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Abstract: Waterlogging in agriculture poses severe threats to soil properties, crop yields, and farm
profitability. Remote sensing data coupled with drainage systems offer solutions to monitor and
manage waterlogging in agricultural systems. However, implementing agricultural projects such
as drainage is associated with high uncertainty and risk, with substantial negative impacts on farm
profitability if not well planned. Cost–benefit analyses can help allocate resources more effectively;
however, data scarcity, high uncertainty, and risks in the agricultural sector make it difficult to
use traditional approaches. Here, we combined a wide range of field and remote sensing data,
unsupervised machine learning, and Bayesian probabilistic models to: (1) identify potential sites
susceptible to waterlogging at the farm scale, and (2) test whether the installation of drainage systems
would yield a positive benefit for the farmer. Using the K-means clustering algorithm on water and
vegetation indices derived from Sentinel-2 multispectral imagery, we were able to detect potential
waterlogging sites in the investigated field (elbow point = 2, silhouette coefficient = 0.46). Using
a combination of the Bayesian statistical model and the A/B test, we show that the installation of
a drainage system can increase farm profitability by 1.7 times per year compared to the existing
farm management. The posterior effect size associated with yield, cropping area, and time (year)
was 0.5, 1.5, and 1.9, respectively. Altogether, our results emphasize the importance of data-driven
decision-making for agriculture project planning and resource management in the wake of smart
agriculture for food security and adaptation to climate change.

Keywords: waterlogging; drainage; Bayesian modeling; proximal soil sensing; ECa; cost–benefit analysis

1. Introduction

Waterlogged and poorly drained soils in agricultural fields threaten crop yields, soil
health, and farmers’ profitability [1,2]. The situation is often aggravated during high
precipitation events when rainfall is higher than the potential soil infiltration rate [3]. While
in high-altitude countries and well-drained soils, water infiltration processes can naturally
and quickly occur after a rainfall event, in poorly drained Vertisols of the Carpathian
basin, this process is much slower due to the nature and physical characteristics of soils
in that region [4]. A large area of the Carpathian region is dominated by Vertisols with
low saturated hydraulic conductivity and infiltration rates which diminish rainfall flow in
open soil cracks [3]. Hungary is one of the affected countries in the Carpathian basin with a
significant proportion of poorly-drained and often waterlogged soils [4]. The consequences
of waterlogging can be as destructive as those related to drought events [5]. Despite large
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areas of good quality and fertile soils such as Chernozems [6], the low permeability of
Vertisols in the lowlands of Hungary can result in the development of waterlogging unless
proper and well-planned artificial drainage is applied [1,2,7]. As such, agricultural fields
are prone to poor quality, degraded soils, and sometimes abandonment, with unknown
consequences on farm productivity and profitability.

1.1. Remote Sensing of Waterlogging in Agroecosystems

Remote sensing technologies offer tools to monitor waterlogging across large, diverse
landscapes. However, remote sensing of waterlogging remains the least studied subject
in the remote sensing and water science community [5], despite the negative impacts of
waterlogging on crop yield and farm productivity [8]. Information scarcity on waterlogging
is even severe for upland agriculture, where proximal soil sensing and satellite remote sens-
ing could otherwise be combined to monitor waterlogging and support decision-making at
the farm level. The existing literature shows that waterlogging in agricultural fields can
be monitored using a combination of vegetation health, water, and topographic indices
derived from multispectral remote sensing imagery and digital terrain models. Conse-
quently, multiple indices have been proposed and used to monitor waterlogging [5,9,10].
For example, vegetation indices such as the normalized difference vegetation index (NDVI)
and the enhanced vegetation index (EVI) are widely used to link vegetation health to
waterlogging. Water indices such as the normalized difference wetness index (NDWI) [11],
the modified normalized difference water index (MNDWI) [12], and the automated water
extraction index (AWEI) [13] are also used for visual image interpretation and/or to delin-
eate waterlogged areas. The land surface temperature (LST) derived from the Moderate
Resolution Imaging Spectroradiometer (MODIS) mission has been proposed to identify wa-
terlogging in croplands [14]. However, these indices suffer from one major issue when used
individually to monitor and manage waterlogging in agricultural fields. First, the medium
resolution of LST data derived from MODIS is not suitable for water monitoring for small-
scale farms and often requires downscaling algorithms even at the regional scale [5,15].
Second, vegetation, topographic, or water indices solely do not provide information on how
waterlogging relates to physico–chemical soil properties across the farm. Therefore, without
proper information on soil properties, selecting suitable practices for water management
can be challenging for farmers. Recent advances in soil proximal sensing technologies such
as the Veris Mobile Sensor Platform (Veris U3000; Veris Technologies, Salina, KS, USA)
can generate continuous high-precision data of apparent electrical conductivity (ECa) of
soil and topographical gradients that can be linked to soil plasticity, pH, and soil water
content, and ultimately help to improve water management and decision-making at the
farm level [16–18].

