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Abstract: The sustainable development of the water environment in the Yangtze River basin has
become a critical issue in China. Turbidity is a comprehensive element for water quality monitoring.
In this study, the baseline of water turbidity in the Yangtze River was constructed using 36 years of
Landsat images from 1986 to 2021. The spatial and temporal dynamics of turbidity and its driving
factors were explored. The results show that (i) the proposed Landsat-based turbidity model performs
well, with a correlation coefficient (R2) of 0.68 and a Root Mean Square Error (RMSE) of 7.83 NTU
for the whole basin. (ii) The turbidity level in the Yangtze River basin is spatially high in the upper
reaches (41.7 NTU), low in the middle reaches (30.9 NTU), and higher in the lower reaches (37.6 NTU).
The river turbidity level (60.1 NTU) is higher than the turbidity in lakes and reservoirs (29.6 NTU).
The turbidity in the Yangtze River basin shows a decreasing trend from 1986 to 2021, with the most
significant decrease in the mainstream of the Yangtze River. Seasonally, the mean turbidity in the
Yangtze River basin shows a “low in summer and high in winter” trend, but opposite trends were
revealed for the first time in rivers and lakes, such as Dongting Lake, Poyang Lake, and Taihu Lake, etc.
(iii) Natural factors, including precipitation and natural vegetation cover (woodlands, grasslands, and
shrubs) could explain 58% of the turbidity variations, while human activities including impervious
surfaces, cropland, and barren land are lower impact. Annual precipitation was negatively correlated
with water turbidity, while cropland and barren land showed a significant positive correlation. The
study is of great practical value for the sustainable development of the water environment in the
Yangtze River basin and provides a reference for remote sensing monitoring of the water environment
in inland water bodies.

Keywords: water turbidity; spatial–temporal dynamics; random forest; driving factors; Yangtze
River Basin

1. Introduction

The Yangtze River is the longest river in China, an essential support for developing
the Yangtze River Economic Belt, the integrated development of the Yangtze River Delta,
and other national strategies [1]. It is an important line of defense for China’s water
resources’ security and the basis for the economic and social development of the Yangtze
River Basin [2]. It is important for China’s economic and social development [3]. Since
the 1980s, with rapid economic growth, industrialization, and urbanization, the water
environment quality in the Yangtze River Basin has deteriorated [4]. In the 21st century, the
state, government, and relevant departments have taken remediation measures. The water
quality of the Yangtze River and Yangtze River Basin has improved significantly compared
to before the remediation. However, due to the weak foundation and many historical debts,
water ecology is still the main problem in the Yangtze River Basin, mainly manifested
by serious soil erosion in the upper reaches, severe agricultural surface pollution, and
eutrophication of water bodies in the middle and lower reaches, and shrinkage of some
wetlands and lakes [5].
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The conventional water quality monitoring method lays many sampling sections
in the whole water area through manual sampling to obtain real-time field pollutant
concentrations. The technique requires a lot of human and material resources, and some
areas are challenging to sample, restricted by hydrological, climatic, and other natural
conditions. Moreover, data obtained from the field sampling work are not a good reflection
of the water quality information of the whole region. In recent years, the rapid development
of remote sensing technology has been increasingly used for the dynamic monitoring of
large-scale water quality information [6]. Remote sensing satellites have all-weather, all-
round, large-scale real-time imaging and are not subject to natural geographical conditions.
The application of remote sensing in water quality monitoring can effectively compensate
for the shortcomings of traditional methods in temporal and spatial continuity [7]. In recent
years, many scholars have analyzed the water environment of the Yangtze River Basin
through remote sensing monitoring of water quality, and have conducted much research on
the water quality of the mainstream of the Yangtze River and the lakes in the middle and
lower reaches of the river. Standard remote-sensing water-quality monitoring inversion
models include empirical, semi-empirical models [8], and machine learning models [9].
Studies have used various satellite data for different water quality indicators in other
water bodies, including chlorophyll a concentration, suspended solids concentration, total
phosphorus, total nitrogen, and turbidity. For instance, ocean color satellite data, including
Terra/Aqua MODIS, Sentinel-2 MERIS, and Sentinel-3A OLCI, have been widely adopted
for water quality monitoring using varied models such as exponential function model,
neural networks, and random forest model [10–14]. Moreover, some land-oriented satellite
sensors include Landsat TM/ETM+/OLI data, GF-1 WFV, HJ-1A/B, and HMS-2 for inland
waters such as lakes, reservoirs, and rivers [15–22]. Despite the advances in remote-sensing
monitoring of water quality in the Yangtze River Basin, the research on monitoring water
quality at large spatial and temporal scales still needs to be completed.

