoropolymer coatings, OCA remains almost
unchanged, while the WCA changes significantly. According to the equation, with an increase
in hydrophobic properties, the pressure drop and separation efficiency should increase. That is,
the higher the WCA value, the better and faster the separation of water and oil.

Figure 2c schematically shows the principle of the operation of the membrane filter;
namely, the prepared emulsion is poured into the receiving container of the membrane
filter, and the stopwatch is simultaneously started. Since the coating is hydrophobic, during
the separation process, water remains above the surface of the membrane, while oil flows into
the container under the filter. After separation, the volume of water is measured, recorded, and
removed from the filter. The separation cycles continue as long as the water is released during
the separation process. A new membrane was used each time to separate the new emulsion.

3. Results and Discussion
3.1. Effect of Wettability on Separation Efficiency and Rate

The separation efficiency was determined from:

η =
Vs

Vw
× 100%, (3)
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where η is the separation efficiency, Vs is the volume of separated water from the emulsion,
and Vw is the volume of water mixed into the emulsion. On average, the experiments were
carried out 3–5 times. Considering the statistics, the error bars are indicated in the figures.
The points on the figures and the results in the tables correspond to the average value of
the results obtained.

Figure 3 shows the results of the separation of emulsions with different water concen-
trations on membranes with different wettability. The separation of crude oil showed an
efficiency close to 100%. The separation of distilled water showed an efficiency equal
to η = 0%; that is, the entire volume of water remained on the membrane’s surface.
Next, the separation of emulsions with different concentrations from 5% to 90% was
carried out. The separation process is carried out in several cycles n, on average, 5–6.
The graphs show the results of all separation cycles. The maximum separation effi-
ciency of emulsions is achieved for membranes with a WCA = 170◦ and is about 99%.
For superhydrophobic membranes, these values remain in a wide range of water concen-
trations in the emulsion. For membranes with hydrophobic coatings (WCA = 130◦–150◦)
at low water concentrations (ϕw = 5%), the separation efficiency is also high and is about
98–99%. As the water concentration ϕw increases from 5 to 90% in the emulsion, the value
of the separation efficiency decreases monotonically from η = 98% to 93% for membranes
with a WCA = 150◦. Similarly, for membranes with a WCA = 130◦, the efficiency decreases
to 75%. Thus, the wetting properties of the membrane significantly affect the separation
efficiency. That is, superhydrophobic membranes can be used to separate emulsions with
high water concentrations, while hydrophobic membranes are effective with emulsions
with low water concentrations (ϕw = 5–25%).
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coatings with different wetting contact angles.

Figure 4 shows data on the volumes of water released in each cycle during the separa-
tion of an emulsion with a water concentration ϕw = 25%. It can be noted that the main
volume of water is released during separation in the first 5–6 cycles. For membranes with
WCAs between 150◦ and 170◦, the maximum volume of water is released in the first two
separation cycles, and for membranes with a WCA of 130◦, the maximum volume of water
is in the second, third, and fourth cycles. There is a clear dependence of the separation
efficiency on the WCA of the membrane. The higher the WCA of the membrane, the faster
the release of water from the emulsion.

In this case, the separation time increases with increasing water concentrations
(Figure 5). Firstly, when a mixture of oil and water flows through the membrane fil-
ter, oil freely penetrates through the membrane with a hydrophobic coating, while water is
repelled from the mesh due to a large negative capillary effect and remains on the surface,
blocking the pores and thereby increasing the separation time. Secondly, the higher the
concentration of water in the emulsion, the higher its viscosity, which prevents the flow of
“fresh” portions of the emulsion to the membrane’s pores.
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coatings with different wetting contact angles.

The total separation time on meshes with a WCA of 170◦ is higher than on meshes
with a WCA between 150◦ and 130◦. This is due to the fact that capillary pressure increases
with an increasing contact angle; therefore, water is more efficiently and quickly separated
from oil and remains on the surface, slowing down the flow of oil.

