
Citation: Pozo-Solar, F.;

Cornejo-D’Ottone, M.; Orellana, R.;

Acuña, C.; Rivera, C.; Aguilar-Muñoz,

P.; Lavergne, C.; Molina, V. Microbial

and Biogeochemical Shifts in a

Highly Anthropogenically Impacted

Estuary (“El Sauce” Valparaíso).

Water 2023, 15, 1251. https://

doi.org/10.3390/w15061251

Academic Editor: Rolf D. Vogt

Received: 19 November 2022

Revised: 21 February 2023

Accepted: 27 February 2023

Published: 22 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Microbial and Biogeochemical Shifts in a Highly
Anthropogenically Impacted Estuary (“El Sauce” Valparaíso)
Francisco Pozo-Solar 1,2,3, Marcela Cornejo-D’Ottone 4, Roberto Orellana 2,3 , Carla Acuña 3, Cecilia Rivera 2,3,
Polette Aguilar-Muñoz 3 , Céline Lavergne 3,5 and Verónica Molina 2,3,6,*

1 Programa de Doctorado Interdisciplinario en Ciencias Ambientales, Facultad de Ciencias Naturales y Exactas,
Universidad de Playa Ancha, Valparaíso 2340000, Chile; panchopozosolar@gmail.com

2 Departamento de Ciencias y Geografía, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 270,
Playa Ancha, Valparaíso 2340000, Chile

3 HUB Ambiental UPLA, Universidad de Playa Ancha, Leopoldo Carvallo 207, Playa Ancha,
Valparaíso 2340000, Chile; celine.lavergne@upla.cl (C.L.)

4 Escuela de Ciencias del Mar and Instituto Milenio de Oceanografía, Pontificia Universidad Católica de
Valparaíso, Valparaíso 2950, Chile

5 Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha,
Viña del Mar 450, Chile

6 Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción,
Concepción 4070386, Chile

* Correspondence: veronica.molina@upla.cl

Abstract: Coastal zones are ecosystems that are sensitive to climate change and anthropogenic
pollution, resulting in a potential loss of biodiversity and ecosystem services through eutrophication
and nutrient imbalances, among others. The coastal El Sauce catchment area, Central Chile, is under
multiple anthropogenic pressures including wastewater treatment plant (WWTP) discharge, which its
broad effect remains underexplored. In order to assess the impact of the WWTP on El Sauce stream,
the benthic microbial communities and key functional groups variability (i.e., nitrifiers, methanogens
and methanotrophs) were determined by 16S rDNA high-throughput sequencing and by functional
genes quantification, respectively, during two contrasted seasons in three catchment areas (pre-,
WWTP and post-discharge). The microbial communities’ structure profiles were associated with
the water quality, nutrients, greenhouse gas (GHG) distribution, and the organic matter isotopic
signatures in the sediments, for the first time, in this ecosystem. The results show that organic matter
isotopic signatures using nitrogen and carbon (δ15N and δ13C) and the physicochemical conditions in
El Sauce estuary changed from the pre- to WWTP discharge areas (i.e., a pH decrease of 0.5 units and
an increase of 4–6 ◦C in the water temperature). The WWTP discharge area was characterized by a low
nutrient concentration and significantly higher GHG distribution (>600 µM CO2, >30,000 nM CH4,
and >3000 nM N2O). In addition, the benthic microbial community structure shifted spatially and
seasonally, including specific phyla known as sewage bioindicators, such as Firmicutes (Clostridiales
order) and Bacteroidetes. In addition, other taxa were enriched or only retrieved in the sediments of
the WWTP influenced area, e.g., Tenericutes, Lentisphaerae, Synergistetes, and LCP-89. Methanogens
were more enriched near the WWTP discharge compared to those in the pre-discharge site in
both seasons, while methanotrophs and ammonia oxidizers were unfavored only during winter.
Our results indicate that the WWTP discharge impacts the biogeochemical conditions in El Sauce
catchment area modifying the benthic microbial communities, including a decrease in the key
functional groups able to mitigate CH4 and regulate nutrients recycling in these aquatic ecosystems.