The relationship between land use and water quality has been extensively studied
and shown to impact water quality directly [23,24]. The analysis of this relationship is
crucial for protecting watershed soil and water resources, and various methods, such as
correlation analysis [25] and redundancy analysis [26], have been employed. For instance,
Zhang et al. [27] conducted a study in the Three Gorges reservoir area using redundancy
analysis and multivariate statistical analysis to examine the impact of land use on water
quality. It should be noted that the results of different watersheds vary due to unique
natural factors such as land use structure, topography, climate, and the soil’s physical
and chemical properties. Additionally, the impact of land use on water quality can be
significantly different depending on the spatial scale of the study [28]. Zhang et al. [26]
found that the watershed scale significantly impacted water quality in the Daning River
Basin. Similarly, Xu Qiyu et al. [29] discovered that the riparian zone showed the most
significant impact on water quality in the Ganjiang River in Yuanhe and Poyang Lake
Basins, with forest land, paddy fields, and residential construction land having the most
significant influence. Wang Yishu et al. [30] found that the riparian zone within 800 m
of the Xijiang River significantly impacted on water quality. Wang J et al. [31] studied
the relationship between land use and landscape pattern of the Danjiang River and water
quality. They concluded that cropland and construction land have a negative impact on
water quality. This was also confirmed by Yang Qiangqiang et al. [32] in their study of the
Qingge River Basin, which showed that cropland and building land have a negative impact
on water quality. In conclusion, studies of the relationship between land use and water
quality at different spatial scales is crucial in optimizing land use and controlling nonpoint
source pollution.
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Turbidity is an essential parameter for monitoring river water quality [33], and it has
a close relationship with suspended solids [34]. The analysis of turbidity allows us to
understand the distribution of suspended matter or sediment in a water body. The changes
in turbidity can provide an insight into the behavior of pollutants such as sedimentation,
decomposition, and dispersion [21]. Hence, it is crucial to monitor the spatial distribution
of turbidity to gain a comprehensive understanding of water quality. This study focuses on
water turbidity variations in the Yangtze River Basin, using in situ observation data and
Landsat series remote-sensing satellite images from 1986 to 2021. The study also examines
drivers of the spatial and temporal variations of water quality parameters at the basin,
sub-basin, and grid scales, based on the long-term remote sensing results. The results aim
to provide a baseline for water environment management in the Yangtze River Basin and
provide a reference for remote sensing monitoring of the water environment in inland
water bodies. The step diagram of this paper is shown in Figure 1.
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Figure 1. Step block diagram.

2. Study Area and Data
2.1. Overview of the Study Area

The Yangtze River Basin is situated between 24◦30′ N to 35◦45′ N and 90◦33′ E to
122◦25′ E, covering an area of 1.8 million km2, accounting for approximately 20 percent of
the total area of China [35]. The basin encompasses 11 provinces, cities, and autonomous
regions, and is divided into 9 secondary and 45 tertiary sub-basins. The secondary sub-
basins include the Yalong River Basin, Minjiang River Basin, Jialing River Basin, Yangtze
River Main Current Basin, Hanjiang River Basin, Wujiang River Basin, Dongting Lake Basin,
Poyang Lake Basin, and Taihu Lake Basin. The Yangtze River is divided into three reaches
based on its geographical environment and hydrological characteristics. From Heyuan
to Yichang in Hubei Province, the upper reach passes through high plateaus, mountains,
and canyons with large drops, such as the Tongtian, Jinsha, and Three Gorges area, which
exhibit characteristics of prominent highland mountain canyon rivers. The middle reach,
from Yichang to Hukou, is winding and twisting with a relatively open water surface and
a slower flow velocity, with numerous tributaries and lakes, including the Han River to
the north and rivers such as the Xiangjiang, Zishui, Yuanjiang, Dongting Lake Basin, and
Ganjiang, Fujiang, Xinjiang, Xiuzhushui in the Poyang Lake Basin. The lower reach, from
Hukou to the mouth of the sea, is more than 800 km long, with an open water surface,
slower velocity, and numerous tributaries, although not as large as those in the middle and
upper reaches. The division of the Yangtze River Basin into multiple scales is important
for a detailed study of hydrological changes in different basin areas and for analyzing the
causes. The secondary and tertiary divisions of the basin are presented in Figure 2 and
Table 1.
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Figure 2. Map of the study area, including the distribution of secondary, tertiary, and water quality
monitoring stations.

Table 1. Names, affiliations, number of monitoring sites, and measured turbidity of 3 rivers reach
9 second-level watersheds and 45 third-level.