1.2. Decision-Making and Management of Waterlogged Agricultural Fields

Studies have shown that drainage is one of the dominant agricultural water manage-
ment practices that can boost and enhance crop yield in soils with shallow water tables
or poor drainage [19]. However, implementing such projects requires proper planning
and taking into account different sources of uncertainties and risks. Studies have shown
that investments in agricultural projects are less successful, mainly due to the high risks
and uncertainty involved in implementation [20]. Financing a drainage project is a one-
time investment that yields long-term benefits. However, when investment benefits are
lower compared to the project costs—often financed on borrowed bank loans—agriculture
productivity and farm profitability can substantially decline. A variety of climate, en-
vironmental, and financial factors can significantly affect the return on investment, and
these factors are often highly uncertain and interrelated [21,22]. For example, between
1981–2010, Hungarian agriculture experienced a high record of climate variability, account-
ing for a 33–67% decrease in crop yields due to drought [4]. Furthermore, unpredicted
socio–economic factors, such as inflation rates and production costs that change with time,
can substantially affect agricultural project outcomes [23]. Recent research on data-driven
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decision-making in the field of agriculture and environmental sciences shows that data
required to predict financial outcomes of a project are scarce. Consequently, this limits
the use of data-driven evaluation approaches in the agricultural sector [20,24]. Bayesian
statistics [25–27] show promising results in other sectors, especially in risk assessment
and decision-making [28,29]. In the agricultural sector, where environmental, social, and
economic factors coupled with data scarcity are likely to occur, Bayesian statistics can
serve as a tool to support decision-making and project implementation [30,31]. Bayesian
statistics models enable experts to model causal relations through prior and posterior
estimates [32,33]. This is specifically important in agricultural systems where researchers
and decision-makers often have insufficient data for computing the prior and conditional
probabilities required for decision-making [34].

This study was centered on the question of whether we can combine remote sensing
data, proximal soil sensing data, and probabilistic models to support decision-making for
agricultural projects. The main goals were to: (1) combine field and remotely sensed data to
identify field physical–chemical features related to waterlogging, (2) select suitable water
and vegetation indices to monitor and map areas susceptible to waterlogging in agricultural
fields, and (3) to combine financial data, field data, and statistical learning tools to test
whether the implementation of a drainage system project in water-affected agricultural
fields would yield positive farm profitability. We hypothesized that: (1) expansion of the
cropping area through the installation of drainage systems would increase crop yield, farm
production, and profitability, and (2) long-term socio–economic factors that change with
time can have a negative effect on farm profitability; however, the overall effect over a wide
range of time is positive.

2. Materials and Methods
2.1. Study Area

The study site is a 66 ha agriculture field located in the northeast of Hungary, close to
the border between Hungary and Slovakia (Figure 1a,b). The land use type is a rotation
of sunflower and corn throughout the year. The climate in the region is classified as a
moderately continental climate with cold summers. Data from nearby meteorological
stations show the mean values for annual temperature (MAT) is (11.7 ± 1.8 ◦C) and the
mean annual precipitation (MAP) is (554 ± 99.5 mm·year−1) (Figure A1). According to the
standardized field guide for soil description and classification, the dominant soil type is
classified as Vertisol and is characterized by high activity clay content with low infiltration
rates, hydraulic conductivity, and alternating swelling and shrinking processes [35,36].
Furthermore, the field is surrounded by streams, especially the northern part of the field.
The field location within the landscape combined with poor physical soil properties has
led to frequent water ponding (Figure A1), with only 75% of the total area of the field
remaining for agricultural practices.

2.2. Data Collection and Processing

To understand the hydrogeomorphic characteristics of the field and how they are
related to waterlogging in our case study, we collected high resolution topographic and
multispectral imagery data for the investigated field. To achieve this, we flew over the
entire field with a drone (DJI Phantom 4 RTK, DJI, Shenzhen, China) equipped with a
DJI camera (DJI FC6310R, DJI, Shenzhen, China) to collect RGB images for visual field
assessment (Figure A1). We then scanned the entire field and collected point clouds of
elevation data and apparent electrical conductivity (ECa) (Figure A5) using a Veris U3000
(Veris Technologies, Salina, KS, USA), equipped with a John Deere Starfire 6000 Antenna.
The Veris U3000 and the antenna were both attached to a John Deere Gator. Using point
clouds of elevation data, we developed a digital elevation model (DEM) of the investigated
field using the inverse weighted distance interpolation method (IWD) [37]. To understand
the biophysical characteristics of the landscape, we extracted essential topographic indices
from the DEM including field relative slope, valley depth, and topographic wetness index.
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We derived additional wetness indices from Sentinel-2 multispectral imagery. To do this, we
downloaded analysis-ready Sentinel-2 data for February 2021 from the Google Earth Engine
(GEE) platform using the JavaScript API available in GEE [38]. We then calculated a series of
vegetation and water indices suitable for waterlogging detection for the investigated field,
including the NDWI [11], MNDWI [12], AWEI [13], NDVI [39], and EVI [40] as described
in the equations presented below. Geospatial data was processed using QGIS v3.22.
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Figure 1. (a) Overview map of the study region with google satellite image in the background. The
blue color boundary indicates the country’s (Hungary) border, and the orange rectangle indicates
the location of the investigated field. (b) Pearson correlation coefficients among hydrogeomorphic
parameters of the investigated field. Blank cells indicate non-significant correlations, p ≤ 0.05.
(c) Valley depth distribution of the field as a topographic feature influencing water flows across
the field. The red and blue rectangles indicate the upper and lower parts of the field, respectively.
(d) Map of the apparent electrical conductivity of the investigated field.