3.2. Influence of Mesh Pore Size on Separation Efficiency

To study the dependence of the separation efficiency of an oil–water emulsion on the
pore size of hydrophobic membranes, stainless steel metal meshes with various weaves
were used. Pore sizes were 40, 65, 90, and 200 microns. Fluoropolymer coatings with a
wetting contact angle of 130◦ (Type 1) were deposited on the surfaces of the meshes. In the
experiments, an emulsion with a water concentration of ϕw = 25% was used.

Figure 6a shows the dependence of the separation efficiency of the oil–water emulsion
on the pore size of the membranes D. It can be noted that with a decrease in the pore size,
the separation efficiency increases. Specifically, a membrane with a pore size of 200 µm
separates with an efficiency of 87% and when using a pore size of 40 µm an efficiency
increases to 99%. This is due to the fact that a membrane with small pores can retain
water drops (micelles) with a smaller diameter on the surface, while water drops can
penetrate through larger pores of the membrane, thereby reducing the separation efficiency.
However, as the membrane’s pore size decreases, the separation time increases (Figure 6b).
The time increases from 11 to 16 min for membranes with a pore size of 200 µm and 40 µm,



Water 2023, 15, 1346 8 of 13

respectively. This can be easily explained by an increase in hydrodynamic resistance caused
by a decrease in the flow area of the membrane pores.

Apparently, the reason for the discrepancy between WCA and separation efficiency
with respect to different authors is precisely the different pore sizes in the membranes.
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3.3. Evaluation of Separation Efficiency on Membranes

The conducted studies have shown that it is necessary to introduce a parameter
that would take into account all the above measurements and would make it possible to
determine the overall efficiency of the separation process. This parameter is the coefficient
of separation efficiency (CSE), which is determined by the following formula:

CSE =
η

ts·n
, (4)

where η is the separation efficiency, ts is the separation time, and n is the number of
separation cycles. The higher the CSE value, the higher the overall separation efficiency.

Using this formula, the coefficients for each membrane were determined. The results
are presented in Table 2. Analyzing the data obtained, it can be noted that it is most effective
to use membranes with a superhydrophobic coating for small concentrations of water in an
oil emulsion.

Separation coefficients for membranes with different pore sizes were determined in a
similar way (Table 3). In this case, superhydrophobic membranes with a pore size of 40 µm
are more effective. However, the influence of the membrane pore size on efficiency is not as
significant as the influence of the wetting properties of the membrane.

Table 2. Efficiency coefficient for the separation of emulsions with different water concentrations for
different contact angles of a hydrophobic membrane.

ϕw, % WCA, ◦ ts, min n, Times η, % CSE

5

130 ± 5 6.0 ± 0.5 5 100 3.3

150 ± 3 3.3 ± 0.4 6 100 5.1

170 ± 2 1.1 ± 0.2 4 100 23.1

10

130 ± 5 9.2 ± 1.1 4 92.0 ± 0.6 2.5

150 ± 3 4.6 ± 0.5 6 100 3.6

170 ± 2 2.3 ± 0.4 5 100 8.8
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Table 2. Cont.

ϕw, % WCA, ◦ ts, min n, Times η, % CSE

25

130 ± 5 14.0 ± 1.2 7 87.0 ± 1.8 0.9

150 ± 3 11.0 ± 1.1 6 97.0 ± 0.2 1.5

170 ± 2 5.3 ± 1.0 4 100 4.7

50

130 ± 5 17.2 ± 1.2 6 80.0 ± 1.9 0.8

150 ± 3 12.1 ± 1.0 5 96.0 ± 0.3 1.6

170 ± 2 6.2 ± 1.0 5 99.0 ± 0.2 3.2

90

130 ± 5 21.0 ± 1.2 5 72.0 ± 2.1 0.7

150 ± 3 14.2 ± 1.2 4 93.0 ± 0.5 0.9

170 ± 2 6.2 ± 1.0 4 98.0 ± 0.4 4.1

Table 3. Efficiency coefficient for the separation of emulsions with a water concentration of 25% for
different pore sizes of a hydrophobic membrane.