Keywords: wetland; greenhouse gases; organic matter; benthic microbial community; nitrifiers;
methanotrophs; methanogens
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1. Introduction

Organic matter (OM) is a central factor regulating nutrient recycling in several aquatic
ecosystems. The processes involved in controlling the transformation of OM are espe-
cially relevant in coastal environments, such as estuaries and wetlands, since they con-
tribute to global carbon mitigation [1]. Estuarine OM is composed of a diverse mixture
of allochthonous and autochthonous sources [2]. While autochthonous OM enriched by
plant-derived polymers is locally originated from the high primary productivity associated
with phytoplankton and aquatic vegetation, allochthonous OM is often advected from
rivers, tributaries, groundwater, or allocated sources mainly from a terrestrial origin. The
seasonal distribution of OM sources, its quantity, quality, and environmental physical and
chemical characteristics are key factors governing the biogeochemical processes in estuaries.
Therefore, it affects the net flux of nutrients to coastal marine ecosystems. Several of those
elements are currently threatened by climate change and anthropogenic activities [3–5].
Indeed, many estuaries receive industrial, domestic, agricultural, and wastewater dis-
charges, which often are highly enriched by fractions of sewage and fossil fuels, and may
include complex OM mixtures [6,7] and other pollutants [8,9] resulting in eutrophication
and biodiversity loss [10] and affecting aquatic ecosystem functions [11].

Among the other environmental factors, the origin, composition, and distribution
of OM play a relevant role in reshaping the structure and composition of natural mi-
crobial communities of estuaries [12–14]. Anthropogenic OM sources and compositions
were reported to influence water quality and microbial community taxonomic compo-
sition and structure in aquatic ecosystems [15]. Wastewater treatment plants (WWTP)
are facilities in which several processes aim to remove solids, as well as transform liquid
wastes into an acceptable final effluent. The partial degradation of OM and nutrients
mineralization occur through a series of stages, such as activated sludge, aeration tanks,
bioreactors, and disinfection processes before water is discharged to the environment.
However, multiple studies have reported that WWTPs are important sources of several
contaminants that may negatively impact aquatic ecosystems, including those of emerging
concern [16–18]. Besides persistent chemical residuals, OM, and microorganisms remain
in treated waters influencing both the bio-physical and ecological conditions, especially
when the receiving water body is a semi-closed aquatic transition ecosystem, such as
estuaries with higher water residence times [19–22]. Several lines of evidence suggest
that wastewater discharge in estuaries increases the amount of greenhouse gases (GHG)
emitted into the atmosphere [16,23,24], as well as other freshwater ecosystems, such as
river mouths [25] and lakes [26]. WWTP discharges carry over a significant proportion
of remaining microbes associated with the human gut microbiome, including pathogens
and other microbial communities besides Coliform bacteria. These microbes are typical
indicators of wastewater that can shape the natural community structure and substantially
affect their biogeochemical activity [27]. In addition, WWTP discharge changes the water
quality by increasing its temperature, altering the nutrient concentration and stoichiometry,
as well as, adding antibiotics and other emerging pollutants that affects the microbial
community structure [28]. Moreover, WWTP could cause shifts in the functional microbial
groups, for instance, methanogenic communities are favored, while methanotrophs and
phototrophs are unfavored in WWTP-impacted zones [29,30].

El Sauce catchment, located in Laguna Verde, Valparaíso, has been considered as a
eutrophic system for several years mainly due to runoff and loading of various sources of
pollution from the constant water discharge of a WWTP, as well as inputs from leachates
from a municipal landfill and domestic wastewater [31]. Nevertheless, it is unknown how
these disturbances influence GHG and the native microbiome including functional groups
associated with GHG recycling. This study aimed to determine the influence of WWTP
discharge on the overall biogeochemical conditions along El Sauce estuary in winter and
summer, including the changes in the dissolved nutrient and GHG concentration (CO2,
CH4, and N2O), OM quality, and benthic microbial community structure.
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2. Materials and Methods
2.1. Study Area and Sampling Procedures

El Sauce estuary is located in Valparaíso (Central Chile; 33◦6′ S—71◦38′ O), and its
main water flow from Las Cenizas basin area is connected with “La Luz” reservoir. The stud-
ied stream is situated within the Peñuelas sub-watershed, representing a total of 320.9 km2