NDWI =
Band 3 − Band 8
Band 3 + Band 8

MNDWI =
Band 3 − Band 11
Band 3 + Band 11

AWEI = Band 8 + Band 2 ∗ 0.25 − 1.5 ∗ (Band 8 + Band 11)− 0.25 ∗ Band 12

EVI =
2.5 ∗ (Band 8 − Band 4)

(Band 8 + 6.0 ∗ Band 4 − 7.5 ∗ Band 2) + 1.0

NDVI =
Band 8 − Band 4
Band 8 + Band 4

Agricultural Production and Financial Data

In 2020, we collected data from the investigated farm including the cultivated area,
actual and expected yield (i.e., in ideal conditions), and production/technology costs for
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corn and sunflower, the two dominant crops in the area. For our analysis, we divided
the data into two management scenarios. The first scenario is referred to as “current farm
management”, in which farm production and profitability is reduced with only part of the
farm under operation (~75% of the total area). This is also when yield and farm activities are
impaired by waterlogging. The second scenario is referred to as “application of drainage”.
In this scenario, farm production and profitability benefit from the total area of the farm
being under operation. This is also a scenario when soil conditions are favorable for crop
production for the entire area (100%) of the farm. In this study, we assumed that this is
the ideal scenario representing a well-drained field. To calculate the annual farm revenue
for each crop, we used data published by the Hungarian Central Statistical Office. We
calculated the farm revenue per crop per year as a product of yield (tonnes/ha) and the
national average price EUR per ton per crop in the same year. We then calculated the farm
profitability (benefit) as the difference between total annual income and production cost
per crop per year. The available data at the farm level starts from 2018 to 2022. Therefore,
to match market-published data and farm data in our analysis, we focused on 2018–2022.
To account for the cost of drainage we used a reasonable value reported for EU countries
(approximately 140 EUR/ha). As the technology cost and farm revenue depend on the
inflation rate of the country, we collected the country’s annual inflation rates from 2018
to 2022 (published by the Hungarian Central Statistical Office and the World Bank Group
data portal).

2.3. Statistical Analysis

We conducted the statistical analyses in four steps: K-means clustering for mapping
waterlogging, an A/B test, a correlation analysis between the independent variables, and
Bayesian modeling for decision-making. In the first step, to identify potential sites for
waterlogging in the investigated field, we used an unsupervised learning technique, the
K-means clustering algorithm [41,42]. K-means clustering is the partitioning algorithm
that assigns each data point in the dataset to only one of the adjacent clusters using a
measure of distance or similarity. K-means clustering has been identified as a simple,
intuitive, and elegant approach for partitioning a dataset into K-distinct, nonoverlapping
clusters. To perform K-means clustering, the user first specifies the desired number of
K clusters, then the K-means algorithm assigns each observation to exactly one of the K
clusters [43]. To simplify the learning and computation time in this study, we set the desired
number of clusters to 2, because in our case study scenario, we expected each part of the
field to fall into one of the following categories: (1) potential waterlogged sites or (2) well-
drained sites. There are many unsupervised learning algorithms in the recent literature.
However, we chose the K-means clustering for the following reasons: first, we chose the
K-means clustering because we were interested in minimizing the within-cluster variance.
Second, before conducting the analysis, our environmental covariates (i.e., predictors) were
normalized, making the K-means algorithm suitable for this type of data. Finally, as we
had predefined the number of clusters suitable for our problem, the K-means clustering
algorithm was an ideal choice.

To evaluate the model and select the number of optimal clusters that fit our data
points, we used the silhouette and elbow methods [42,44,45]. For each technique, we ran
11 iterations, with each iteration representing the number of clusters. For the first evaluation
method, an average silhouette coefficient based on 11 iterations was calculated to identify
the optimal number of clusters representing our data points. The entire clustering was
then displayed by combining the silhouettes into a single plot, allowing an assessment of
the relative quality of the clusters and an overview of the data configuration. There are
many evaluation techniques for validating clustering algorithms. Since both K-means and
silhouette analyses are based on Euclidian distance metrics, we decided to use the silhouette
coefficient for our model evaluation to simplify and harmonize the entire analysis. In the
second phase, the elbow method was used. The elbow method consists of plotting the
explained variation as a function of the number of clusters and picking the elbow of the
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curve as the number of clusters to use. We chose the elbow method because it is widely
used in other unsupervised analyses such as principal component analysis. The results of
the two techniques (Figure A2) provide a robust approach for evaluating the output of our
cluster analysis.