WCA, ◦ ϕw, % D, µm ts, min n, Times η, % CSE

130 ± 5 25

40 16.1 ± 0.2 3 100 2.1

65 14.2 ± 0.3 4 99.0 ± 0.2 1.8

130 13.5 ± 1.0 4 94.0 ± 1.3 1.7

200 14.0 ± 1.2 7 87.0 ± 1.8 0.9

The results show that the highest efficiency is achieved when separating membranes
with a superhydrophobic coating (WCA = 170◦) and a minimum pore size (40 µm).

3.4. Resource Tests

Resource tests were performed using the membranes obtained as described earlier in
this paper. The fluoropolymer coating with a WCA = 130◦ had the highest wear resistance
of the coatings in the study [46]. Therefore, these coatings were selected for resource
testing. On a membrane with a pore size of 200 µm and a WCA = 130◦, 30 successive
cycles of separation of the emulsion with a water concentration ϕw = 25% were carried
out. After each cycle, the efficiency and separation time were recorded. The results are
shown in Figure 7. The results showed a decrease in separation efficiency after about six
cycles. At the same time, for 18–20 cycles, the membrane separates the emulsion with a
slight decrease in efficiency, and then, by the 30th cycle, there is a significant decrease in
separation efficiency up to 70%. A similar pattern is observed with separation time. Namely,
the separation time is almost unchanged up to the 6th cycle and is about 11 min, but by
the 30th cycle, it increases to 40 min. The examination of the membrane with an optical
microscope showed that with each new cycle, a “deposit” is formed on the membrane
surface (Figure 7b). This “deposit” blocks the flow area of the pores, reducing the flow
rate of the emulsion and the wetting properties of the membrane. Therefore, the efficiency
decreases, and the separation time increases. It is likely that this “deposit” comprises high
molecular weight hydrocarbons (paraffin, resin, etc.) contained in crude oil since it can
be removed from the membrane surface by washing it for 5 min in diesel fuel. Using a
microscope, small remnants of the “deposit” can be observed on the walls of the membrane
pores (Figure 7b). However, this simple method of cleaning the membrane surface proved
to be effective. After washing, the separation efficiency once again increased to ~92%, and
the separation time decreased to 15 min.

The obtained results showed comparable or better separation efficiency in comparison
with the results presented in [25,27,28].
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4. Conclusions

(1) The HW CVD method can be applied to the fabrication of highly efficient hydrophobic
separation membranes by depositing fluoropolymer coatings onto the surfaces of
metal meshes. Depending on the deposition parameters, it is possible to obtain
membranes with different surface-wetting properties; specifically, in this work, the
WCA ranges from 130 to 170◦, while the OCA remains constant and is about 80◦ ± 2◦.

(2) Studies have shown the effectiveness of the use of the obtained membranes for the
separation of emulsions of water and commercial crude oil, with separation efficiency
values that can reach over 99%. The membrane-wetting properties affect the rate and
efficiency of separation. The higher the WCA value of the membrane surface, the
more efficient the separation. It has been established that emulsions with a lower
water concentration (5%) are most effectively separated.

(3) The pore size of the membrane significantly affects the rate and efficiency of separation.
The smaller the pore size of the membranes, the higher the separation efficiency, but
the lower its rate.

(4) The use of the proposed coefficient of separation efficiency made it possible to de-
termine the optimal parameters for the use of membranes for separating emulsions.
The highest efficiency is achieved when separating membranes with a superhydropho-
bic coating (WCA = 170◦) and a minimum pore size (40 µm).

(5) The experiments were performed to explore whether hydrophobic coated membranes
produced by the HW CVD method can be used for several separation cycles. The used
membranes can be easily washed and reused without significant reduction in separa-
tion efficiency.

(6) The work is of great economic and practical importance for improving the efficiency
of the membrane separation of oil–water emulsions. It lays the foundation for future
research on the use of hydrophobic membranes for the separation of various emulsions
of water and oil products (diesel fuel, gasoline, kerosene, etc.).
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