Reaches Name of the
Secondary Basin

Abbreviations of
Tertiary Basin Number of Sites

Upper reaches of the
Yangtze River

Yalong River Basin
(YLLY)

TT 0
ZM 2
YL 5
SG 23

Minjiang River Basin
(MJLY)

DD 2
QM 13
TJ 15

Jialing River Basin
(JLLY)

PJ 15
GX 6
GS 12
QUJ 13

Wujiang River Basin
(WJLY)

SS 15
SX 10

Yangtze River main
stream Basin (CGLY)

CS 5
YY 44
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Table 1. Cont.

Reaches Name of the
Secondary Basin

Abbreviations of
Tertiary Basin Number of Sites

Middle reaches of the
Yangtze River

Hanjiang River Basin
(HJLY)

DS 36
DX 19
TB 7

Dongting Lake Basin
(DTLY)

LS 3
YS 14
YX 12
ZS 6
ZX 1
DT 22
HS 6
HX 19

Poyang lake
Basin(PYLY)

XS 5
GJX 12
GJB 8
GJS 11
PY 28
FH 3
RH 4
XJ 6

Yangtze River main
stream Basin (CGLY)

QJ 5
YW 18
WH 24
CH 21

Lower reaches of the
Yangtze River

Taihu lake Basin
(THLY)

HH 42
WY 12
HJ 14
HP 17

Yangtze River main
stream Basin (CGLY)

CCW 31
QY 34
TC 19

2.2. Data
2.2.1. Remote Sensing and In Situ Data for Turbidity Inversion

In this study, the remote sensing data sources used were Landsat 5 TM, Landsat 7 ETM,
and Landsat 8 OLI surface reflectance data from 1986 to 2021. These data were obtained
from USGS and processed using the Google Earth Engine (GEE) platform for radiometric
calibration and atmospheric correction. The resulting data have a spatial resolution of
30 m. To ensure that the number of remote sensing images would not affect the results, the
number of effective Landsat observations in the Yangtze River Basin were counted from
1986 to 2021, as shown in Figure 3. The results showed that the distribution of effective
observations was uneven, with a greater concentration in the upstream and downstream
areas and less in the midstream areas. The Wujiang River Basin had the least number of
effective observations, with an average of 8 images per year, while the Yalong River Basin
had the most, with 18 images per year. This indicates that there were enough Landsat
observations between 1986 and 2021 to support the investigation of interannual variability
in turbidity in the Yangtze River Basin.
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Figure 3. Effective Landsat observations in the secondary basin from 1986 to 2021.

In this study, the in situ water quality data were obtained from the China General
Environmental Monitoring Station and the national surface water-quality monitoring
network of the Yangtze River Basin cross-section monitoring results. The turbidity data
from 639 water quality monitoring stations in the Yangtze River Basin in 2021 were analyzed
to build and validate the turbidity inversion model. Figure 1 shows the distribution of
these monitoring stations, which are almost widespread throughout the basin. It can be
observed that the distribution of stations in large lakes and rivers is more concentrated.

2.2.2. Data on the Drivers of Turbidity Variation

The scouring effect of rainfall runoff has been found to impact on watershed water
quality. The type of land use reflects the primary sources of nutrients and the soil erosion
status of the watershed, which then affects the river water environment and, ultimately,
the turbidity of the watershed. With increasing population and economic development,
human activities, such as domestic and industrial pollution, pose a growing threat to water
quality. Therefore, this study evaluates the contribution of various drivers to turbidity
in the Yangtze River Basin, including both natural factors and human activities. Natural
factors include precipitation and natural vegetation cover, such as woodlands, grasslands,
and shrubs, in the watershed. Human activities include impervious surfaces, croplands,
and barren land. The cropland cover reflects agricultural pollution, such as using fertilizers
and pesticides. The barren land cover representing destruction of undeveloped areas due
to human activities, such as mining, indicates soil erosion in the basin. Impervious surface
cover, to some extent, reflects the impact of local urban pollution, such as domestic and
industrial wastewater, on water quality.