In the second step, we conducted a hypothesis analysis to test whether there is a
difference between the average farm profitability before and after the implementation
of the drainage system. That is, whether there is a difference in profit between the cur-
rent farm management and the one after the installation of the drainage system, and
whether the farmer should adopt drainage practices. To do this, we conducted an A/B
test [46] followed by a bootstrap resampling technique with replacement [47]. We then ran
10,000 iterations and calculated the mean difference between farm profitability (benefit)
before and after the installation of the drainage system for each iteration. We then calculated
the average, median, and 95% confidence interval, and plotted them against the histogram
of 10,000 simulated values. This approach provides a robust way of hypothesis-testing
compared to a parametric statistical test such as analysis of variance (ANOVA), and is
widely used in the business and healthcare sectors for decision-making [46,48,49].

In the third step of the analysis, we conducted a correlation analysis between the
independent (explanatory) variables and the dependent (response) variables to assess
whether there was a positive or negative association between the explanatory variables,
representing financial and biophysical characteristics of the farm, and the response variable
(profitability). As multicollinearity between independent variables was expected at this
stage, we selected important variables that should be used in the final analysis (modeling).
To do this, we performed a cluster of the Spearman rank-order correlations, plotted a
heatmap of the correlated features, picked a threshold (in this case r ≥ 0.75) [50], and kept
a single feature from each cluster. This approach served as a feature selection method to
avoid the use of many variables that are collinear and meaningless for the model.

In the final stage of the analysis, we used the selected variables in a Bayesian model [51].
A final Bayesian model was then constructed to identify the relationship between explana-
tory variables and their overall effects (posterior effect size) on the estimated benefit (farm
profitability). For model setup and assessment, we used Markov chain Monte Carlo
(MCMC) algorithms set up for a total of 3000 draw iterations, using 20 separate chains with
1000 tunes, and plotted the distribution of the results together with the five variables of
a boxplot. We then summarized the model results based on Bayes’s theorem as posterior
distribution of the marginal effect size of explanatory variables on the response variable
(benefit/profitability). These methods thus directly address the question of how new evi-
dence should change what we believe [48,52]. All analyses were conducted using Python
v3.9. The A/B and correlation tests were conducted using the basic functions available
for Python. The Bayesian modeling was implemented using the PyMC [53] framework
available for Python. Visualization of the model output and results were implemented
using Seaborn statistical data visualization [54] and matplotlib [55] libraries for Python.

3. Results and Discussion
3.1. Field Hydrogeomorphic Features and Waterlogging in Agriculture

Using high-resolution remotely sensed hydrogeomorphic data, our results show that
the investigated field is indeed affected by waterlogging (Figures 2a–d and A1). When
comparing wetness and vegetation indices, we found a strong negative correlation between
the NDWI and NDVI (Figure 2a), suggesting that waterlogging has strongly impaired the
yield in those spots of the farm. We also observed a significant (p-value < 0.05) positive
correlation between water indices and topographic indices, especially the MNDWI (derived
from Sentinel-2 imagery) and valley depth (derived from the DEM) (Figure 1b). Further-
more, our results show a significant positive correlation between the soil ECa and water
indices (Figure 1b). Soil ECa is widely used to understand physico–chemical soil properties
such as soil moisture conditions, soil texture, and soil pH, among others [17]. A high ECa
indicates high clay content, high soil moisture, and low pH. Soil profile description data
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(not shown here) collected during the field campaign revealed that the waterlogged sites
were indeed characterized by high clay content and low soil pH. Altogether, these results
suggest that changes in soil geochemical properties driving soil water content, specifically
clay content, is likely the main driver of waterlogging observed in our study field. Conse-
quently, an increase in soil moisture created reduced conditions which further decreased
soil pH. This statement is based on the fact that the observed field’s soil plasticity (estimated
from soil coarseness) was higher (63–67%) in the northern part (Figure 1, red box) of the
field compared to the southern part (Figure 1, blue box) of the field (32–47%). In contrast,
soil pH was lower (3.5–3.6) in the northern part compared to the southern part of the field
(4.5–5.2). These results have two implications for the way we plan and implement soil and
water management practices. First, management practices have to be field-specific across
the landscape, as well as location-based within a field, due to the high spatial variation of
soil properties within fields that can influence waterlogging. Second, the implementation of
soil and water management practices has to be guided by precision-farming techniques and
technologies. For the latter, freely available remote sensing data combined with proximal
sensing technologies and open-source algorithms can support the application of precision
farming. Using a combination of three water indices (the NDWI, MNDWI, and AWEI) and
two vegetation indices (the NDVI and EVI), we were able to detect and map potential sites
susceptible to waterlogging (Figure 2d). The potential of these indices to detect surface
water has been reported in other water-related studies [56–58]. For example, refs. [59,60]
reported an improvement in model performance when combining the NDWI, MNDWI,
AWEI, and NDVI to detect surface water. We acknowledge that the K-means methods
used to detect and map waterlogging may yield some errors in the map produced due to
the lack of suitable validation data. However, a study conducted in the same region as
investigated here reported similarly good performance of the K-means algorithm when
compared to other methods [61]. Furthermore, our analysis of model performance (the
silhouette coefficient and SSE) through many iterations (Figure A2) provides a clear indi-
cation that the error associated with the generated map is likely very small. In addition,
the selected vegetation (NDVI and EVI), water (NDWI, MNDWI, AWEI), and topographic
indices (TWI and valley depth) together with ECa data provided further information for
visual validation of the map produced (Figure 1b–d). ECa is often used to assess physical
and chemical soil properties in agricultural fields and has been recently used to assess farm
productivity [16,18]. However, its use for waterlogging management has not been fully
explored. In summary, our results revealed the potential of vegetation and water indices to
detect waterlogging even in a small-scale field. Beyond that, we show that these indices can
be combined with topographic data and soil properties, such as ECa generated using proxi-
mal soil sensing technologies, to understand the drivers of waterlogging and where water
management practices should precisely focus in the wave of climate change scenarios.