(DGA, 2014). [32] As a part of the coastal watershed complex called “Aconcagua/Maipo
Coast”, the water flow is mainly dependent on rainfall and anthropogenic activities. It is
important to note that a sandbar avoiding superficial water exchanges between the stream
and the ocean is almost constantly present at the estuary and was present during both
sampling periods. Field work to collect physicochemical data water and sediments samples
was conducted on August 26, 2019 (austral winter) and January 07, 2020 (austral summer).
Five sites were sampled along the main tributary and estuary mouth of the Las Cenizas
basin following a previous report (Rivera-Castro et al., 2020) [31]. Two sampling sites from
the upper area of the main tributary were located 30 m upstream (F2) and 30 m downstream
of the WWTP discharge (F3). A third site (E7) was located at an intermediate tributary area
characterized by a pond. The last two sampling sites were situated near the estuary (E10)
and in the mouth (E11) (Figure 1). During winter and summer, the tributary upper and
intermediate portions were shallow, with a 10–20 cm water depth, whereas at the estuary
mouth the water depth was approximately 50–60 cm.

Figure 1. Sampled sites of El Sauce estuary including five stations.
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Physicochemical parameters such as temperature, pH, dissolved oxygen (DO), and
conductivity were recorded in the surface water in triplicate (except for DO) using a
multiparameter probe (YSI and ProDSS model). Triplicate water samples were collected
from the water surface for nutrients, including nitrate (NO3

−), nitrite (NO2
−), phosphate

(PO4
3−), and silicic acid (SiO4

4−) determinations. The water was filtered through a 0.45 µm
GFF filter and collected into 60 mL “Nalgene” bottles (Nalgene, Waltham, MA, USA).
These bottles were kept cool for less than 3 h and frozen at −20 ◦C until further analysis.
Additionally, water samples were collected to determine the concentration of dissolved
GHG (CO2, N2O, and CH4) using 20 mL gas-tight vials, in triplicate. These vials were
filled under water to avoid bubbles, then, were immediately fixed with 50 µL saturated
HgCl2 solution, and stored at room temperature in the dark until their analysis in the
laboratory. Water samples that met the standard water quality parameters, according to
Chilean regulation NCh409/84, were also collected in triplicate and transported to the
laboratory following procedures established by the Standard Methods Book [33]. For the
determination of Chlorophyll-a concentration, in triplicate, discrete water samples (500 mL)
were filtered onto GF/F filters (Whatman® glass microfiber filters, USA, Sigma Aldrich),
and then stored and frozen until laboratory analyses.

Surface sediment samples were sampled in sealable bags for organic matter and
granulometry determinations and were kept at 4 ◦C for further laboratory analyses. Fine-
grained sediment samples were collected to determine carbon (δ13C) and nitrogen (δ15N)
isotopes and stored in cryotubes (2 mL, in duplicate). Additionally, fine-grained sediments
were sampled for molecular microbial community composition analysis in cryotubes (2 mL,
in duplicate) filled with RNA later (Ambion, Life Technologies, Carlsbad, CA, USA, Thermo
Fisher Scientific) to preserve nucleic acids [34]. All the sediment samples were transported
under cool conditions using gel packs (less than 3 h). Sediments for isotopic and microbial
community analyses were stored frozen at −80 ◦C until analyses.

2.2. Laboratory Procedures for Biochemical Parameters

Nutrients concentrations were determined through spectrophotometric methods. Ni-
trate and nitrite concentration were determined following Strickland et al. (1972) [35]
and PO4

3- and SiO4
4- were measured following Atlas et al. (1971) [36] using a nutrient

autoanalyzer. Chlorophyll-a concentration was determined in discrete seawater samples
according to the method described by Holm-Hansen et al. (1965) [37]. Dissolved GHG
concentrations in water were determined by gas chromatography through the headspace
technique McAuliffe (1971) [38] using a Greenhouse GC-2014 Shimadzu chromatograph
equipped with an electron capture detector (ECD) for N2O and a flame ionization detector
(FID) for CO2 and CH4 attached to a methanizer for the conversion of CO2 into CH4.
Calibration was carried out using three calibration points using helium, air, and a standard
ratio of 600 to 5, to 1 of a CO2, CH4, and N2O mixture for absolute quantification (Scotty gas
mixture; Air Liquid Co., Paris, France). Standard water quality parameters such as trans-
parency, turbidity, color, dissolved total solids (DTS), sulfates, chlorides, fecal coliforms,
and BOD5 (biochemical oxygen demand) according to Chilean regulation NCh1333/78
were measured following the Standard Methods Book [33]. All the chemicals used for the
above analyses were of analytical grade.