Precipitation data from 1986 to 2021 were obtained from the Climate Hazards Group
Infrared Precipitation Station Dataset (CHIRPS) through the Google Earth Engine (GEE)
platform. As shown in Figure 4a, the annual precipitation in the upper river source area
is the lowest, with less than 400 mm, and the average annual precipitation in the upper
reaches is less than 800 mm. The precipitation in the middle and lower reaches is more
significant, with an average annual precipitation of over 1300 mm, among which the
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Poyang Lake Basin has the most abundant precipitation, exceeding 2000 mm annually.
From a seasonal perspective, the precipitation in the dry period (from May to October) of
each sub-basin is lower than that in the abundant period (from January to April, November,
and December) [36]. The months of maximum precipitation are mainly concentrated from
June to August.
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Land cover data were obtained from the China Land Cover Dataset developed by the
Wuhan University Institute of Remote Sensing. The dataset contains annual land cover
information for China from 1985 to 2020 with a spatial resolution of 30 m and an accuracy
rate of 80%. The data are classified into nine categories: cropland, forest land, shrubs,
grassland, water bodies, snow/ice, wasteland, impervious surface, and wetland. The map
of land use types (Figure 4b) shows that the primary land use types in the Yangtze River
Basin are cropland, forest land, grassland, impervious surface, and water bodies. As shown
in Figure 4c, a decrease in cropland and grassland areas from 1985 to 2020, accounting for
28.40% and 19.33% of the basin area, respectively. On the other hand, the forested land and
impervious surfaces increased, covering 45.72% and 2.40% of the watershed area in 2020,
respectively.

3. Methodology
3.1. Radiometric Normalization of Series Landsat TM/ETM+/OLI Data

In applying long-term remote sensing images for change detection or quantitative
remote sensing, pseudo changes can sometimes occur in a single feature on the ground
surface due to differences in radiation characteristics among various sensors, such as band
range, central wavelength, and band response. To address this issue, this study employs the
relative radiation normalization method proposed by Xiaomin Yu [37] to minimize these
pseudo variations. High-quality Landsat 8 OLI images of the Yangtze River Basin were
selected as the reference image, while quasi-synchronous Landsat TM/ETM+ images were
normalized. The corresponding visible and near-infrared wavebands from the reference
image and the normalized image were overlaid to calculate the coefficient of variation,
with lower values indicating lower variations in the region, which were used as pseudo-
invariant feature points. Using the pseudo-invariant feature point vector, the reflectance of
each image band was extracted, and regression models for each band were obtained (as
seen in Figure 5). The process is outlined in more detail below.

Yt = atxt + bt (1)

where xt is the reflectance of the image to be normalized at band t, yt is the reflectance of
the reference image at band t, and at and bt are the slope and intercept of the regression
equation at band t, respectively.

3.2. Turbidity Model and Validation

This study utilizes Landsat surface reflectance images and simultaneous in situ turbid-
ity data to derive different turbidity inversion algorithms. The in situ measured turbidity
values from 232 stations in the Yangtze River Basin in 2021 and the corresponding band
reflectance combinations were used to construct these algorithms (as shown in Table 2),
and the optimal band or band combination was identified [38]. The validity of the selected
algorithm was verified using in situ measured data. The study finally adopted a linear
model proposed by Yang Zhen et al. [39], using the combination of bands (green) and (red)
as the independent variable [(green) − (red)]/[(red) + (green)]. The model yielded an R2

of 0.68. The measured water turbidity data validation showed that the model had good
inversion results, with a Pearson correlation coefficient of 0.76 and a root mean square error
of 7.83 NTU (as seen in Figure 6).
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Table 2. Inversion algorithm of different turbidity.

Remote Sensing Factor Equations R2 Reference Model

1 x = b(red)/b(blue) y = 0.91e2.82x 0.58 Kratzer S. et al. [40]
2 x = b(red)/b(green) y = 286.5x2 − 333.8x + 103.9 0.62 Hou X. et al. [41]
3 x = b(nir) y = 4725.5x2 − 141.3x + 6.90 0.46 Petus C. et al. [42]
4 x = (b(green) − b(red))/b((red) + b(green)) y = 52.1e−9.64x 0.68 Yang Z. et al. [39]
5 b(blue), b(green), b(red), b(nir) Multiple linear regression 0.50 Maeda E.E. et al. [43]

3.3. Driving Factors Analysis

We employed a random forest model to examine the drivers’ response to turbidity
levels. This model is capable of identifying the key variables affecting the response among
a large number of covariate variables. The analysis was performed using the scikit-learn
library in Python. We started by fitting the explanatory variables and the mean turbidity
level in the Yangtze River Basin through a random forest regression approach. Then, we
computed the feature importance to gauge the drivers’ response. The feature importance
reflects the contribution of each explanatory variable and is calculated through permu-
tations of the variables. For each explanatory variable, the significance of its ranking is
determined by the increase in the prediction’s mean squared error (MSE) when that feature
is ranked [44]. The rise in MSE for each explanatory variable is normalized and expressed
as a percentage between 0 and 100%. A significant increase in MSE indicates a higher
impact and contribution of the explanatory variable to the response.
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4. Results
4.1. Performance of Radiometric Normalization