3.2. Data-Driven Decision-Making

Agriculture statistics show that for the period of four years, the estimated aver-
age annual farm production cost was (EUR 5752.4 ± 1732.5) under the current farm
management scenario and (EUR 9517.9 ± 3726.7) under drainage application. The an-
nual income was (EUR 58,020.5 ± 13,672.7) under the current farm management sce-
nario and (EUR 99,910.6 ± 39,010.8) under drainage application. Overall, the net annual
benefit was (EUR 52,268 ± 13,792.7) under the current farm management scenario and
(EUR 88,544.7 ± 44,808.2) under drainage application (Figure 3a–d). Comparing the in-
come generation for the last four years under the two scenarios, we found an increase
in benefits associated with the installation of drainage from 2018 to 2022 (Figure 3a). By
comparing the overall difference in benefits under current farm management and the
estimated benefits under drainage application, we found a significant increase in the benefit
of approximately 1.7 times associated with drainage application (Figures 3b,c and A3).
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Figure 2. Spatial distribution of vegetation and water indices used to detect waterlogging pat-
terns in the investigated field. (a) Relationship between NDVI, NDWI, and MNDWI. Note the
strong negative correlation between NDVI and the two water indices. (b) Spatial patterns of NDVI.
(c) Spatial distribution of MNDWI for the investigated field. The dark blue color indicates high values
of MNDWI and potential waterlogging sites. (d) Map of waterlogging detected across the field, using
a combination of water and vegetation indices and the K-means algorithm.

The correlation analysis between farm profitability (i.e., benefit) and independent
variables (cropping area, yield, and time) used in our analysis showed a significant associa-
tion between farm profitability (benefit) and that set of variables (Figure 4). The analysis
suggests that, over time, an extension of cropping area through the application of drainage
would have boosted crop yield and the associated farm profitability (Figure 4).

Using the selected variables (i.e., cropping area, yield, and time) in a Bayesian
model, we found significant positive effects between those variables and farm profitability
(Figure 5a,b). The highest posterior marginal effect size was associated with time (1.95),
followed by expansion of the cropping area (1.5), while the lowest was associated with yield
(0.5) (Figure 5a,b). These results suggest that an increase in one unit cropping area (1 ha)
through the application of drainage would have increased farm profitability (i.e., benefit) by
1.5 times compared to the current farm management scenario (Figure 5a,b). Note that time
(year) represents all factors that vary with time, including weather patterns, inflation rates,
and cost of production. We plotted the probability distribution of the posterior effects of the
three variables and found that the likelihood of having a positive benefit was approximately
85% (Figure 5b).

Altogether, field observations and farm management data combined with statistical
tools provide evidence that investing in drainage systems would yield a positive impact on
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farm profitability (Figure 5a). However, statistical analyses (an A/B test and the Bayesian
model) revealed a large deviation in the model estimates (Figures 5 and A3). The difference
in benefits between current farm management and after the application of the drainage
system inferred from the A/B test varied between −5.0–14.8. This wide range of estimates
hints towards multiple factors that can vary at spatial and temporal scales [20,24,33].
First, we acknowledge that the uncertainty and the wide confidence interval around these
estimates might be associated with other factors which were not taken into account in
our Bayesian model. For example, the effects associated with climate parameters such
as drought events that can affect yield. Recent research conducted in the same region as
investigated here has shown that climate accounted for 17–39% of yield variability over
the past 90 years, and this figure has reached 33–67% in the past 30 years. The authors
reported that the impact of climate parameters to yield variability was much stronger
compared to their counterpart socio–economic factors that affected the region for the last
three decades [62,63].
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Figure 3. Distribution of farm income as a benefit, presented in Hungarian forint (local currency).
(a) Data presented per year from 2018 to 2022 for the current farm management scenario (i.e.,
in the absence of drainage application) and the expected scenario (i.e., if drainage is applied),
(b) data grouped per crop type, (c) the overall difference (mean ± sd) between the actual and the
expected benefit after drainage, and (d) the distribution of actual and estimated benefit after drainage
application. In panels (c,d), data is based on 10,000 simulations conducted using the A/B test. The
white dots in the boxplot represent the average benefit over a period of four years. The points in
diamond shape outside the lower and upper whiskers of the boxplot indicate possible outliers as a
result of multiple simulations.
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Figure 4. Pearson correlations between variables used in the Bayesian model. The variables represent
the financial income and physical characteristics of the farm. Blank cells represent non-significant
correlations at p-value < 0.05.
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Figure 5. Distribution of posterior marginal effects size of explanatory variables used in the Bayesian
model. (a) The violin plot shows the distribution of the complete data and the white dot represents
the mean effect with 94% confidence. (b) The empirical cumulative distribution functions (ECDF) of
the three variables with the corresponding probability of having a positive effect on farm profitability.