2.3. Sediment Granulometry, Organic Matter, and Isotopic Analyses

Sediment granulometry of samples were assessed using dry sediment (40 ◦C during
24 h) and analyzed by standard mesh analysis method to sort out the sand, gravel, and silt
size fractions (Friedman and Sanders 1978) [39]. Total organic matter was determined using
the Loss-On-Ignition (LOI) method in a muffle furnace [40]. Carbon (δ13C) and nitrogen
(δ15N) isotopes were analyzed using mass spectrometry (Thermo Scientific Delta V Advan-
tage IRMS using an EA-2000 Flash Elemental analyzer, Waltham, MA, USA) according to
Pee Dee Belemnite (VPDB) and the air standards of the Laboratory of Biogeochemistry and
Applied Stable Isotopes (LABASI, PUC, Chile).
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2.4. Benthic Microbial Community Characterization Using Molecular Approaches

DNA was extracted using the DNAeasy PowerSoil DNA Isolation Kit (Qiagen, Ger-
mantown, MD, USA). Briefly, after thawing, the RNA later buffer was removed from the
sample, then 250 mg of wet sediment was weighted and distributed into the PowerBead
tubes provided by the manufacturer. DNA extracts were quantified (1.3–40 ng/µL) using
the dsDNA BR (Broad Range) Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham,
MA, USA), and DNA quality (260/280) was determined by spectrophotometry using
Cytation 5 (BioTek, Shoreline, WA, USA), and template amplification was tested using
conventional 16S rDNA PCR using 27F and 519R primers. DNA extracts (n = 10) were sent
to the Illumina Miseq sequencing platform in Mr. DNA laboratory (Shallowater, TX, USA)
to be sequenced using 515F (GTGYCAGCMGCCGCGGTAA) [41] and 806R (GGACTACN-
VGGGTWTCTAAT) primers [42] for the V4 region of the 16S rDNA gene. The sequences
were deposited in the European Nucleotide Archive (ENA) under project accession ID
PRJEB44347 and primary accession samples (ERR9814522–ERR9814533). The stations were
separated into three categories, e.g., pre-discharge (F2), discharge (F3), and post-discharge
(E10 and E11). Samples from station E7 were not included in the microbial communities’
analysis. The same criteria were used in the qPCR analyses.

2.5. Quantitative PCR Analyses

Ammonia oxidizing bacteria from the Betaproteobacteria (βAOB), comammox Nitro-
spira sp, Methanotrophic bacteria associated with Methylobacter-like ones, and Methanogenic
archaea functional groups were quantified using the following functional genes amoA, co-
maA, pmoA, and mcrA, respectively, with the primer references and qPCR conditions shown
in Table 1. The qPCR reactions used approximately 10 ng of DNA as a template and 20 µL
reactions using the Power SYBR Green Master Mix (Applied Biosystems, Waltham, MA,
USA) using the QuantStudio 3 thermocycler (Applied Biosystems, Waltham, MA, USA).

Table 1. qPCR table indicating its gene, group, primers, primers concentration, annealing temperature,
efficiency, R2, and reference.

Gene Group Primers
Primer

Concentration
(µM)

Annealing
Temperature

(◦C)
Efficiency (%) R2 Reference

Ammonia monooxygenase
subunit A (amoA)

Betaproteobacteria
βAOB

amoA1F 0.4
56 92.55% 0.998 [43]

amoA2R 0.4

Ammonia monooxygenase
subunit A (comaA)

COMAMMOX
Nitrospira Clade A

comaA-244F
coma-659R

0.4
52 83.10% 0.999 [44]

0.4

Methane monooxygenase
subunit A (pmoA) Methanotrophs

A189F 0.4
55 90.34% 0.999

[45]
mb661R 0.4 [46]

Methyl coenzyme M
reductase subunit A (mcrA) Methanogens mlasmcrA-rev

1
55 90.59% 0.999 [47]

1

Data were collected and further analyzed by the software QuantStudioTM Design
and Analysis Software v1.5.2. The reactions were run following the manufacturer’s rec-
ommendations and previous protocols available in the laboratory for βAOB [48] and
methanogens [49]. All the reactions were run in triplicate using the standards available
in our laboratory (Table 1), and the results are expressed as gene copies per gram of wet
sediment. Detection limits were confirmed by the dynamic range of the curves, which were
above CT 31–33 (~40 copies × µL), and the expected amplicon peak during the melting
curve inspection.