The turbidity inversion model was applied to the Landsat 7 ETM image both before
and after radiation normalization, and then compared with the quasi-synchronous Landsat
8 OLI image. The image used for the test was the Landsat 7 ETM image of the Wuhu
section of the Yangtze River, taken on 26 September 2021, while the reference image was
the Landsat 8 OLI image of the exact location, taken on 18 September 2021. The results are
presented in Figure 7.
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The overall turbidity inversion results decreased to approximately 40 NTU, which is in
line with the results from the reference image. An error analysis of the radiation-normalized
turbidity inversion value and the inversion value from the reference image showed that
the root means square error for both was only 1.82 NTU, and the average relative error
was about 1.33%. In conclusion, the radiation-normalized processing of Landsat ETM/TM
image data effectively eliminates differences in sensor response and reduces. It reduces
variation, leading to more accurate results in the turbidity inversion.

4.2. Turbidity Variations in the Yangtze River Basin at Varied Spatial–Temporal Scales
4.2.1. The Entire Watershed

The 36-year average turbidity value in the Yangtze River Basin was calculated to be
40.51 ± 28.62 NTU using the turbidity inversion model. Spatial analysis shows that the
turbidity level is generally high in the basin’s upper reaches and low in the middle reaches,
with higher levels in the main streams and lower levels in the lakes and reservoirs. The
frequency distribution of average turbidity in the basin has a positively skewed peak, with
90.8% of water bodies having an average turbidity of less than 70 NTU.

The turbidity inversion results were divided into two periods, the wet period (May–
September) and the dry period (January–April and November–December), and the mean
turbidity maps were obtained. During the wet period, the average turbidity was 40.41 ±
34.88 NTU, and the range of the water body was larger, with higher turbidity levels in the
mainstream and lower levels in the tributaries, lakes, and reservoirs. In the dry period, the
average turbidity was 47.54 ± 18.51 NTU, and the range of the water body was smaller,
with lower turbidity levels in the mainstream and higher levels in the tributaries and lakes,
and reservoirs (as seen in Figure 8).

The monthly average turbidity in the Yangtze River Basin was a seasonal charac-
teristic, with the lowest level in July (33 ± 35.71 NTU) and the highest in February
(45.69 ± 27.64 NTU). The average annual turbidity in the basin was calculated on a year-
by-year basis and showed a trend of decreasing from 1986–1988 (45.2 NTU) to 2003–2015
(39.3 NTU), with a period of stability from 2016 to 2019 (37.6 NTU), and an increase in
2020–2021 (35.3 to 39.4 NTU). The trend of the annual mean turbidity was generally consis-
tent with the trend of turbidity, with turbidity levels in the dry period being on average
7 NTU higher than in the wet period (as seen in Figure 9).

4.2.2. Secondary Watersheds

The mean turbidity values of the secondary basins of the Yangtze River were analyzed
(Figure 10a,b). The Yalong River Basin had the highest turbidity level, followed by the
Yangtze River main stream Basin. The Wujiang River Basin had the lowest turbidity level.
The water bodies were ranked in terms of turbidity as follows: Yalong River Basin > Yangtze
River main stream Basin > Minjiang River Basin > Jialing River Basin > Poyang Lake Basin
> Dongting Lake Basin > Taihu Lake Basin > Han River Basin > Wujiang River Basin. The
difference in turbidity levels between wet and dry periods was minimal in the Yalong and
Minjiang rivers. In contrast, the turbidity levels during the wet period were higher in the
Yangtze River mainstream Basin and Jialing River Basin and lower in the Hanjiang River
Basin, Wujiang River Basin, Dongting Lake Basin, Poyang Lake Basin, and Taihu Lake
Basin during the same period.
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variation.

The statistics of the annual average turbidity and monthly average turbidity of the
secondary watersheds (shown in Figure 10c,d) indicate that, except for the Yalong River
Basin, which had a constant turbidity level of around 67 NTU in all months except January
and December, the overall trend of each watershed has been gradually decreasing over the
past 36 years. The Minjiang River Basin, Jialing River Basin, and Yangtze River main stream
Basin show a trend of increasing and then decreasing turbidity, with lower levels in spring
and winter compared to summer. The Han River Basin, Wujiang River Basin, Dongting
Lake Basin, Poyang Lake Basin, and Taihu Lake Basin exhibit a trend of decreasing and
then increasing turbidity, with higher levels in spring and winter compared to summer.
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4.2.3. Tertiary Watersheds