Nonetheless, the fact that our model included time (i.e., years) as an explanatory
variable that can represent other factors such as climate parameters (i.e., temperature and
precipitation) or socio–economic indicators (i.e., inflation rates), we argue that the observed
difference (Figures 3c,d and A3). and the size of the posterior effects (Figure 5) is indeed
significant and likely to occur. This statement is based on the significant positive correlation
observed in our data between time, inflation rate, production cost (Figure 4), and variability
of climate parameters over time (Figure A1). In line with our results, the use of time as a
confounding factor has been used in other studies for decision-making [64]. The average
difference observed from our A/B test results and the posterior effect size estimated using
the Bayesian model (Figures 5 and A3) provide evidence that the benefit associated with
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the application of drainage is indeed positive and the model results reflect the observed
data (Figure A4). Consequently, our results evaluate a drainage project as a successful
investment. Therefore, the adoption of drainage as a water management practice is likely
to increase farm income and profitability in the investigated agricultural field.

In summary, agriculture scientists and resource managers are experiencing advances
in agricultural technologies, often related to precision farming. However, each individual
tool is used in an isolated manner without a clear connection. For example, in agricul-
ture, especially water management, research often focuses on monitoring with limited
research on management and decision-making. This study attempted to connect differ-
ent approaches to support decision-making in the agriculture sector, from monitoring,
to planning, to decision-making. This study revealed that the combination of remotely
sensed data, Bayesian modeling, and A/B testing presents a promising area for future
research in agriculture resource management. Combining these tools can provide a deep
understanding of the impact of waterlogging on farm production and productivity, as well
as on the cost–benefit ratio. As more freely available data, data collection, and analytical
tools emerge, there is great potential for these methods to significantly contribute to sus-
tainable water and agriculture management. Furthermore, this study opens up questions
that are worthy of further investigation: (1) It is not clear how different factors interact
to influence decision-making specifically for water management, but also in agricultural
resource management. Here, a combination of Bayesian network and causal inference can
provide further insights. (2) There is a need to integrate multiple data sources such as social,
environmental, and economic aspects of farmers with long-term datasets, and quantify
uncertainties associated with each factor which can improve the accuracy and reliability of
predictions related to waterlogging management and other agricultural challenges.

4. Conclusions

The results of this study suggest strong associations between vegetation indices, water
indices, ECa, and susceptibility to waterlogging. This adds substantial and understudied
complexity that needs to be unraveled to better understand the relationship between
hydrogeochemical features and waterlogging in agroecosystems. Furthermore, this study
highlights potential data-driven methods to assess and plan agricultural projects. This
is essential in the agricultural sector where project implementation is often associated
with risk and uncertainty. The study shows that a combination of remote sensing and
proximal sensing data can accurately map potential waterlogging sites, even at the farm
scale. Using an unsupervised machine learning approach (K-means), our results revealed
that waterlogging follows patterns related to three water indices (the NDWI, MNDWI, and
AWEI) and two vegetation indices (the NDVI and EVI). The sensitivity of these indices is
driven by edaphic factors such as ECa. The results revealed that differences in soil ECa,
likely as a result of change in soil texture, had a substantial effect on waterlogging in the
investigated sites. The study further shows the potential of statistical tools such as A/B
testing and Bayesian statistics to support decision-making for agricultural project planning.
The results of this study hint towards opportunities for future work, which could explore
the available approaches to assess cost-effective methods for agricultural project assessment
and planning under multiple uncertain scenarios.
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Figure A1. An overview of the investigated field. The graph shows a time series of monthly
precipitation from the nearby meteorological station. The red line indicates the recent highest
precipitation received at the study site (February 2021). The photo shows waterlogging after a high
precipitation event at the study site. Photo captured using a drone DJI camera, model FC6310R on
24 February 2021.
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Figure A2. Evaluation of K-means clustering algorithm and selection of optimum numbers of clusters
used for waterlogging mapping. The evaluation was based on silhouette coefficients and the sum
of the squared Euclidean distances of each point to its closest centroid. The orange dashed line
indicates the optimum number of clusters (i.e., two) selected for waterlogging detection. The number
is selected based on the highest value of the silhouette and elbow joint point in the SSE line. Note the
SSE values are in thousands, hence the letter “K”.
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Figure A3. Distribution of estimated difference in net benefit between actual farm management
and the expected income after drainage application. The distribution is based on an A/B test with
10,000 bootstrap resampling. The orange and green lines represent the mean and median difference
in net benefit between current farm management and the expected benefit after drainage application.
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G.; Mikulik, V.; et al. Inferring the Effectiveness of Government Interventions against COVID-19. Science 2021, 371, eabd9338.
[CrossRef]