2.6. Sequencing Data Curation and Taxonomic Classification Processing

QIIME2 (v.2019.7) was used for sequence curation and taxonomic classification into
Amplicon Sequence Variant (ASVs) [50]. First, the sequences were imported to QIIME2
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using Casava. Then, the sequences were demultiplexed, and poor-quality or short se-
quences (<210 bp length) were removed using qiime dada2 denoised-paired plugin [51].
The summer samples from E7 contained a few sequences, and thus, were removed for
further analyses. Taxonomic classification was performed using the SILVA132 database (V4
subunit of the 16S rRNA gene region) with the feature-classifier classify-consensus-vsearch
plugin [52].

2.7. Statistical Analyses

All the statistical analyses were carried out using R software [53]. Because the normal-
ity assumption cannot be verified with our data, Spearman correlations were conducted
to evaluate the relationships between the physical and chemical conditions in water and
sediments using the rcorr function with the ‘Hmisc’ package [54]. Graphical visualization,
including significance, were generated using the corrplot package [55]. Taxa bar plots
for phylum and functional groups related to GHG recycling spatial and winter/summer
changes were generated using the ‘phyloseq’ package [56]. In addition, to determine the
potential changes associated with the influence of WWTP discharge in the benthic microbial
community structure and their association with environmental conditions, the samples
were grouped as: pre-discharge (F2), discharge (F3), and post-discharge stations (E10 and
E11) and plotted using the amp_heatmap function of the ‘ampvis2′ package [57]. A redun-
dancy analysis (RDA) was performed using the ordinate function of the ‘phyloseq’ package
to determine the relationship between the microbial community (Phylum level) shifts and
the environmental factors using the envfit function of vegan package [58] to identify the
significance of the correlation. A differential analysis of ASVs was performed using the
‘DESeq2′ package, specifically, the DESeq function. The data used for the comparison are
the ASV of each crude sample, without normalization. The results are visualized in a
Volcano Plot [59]. SIMPER (Similarity Percentage) analysis was conducted using PRIMER6
software [60] to identify the phylum contributions between the pre-discharge, discharge,
and post-discharge stations.

3. Results
3.1. Environmental Factors, Nutrients, and Water Quality Variables

The surface water temperature of El Sauce estuary was characterized by lower values
in winter (12.1–17.6 ◦C) compared to those in summer (17.63–26.1 ◦C), and the maxima
were found associated with the WWTP discharge station F3 (Figure 2A,B). The water pH
was lower at the upper stations, particularly in F3 station, which was characterized by
pH values < 6.86 in winter and summer, compared to those of the post-discharge stations,
where pH > 7.4 was detected (Figure 2A,B). Water conductivity was found to increase
from the upper portion towards the mouth, ranging from 766 to 1304 µS cm−1 and 828 to
4150 µS cm−1 in winter and summer, respectively. In general, the DO demonstrated spatial
conductivity shifts, but with a higher variability in winter compared to that in summer
(Figure 2C,D).

The nutrients (i.e., nitrite, nitrate, silicate, and phosphate) at the F2 and F3 stations
were characterized by extreme changes in nitrate and nitrite, which reached the lowest
values at the WWTP discharge station (F3 station), <14 µM for nitrate and <3 µM for nitrite
in winter and summer, respectively. The highest values of nitrate and nitrite concentrations
were registered in the upper tributary and intermediate pond stations (F2 and E7,) with
>200 and µM > 100 µM values in summer (Figure 2E,F), respectively. Estuary stations E10
and E11 were characterized by similar nitrate and nitrite concentrations, and slightly higher
concentrations towards the mouth (from E10 to E11) during summer (Figure 2E,F). The
phosphate concentrations were higher in the upper tributary station (F2), and unlike other
nutrients, greater concentrations were found in winter (>15 µM) than those in summer
(<5 µM). The F3 and E11 stations exhibited lower concentrations (<1 µM) in both seasons
(Figure 2G,H). Except for the upper tributary (Station F2) in summer, silicate presented
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lower concentrations during winter (320–100 µM) versus those in summer (100–250 µM)
from F3 station to the estuary mouth (Figure 2G,H).
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Figure 2. Physicochemical and nutrients conditions in all water samples during winter (left panels)
and summer (right panel) of El Sauce estuary; Temperature (A,B); Conductivity (C,D); Nitrate and
Nitrite (E,F), Silicate (G,H). * Discharge Station.