The 36-year average turbidity values for the tertiary watersheds of the Yangtze River
Basin have been calculated (shown in Figure 11). The turbidity levels in the upper reaches
of the Yangtze River vary greatly, with the highest being recorded in the Tongtian River
(TT) at 81.6 NTU and the lowest in the area above Sinan (SS) at 25.3 NTU, resulting in an
average turbidity level of 41.7 NTU and 66% of the sub-basins having 35–45 NTU turbidity
levels. In the Yibin to Yichang Main River Basin (YY), the difference between the turbidity
levels during the abundant and dry periods is substantial, with an average difference of
33.2 NTU in the wet period compared to the dry period. In contrast, the difference in other
sub-basins is minimal, averaging ±6 NTU.
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In the middle reaches of the Yangtze River, the turbidity levels are relatively low, with
the highest level recorded in the Fuxi River (FH) at 40.9 NTU and the lowest in Xiushui
(XS) at 19.4 NTU, averaging 30.9 NTU with 78% of the sub-basins having turbidity levels of
26–36 NTU. During the wet period, the turbidity level in the Qingjiang River (QJ), Yichang-
Wuhan left bank (YW), and Chenglingji-Hukou right bank (CH) was higher compared to
the dry period, while in all other sub-basins, it was higher in the dry period. The highest
turbidity level in the lower reaches of the Yangtze River was recorded in the Tongnan and
Chongming Island rivers (TC) at 54.9 NTU, and the lowest in the West Lake at 26.8 NTU,
averaging 37.6 NTU. The turbidity in the Qingyi and Suyang rivers (QS) and Tongnan
and Chongming Island rivers (TC) was higher during the wet period, while in all other
sub-basins, it was higher during the dry period.
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Figure 11. Distribution of mean turbidity in the tertiary basins in the Yangtze River Basin from 1986
to 2021. (a) mean of 36 years in the upper reaches; (b) mean of wet season and dry season in the
upper reaches; (c) mean of 36 years in the middle reaches; (d) mean of wet season and dry season in
the middle reaches; (e) mean of 36 years in the lower reaches; (f) mean of wet season and dry season
in the lower reaches.

The annual and monthly average turbidity statistics of the three levels of watersheds
(refer to Figure 12) show that the turbidity level of the Tongtian River in the upstream area
remained relatively stable, with an upward trend in TT and ZM and a downward trend in
all other sub-basins, with the most significant decrease observed in the Yibin-Yichang main
stream watershed (YY), which decreased by about 43 NTU. The monthly average turbidity
in this sub-basin showed sharp fluctuations throughout the year, with the highest observed
from June to August. All sub-basins showed a decreasing trend in the midstream region,
with the most significant decrease in the Qingjiang River (QJ) at about 42 NTU. A total
of 87% of the sub-basins showed a fluctuating trend, with an increasing trend followed
by a decreasing trend during the year, with the Qingjiang River (QJ), Yichang-Wuhan left
bank (YW), and Chenglingji-Hukou right bank (CH) showing a fluctuating trend. The
Hangjia Lake area (HJ) showed an increasing trend in the lower reaches. In contrast, all
other sub-basins showed an oscillating decreasing trend, with the most significant decrease
observed in Tongnan and Chongming Island rivers (TC) at 23.4 NTU. The intra-annual
trends among the sub-basins were inconsistent, with the most significant changes observed
in Tongnan and Chongming Island.
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Figure 12. Variations of mean turbidity in tertiary basins in the Yangtze River Basin from 1986 to 2021.
(a) annual variations in the upper reaches; (b) monthly variations in the upper reaches; (c) annual
variations in the middle reaches; (d) monthly variations in the middle reaches; (e) annual variations
in the lower reaches; (f) monthly variations in the lower reaches.

The results indicate that the overall trend in turbidity levels in the Yangtze River Basin
is decreasing. The dry period is characterized by higher turbidity levels than the wet period.
The areas with the most significant changes are listed as follows and will be discussed in
the next section: (1) The Tongtian River (TT) and the section from Zhimenda to Shigu (ZM)
in the Yalong River Basin. This area has the highest average turbidity levels in the Yangtze
River Basin, with a significant difference in turbidity levels between lakes and rivers. Lakes
have a decreasing trend of low turbidity levels, while rivers have an increasing trend of
high turbidity levels, and these levels are slightly higher in the abundant water period than
in the dry period. (2) The Yangtze River mainstream Basin (YY, QJ, YW, CH, QS, and TC).
Turbidity levels in this area decrease and then increase from west to east, with the most
significant interannual decreasing trend in the Yangtze River Basin. Additionally, there
is a strong interannual seasonal variation, with higher turbidity levels in the wet period
compared to the dry period. (3) The Hangjia Lake area (HJ). This area has an upward trend
in interannual variation in turbidity levels.
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5. Discussions
5.1. Effects of Precipitation on Turbidity at Short-Long Terms