30. Govender, I.H.; Sahlin, U.; O’Brien, G.C. Bayesian Network Applications for Sustainable Holistic Water Resources Management:
Modeling Opportunities for South Africa. Risk Anal. 2022, 42, 1346–1364. [CrossRef]

31. Cornet, D.; Sierra, J.; Tournebize, R.; Gabrielle, B.; Lewis, F.I. Bayesian Network Modeling of Early Growth Stages Explains Yam
Interplant Yield Variability and Allows for Agronomic Improvements in West Africa. Eur. J. Agron. 2016, 75, 80–88. [CrossRef]

32. Rasmussen, S.; Madsen, A.L.; Lund, M. Bayesian Network as a Modelling Tool for Risk Management in Agriculture; IFRO Working
Paper; University of Copenhagen, Department of Food and Resource Economics (IFRO): Copenhagen, Denmark, 2013.

33. Constantinou, A.C.; Fenton, N.; Neil, M. Integrating Expert Knowledge with Data in Bayesian Networks: Preserving Data-Driven
Expectations When the Expert Variables Remain Unobserved. Expert Syst. Appl. 2016, 56, 197–208. [CrossRef]

34. Tari, F. A Bayesian Network for Predicting Yield Response of Winter Wheat to Fungicide Programmes. Comput. Electron. Agric.
1996, 15, 111–121. [CrossRef]

35. IUSS Working Group WRB World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming
Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Roma, Italy, 2015.

36. FAO. Guidelines for Soil Description; FAO: Roma, Italy, 2006.
37. Shepard, D. A Two-Dimensional Interpolation Function for Irregularly-Spaced Data. In Proceedings of the 1968 23rd ACM

National Conference, New York, NY, USA, 27–29 August 1968; Association for Computing Machinery: New York, NY, USA, 1968;
pp. 517–524.

38. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial
Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

39. Crippen, R.E. Calculating the Vegetation Index Faster. Remote Sens. Environ. 1990, 34, 71–73. [CrossRef]
40. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance

of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]
41. Pelleg, D.; Moore, A. Accelerating Exact K-Means Algorithms with Geometric Reasoning. In Proceedings of the Fifth ACM

SIGKDD International Conference on KNOWLEDGE Discovery and Data Mining, San Diego, CA, USA, 15–18 August 1999;
Association for Computing Machinery: New York, NY, USA, 1999; pp. 277–281.

42. Goutte, C.; Hansen, L.K.; Liptrot, M.G.; Rostrup, E. Feature-Space Clustering for FMRI Meta-Analysis. Hum Brain Mapp 2001, 13,
165–183. [CrossRef]

http://doi.org/10.3390/ijgi11060327
http://doi.org/10.2134/agronj2003.4550
http://doi.org/10.1002/agj2.21223
http://doi.org/10.1023/B:PLSO.0000047748.50435.fc
http://doi.org/10.1038/s41597-020-00596-x
http://doi.org/10.1371/journal.pone.0234213
http://doi.org/10.1016/j.envsoft.2006.03.006
http://doi.org/10.1016/j.ecolecon.2008.02.012
http://doi.org/10.1111/j.1467-8489.1981.tb00389.x
http://doi.org/10.1016/j.eswa.2016.05.005
http://doi.org/10.1038/nmeth.3368
http://doi.org/10.1038/s43586-020-00001-2
http://doi.org/10.1038/s41586-020-2405-7
http://doi.org/10.1126/science.abd9338
http://doi.org/10.1111/risa.13798
http://doi.org/10.1016/j.eja.2016.01.009
http://doi.org/10.1016/j.eswa.2016.02.050
http://doi.org/10.1016/0168-1699(96)00011-7
http://doi.org/10.1016/j.rse.2017.06.031
http://doi.org/10.1016/0034-4257(90)90085-Z
http://doi.org/10.1016/S0034-4257(02)00096-2
http://doi.org/10.1002/hbm.1031


Water 2023, 15, 1340 16 of 16

43. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. Unsupervised Learning. In An Introduction to Statistical Learning: With Applications
in R; Springer Texts in Statistics; James, G., Witten, D., Hastie, T., Tibshirani, R., Eds.; Springer: New York, NY, USA, 2013;
pp. 373–418, ISBN 978-1-4614-7138-7.

44. Thorndike, R.L. Who Belongs in the Family? Psychometrika 1953, 18, 267–276. [CrossRef]
45. Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 1987,

20, 53–65. [CrossRef]
46. Kohavi, R.; Longbotham, R. Online Controlled Experiments and A/B Testing. In Encyclopedia of Machine Learning and Data Mining;

Sammut, C., Webb, G.I., Eds.; Springer US: Boston, MA, USA, 2017; pp. 922–929. ISBN 978-1-4899-7687-1.
47. Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman and Hall/CRC: New York, NY, USA, 1994; ISBN 978-0-429-24659-3.
48. Spiegelhalter, D.J.; Myles, J.P.; Jones, D.R.; Abrams, K.R. Bayesian Methods in Health Technology Assessment: A Review. Health

Technol Assess 2000, 4, 1–130. [CrossRef]
49. Kohavi, R.; Longbotham, R.; Sommerfield, D.; Henne, R.M. Controlled Experiments on the Web: Survey and Practical Guide.

Data Min. Knowl. Disc. 2009, 18, 140–181. [CrossRef]
50. Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-6848-6.
51. Gleason, P.M.; Harris, J.E. The Bayesian Approach to Decision Making and Analysis in Nutrition Research and Practice. J. Acad.

Nutr. Diet. 2019, 119, 1993–2003. [CrossRef] [PubMed]
52. Harrell, F.E.; Shih, Y.C. Using Full Probability Models to Compute Probabilities of Actual Interest to Decision Makers. Int. J.

Technol. Assess. Health Care 2001, 17, 17–26. [CrossRef] [PubMed]
53. Salvatier, J.; Wiecki, T.V.; Fonnesbeck, C. Probabilistic Programming in Python Using PyMC3. PeerJ Comput. Sci. 2016, 2, e55.

[CrossRef]
54. Waskom, M.L. Seaborn: Statistical Data Visualization. J. Open Source Softw. 2021, 6, 3021. [CrossRef]
55. Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
56. Zhang, M.; Liu, D.; Wang, S.; Xiang, H.; Zhang, W. Multisource Remote Sensing Data-Based Flood Monitoring and Crop Damage

Assessment: A Case Study on the 20 July 2021 Extraordinary Rainfall Event in Henan, China. Remote Sens. 2022, 14, 5771.
[CrossRef]

57. Tran, K.H.; Menenti, M.; Jia, L. Surface Water Mapping and Flood Monitoring in the Mekong Delta Using Sentinel-1 SAR Time
Series and Otsu Threshold. Remote Sens. 2022, 14, 5721. [CrossRef]

58. S, erban, C.; Maftei, C.; Dobrică, G. Surface Water Change Detection via Water Indices and Predictive Modeling Using Remote
Sensing Imagery: A Case Study of Nuntasi-Tuzla Lake, Romania. Water 2022, 14, 556. [CrossRef]

59. Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal.
Sensors 2018, 18, 2580. [CrossRef]

60. Pang, H.; Wang, X.; Hou, R.; You, W.; Bian, Z.; Sang, G. Multiwater Index Synergistic Monitoring of Typical Wetland Water Bodies
in the Arid Regions of West-Central Ningxia over 30 Years. Water 2023, 15, 20. [CrossRef]

61. Gulácsi, A.; Kovács, F. Sentinel-1-Imagery-Based High-Resolution Water Cover Detection on Wetlands, Aided by Google Earth
Engine. Remote Sens. 2020, 12, 1614. [CrossRef]

62. Buzási, A.; Pálvölgyi, T.; Esses, D. Drought-Related Vulnerability and Its Policy Implications in Hungary. Mitig Adapt Strat. Glob
Change 2021, 26, 11. [CrossRef]

63. Pinke, Z.; Lövei, G.L. Increasing Temperature Cuts Back Crop Yields in Hungary over the Last 90 Years. Glob. Change Biol. 2017,
23, 5426–5435. [CrossRef] [PubMed]

64. Jäger, F.; Rudnick, J.; Lubell, M.; Kraus, M.; Müller, B. Using Bayesian Belief Networks to Investigate Farmer Behavior and Policy
Interventions for Improved Nitrogen Management. Environ. Manag. 2022, 69, 1153–1166. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/BF02289263
http://doi.org/10.1016/0377-0427(87)90125-7
http://doi.org/10.3310/hta4380
http://doi.org/10.1007/s10618-008-0114-1
http://doi.org/10.1016/j.jand.2019.07.009
http://www.ncbi.nlm.nih.gov/pubmed/31585828
http://doi.org/10.1017/S0266462301104034
http://www.ncbi.nlm.nih.gov/pubmed/11329842
http://doi.org/10.7717/peerj-cs.55
http://doi.org/10.21105/joss.03021
http://doi.org/10.1109/MCSE.2007.55
http://doi.org/10.3390/rs14225771
http://doi.org/10.3390/rs14225721
http://doi.org/10.3390/w14040556
http://doi.org/10.3390/s18082580
http://doi.org/10.3390/w15010020
http://doi.org/10.3390/rs12101614
http://doi.org/10.1007/s11027-021-09943-8
http://doi.org/10.1111/gcb.13808
http://www.ncbi.nlm.nih.gov/pubmed/28699259
http://doi.org/10.1007/s00267-022-01635-6

	Introduction 
	Remote Sensing of Waterlogging in Agroecosystems 
	Decision-Making and Management of Waterlogged Agricultural Fields 

	Materials and Methods 
	Study Area 
	Data Collection and Processing 
	Statistical Analysis 

	Results and Discussion 
	Field Hydrogeomorphic Features and Waterlogging in Agriculture 
	Data-Driven Decision-Making 

	Conclusions 
	Appendix A
	References