Precipitation, particularly rainfall, has been identified as a significant factor affecting
water turbidity. The effects of precipitation on water turbidity were examined at both
annual and monthly scales in the Yangtze River Basin. Several studies have demonstrated
a positive correlation between annual precipitation and water turbidity. Increased rainfall
can cause soil erosion, which results in higher suspended solids in water. For example, a
study conducted in a watershed in Taiwan found that annual turbidity was significantly
higher during years with greater precipitation [45]. Similarly, studies in the Middle Reaches
of the Yarlung Zangbo River, Southern Tibetan Plateau, showed that river turbidity was
affected by the confluence of tributaries and the changes in precipitation and vegetation
along the river [46]. However, our results showed a negative correlation between total
annual precipitation and turbidity in the Yangtze River Basin over the long term from
1986 to 2021 (Figure 13). In general, the turbidity decreased at the basin and secondary
watersheds over 36 years. In contrast, total annual precipitation has increased over the past
few decades in most parts of the basin, especially in the upper reaches, such as Yalong River
Basin and Minjiang River Basin. This relationship was likely due to the forest recovery
policy and action since the 1980s in China, as shown in Figure 4c, where the forest cover
increased from 42% to 46% over 36 years. Forest recovery can help prevent soil erosion and
reduce the amount of sediment and other particles that enter nearby waterways. The roots
of trees and other vegetation can help hold soil in place, and the canopy can help intercept
rainfall and slow down surface runoff, allowing more water to infiltrate into the ground.
As a result, forest recovery can help improve water quality and reduce water turbidity.
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At the monthly scale, our results showed that the relationship between precipita-
tion and turbidity varied depending on the region of interest. Figure 14 presented these
relationships over nine secondary watersheds in the Yangtze River Basin. For monthly
precipitation, typical seasonal variations were observed for all regions with higher precipi-
tation in summer and autumn, and lower precipitation during winter and spring. However,
two different seasonal patterns of water turbidity were found. The first pattern was charac-
terized as “low in summer and high in winter,” such as Dongting Lake (DTLY), Poyang
Lake (PYLY), and Taihu Lake (THLY), etc., and the second pattern was almost the opposite
as “high in summer and low in winter”, such as Yalong River Basin (YYLY), Minjiang River
Basin (MJLY), and Jialing River Basin (JLLY). The combined effect of both natural factors
and human activities may cause this inconsistency. For the regions with the first pattern,
we found these watersheds had higher vegetation cover, and larger open waters areas
such as lakes rather than rivers (with a mean ratio of lake area to river area of 2.3), which
means that during wet seasons with more precipitation, more water will confluence in
lakes, and more runoff and sediments will be intercepted, thus reducing lower turbidity
in wet seasons. The results were consistent with findings in the middle and lower basins
of the Yangtze River, where the largest TSS concentrations occurred in the first and fourth
quarters of a year and the lowest values occurred in the third quarter [41]. On the other
hand, the Yalong River Basin (YYLY), Minjiang River Basin (MJLY), and Jialing River Basin
(JLLY) were found with lower vegetation cover but more rivers (with a mean ratio of lake
area to river area of 0.6), thus are more sensitive to precipitation during wet seasons. This
pattern may be because during other months, the inputs of sediment and nutrients to water
bodies are more strongly influenced by vegetation cover and land use practices rather than
precipitation alone.
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5.2. Contributions of Varied Drivers on Water Turbidity

The analysis of random forests was conducted to examine the factors affecting the
spatial variation of water turbidity in the Yangtze River Basin (Figure 15). The results
showed the impact of both natural and human factors on water turbidity was comparable,
with natural factors contributing 58% and human activities contributing 42%. Natural
vegetation had the most decisive influence, accounting for 43.12% of the total contribution.
The impact of these factors differed in different river sections, with natural factors having a
greater effect (61%) in the upstream area. In comparison, human activities had a greater
impact (54%) in the downstream area.
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Figure 15. Contributions of impacts of explanatory factors on spatial turbidity variations of Yangtze
River basin and different reaches using the random forest regression analysis.

A Pearson correlation analysis explored the driving factors of the temporal variation
of water turbidity in the Yangtze River Basin (Table 3). The results showed that both natural
and human factors influenced the temporal variation of water turbidity, and the variation
was negatively correlated with annual and monthly precipitation, positively correlated with
cropland and wasteland area, and positively correlated with the increase in impervious
area. However, the correlation between turbidity and driving factors varied in regions with
abnormal trends.

Table 3. Pearson correlation was used to analyze the influence of interpretive factors on the spatial
variation of turbidity in the Yangtze River Basin.

Pearson Correlation Analysis Yangtze River Basin TT ZM CGLY HJ

Precipitation vs. Turbidity −0.575 ** −0.260 0.125 −0.417 * 0.146
Natural vegetation vs. Turbidity 0.295 −0.392 * −0.622 ** 0.297 −0.138
Cropland vs. Turbidity 0.770 ** −0.443 −0.033 0.901 ** −0.319
Barren land vs. Turbidity 0.539 ** −0.119 0.590 ** 0.876 ** /
Impervious surface vs. Turbidity −0.801 ** / / −0.909 ** 0.508 *

Note(s): * indicates p < 0.05, correlation exists; ** indicates p < 0.01, correlation is significant.

In TT and ZM, the annual mean turbidity showed an increasing trend and a negative
correlation with natural vegetation. The monthly mean turbidity was positively correlated
with monthly precipitation. In CGLY, the annual mean turbidity decreased and was
significantly associated with changes in cultivated land, wasteland, and impervious area.
The monthly average turbidity was positively correlated with monthly precipitation. In
HJ, the annual average turbidity showed an increasing trend and was positively correlated
with the changes in impervious areas.
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5.3. Causes of Opposite Turbidity Trends between Mainstream and Lakes

The study shows that both natural factors and human activities play a role in con-
trolling the spatial and temporal variability of water turbidity in the Yangtze River Basin.
As an important driver of water turbidity, precipitation contributes to water pollution
by transporting surface source pollutants into the river and washing soil particles and
pollutants into the river through ground runoff. Accelerated water flow leads to river
sediment resuspension, resulting in higher water turbidity levels in summer than in winter,
as observed in the Tongtian and Yangtze rivers. However, precipitation also increases the
water level of lakes, making them less susceptible to sediment resuspension caused by wind
and waves. Dilution of dissolved and suspended substances by rainwater in large lakes
such as Poyang Lake, Dongting Lake, and Taihu Lake reduces turbidity, with lower levels
observed in summer than in winter. Therefore, lakes in areas with higher precipitation are
more likely to have lower turbidity characteristics (Figure 16).
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The small proportion of barren land in the Yangtze River Basin accounts for 13% of
the spatial variation of water turbidity and significantly affects the time-series variation of
water turbidity. Soil erosion in the watershed due to the increase in the area of wasteland
leads to a higher concentration of suspended solids in the water column, resulting in higher
water turbidity levels. However, higher natural vegetation cover reduces soil erosion and
decreases water column turbidity. Human activities, such as agricultural surface pollution,
seriously affect the nutrient cycle in the water column, leading to increased eutrophication
and higher water turbidity in many lakes. Rapid economic and urbanization development
increases pollution, such as industrial and domestic wastewater, resulting in a decline in
water quality and higher turbidity levels in the downstream water column with higher
urbanization rates. However, under the guidance of the concept of “maintaining a healthy
Yangtze River and promoting harmony between people and water” and the Yangtze River
Protection Law, provinces and cities in the middle and lower reaches of the river have
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started water resources’ protection planning, divided units into functional zones, and
carried out comprehensive water pollution control.

6. Conclusions

Using Landsat images and turbidity inversion models, the spatial and temporal
variation of water turbidity in the Yangtze River Basin and its driving factors were analyzed.
The overall turbidity trend is decreasing, with higher levels in the upper, a low level in
the middle reaches, and a higher level in the river’s lower reaches. The Yangtze River
Basin shows a decreasing trend, with the most significant decrease in the Yangtze River
mainstream. There are local areas with inconsistent changes, such as TT, ZM, and HJ, where
interannual changes show an increasing trend. Seasonally, the overall turbidity level in the
Yangtze River Basin shows a seasonal variation of “low in summer and high in winter”,
and the seasonal spatial variation is reflected in rivers and lakes; the turbidity of lakes and
reservoirs is “low in summer and high in winter”, such as Dongting Lake, Poyang Lake,
and Taihu Lake.

Results show that both natural factors and human activities jointly control the vari-
ability in water turbidity. Natural factors have a more significant influence on the spatial
variation in turbidity, particularly vegetation cover. In contrast, human activities have a
more significant impact on the downstream area, with cropland and wasteland positively
correlated with turbidity while impervious surfaces are negatively correlated. The negative
correlation between water turbidity and annual precipitation over 36 years indicates that
the forest recovery policy since the 1980s in China has been effective for water quality
management. The study provides a baseline for water environment management in the
Yangtze River Basin and provides a reference for remote sensing monitoring of the water
environment in inland water bodies.
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