The water quality conditions based on additional physicochemical variables, such
as transparency, color, and dissolved total solid (DTS), exceeded the maximum permitted
values for agricultural irrigation and animal consumption according to the environmental
Chilean regulation NCh1333/78 (Table 2). Moreover, fecal coliforms also exceeded the
allowed values (>1000 CFU/mL) in the upper tributary (F2) and in the mouth (E11) in both
the summer and winter seasons.
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Table 2. Water quality factors in all sampled stations during winter and summer. All bold numbers
are values that exceed the maximum allowed limit (MAL). The values in brackets are the results
previously reported by Rivera et al. (2020).

WINTER SUMMER
MAL

FACTOR F2 F3 E7 E10 E11 F2 F3 E7 E10 E11

DTS (mg/L) 381 587 543 563 647 413 645 660 1406 >2000 <500
Transparency
(Secchi disk
depth in cm)

18 40 12 60 84 ND ND ND 60
(0.61; 0.2)

4
(0.11; 0.12) ≥120

Turbidity
(NTU) 5.54 18.53 15.60 10.02 14.27 1.93 32.83 55.40 4.91 10.16 50

Color (Pt/C) 139.00 316.00 299.67 183.00 278.67 254.00
(139; 126)

624.00
(448; 1063)

715.00
(550; 1572)

239.00
(415; 75)

218.00
(350; 225) <100

Sulfate (mg/L) 85.33 244.00 141.33 133.33 136.00 124.85 159.15 153.66 205.80 270.28 250
Chlorides

(mg/L) 75.63 146.53 146.53 184.34 255.24 0.70
(70.9; 113.5)

1.43
(106. 4; 156)

1.57
(355; 269)

5.30
(142; 326)

8.73
(709; 2822) 200

Total
Coliforms

(NMP)
9200 <1.8 <1.8 ND 1100

≥16,000
(>16,000;
>1600)

0
(>16,000;

<1.8)
110 500 2200 1000

Fecal
Coliforms

(NMP)
140 <1.8 <1.8 ND 490 260

(<1.8; 20) 0 (20; <1.8) 80 300 140 1000

BOD5 (mg/L) 7.30 0.00 4.35 4.51 11.98 11.3
(1000; 5.44)

65.79
(1400; 99.9) 66.41 17.71 20.31 20

Chlorophyll-a
(mg/L) 6.52 0.6 0.19 20.02 41.14 31.81 0.39 39.28 22.74 32.92 10

3.2. GHG Distribution along El Sauce Estuary

WWTP discharge has a high impact on the dissolved concentration of GHG in the
Laguna Verde estuary, which presented a maximum value at station F3 (WWTP discharge
site), reaching up to 1200 µM CO2 in summer, and 55,301 nM CH4 and 3930 nM N2O in
winter (Figure 3). These dissolved CH4 concentration values were up to 60 fold higher
than they were in the upper tributary pre-discharge water (Station F2). While the WWTP
discharge increases the concentration of methane to a greater extent than the concentrations
of N2O and CO2, those gases registered a continuous decrease from the intermediate pond
(Station E7) to the estuary mouth (Figure 3).

3.3. Sedimentary Conditions and Potential Organic Matter Quality

Sediments were characterized by the predominance of larger particle sizes (i.e.,
medium–coarse and very coarse ones) in the upper tributary, whereas lower particle
sizes (i.e., silt and very fine sand) were found in the sediments of the mouth, especially
during winter compared to those of the summer samples (Figure 4). The total organic
matter (TOM) increased by >100 % (<4 to >8 g) from the upper tributary (F2 and F3)
and intermediate pond (E7) post-discharge WWTP to the mouth stations (E10 and E11)
(Figure 4).

The isotopic organic matter signatures coincided with TOM shifts characterized by
a marked difference in δ15N versus δ13C isotopes ratios, predominantly ~29 δ13C and ~6
δ15N in the upper tributary compared to the mouth estuary sediment, ~26 δ13C and ~12
δ15N (Figure 5A), showing higher δ15N ratios in summer compared to those in winter. In
addition, higher C/N ratios were found in the WWTP discharge during summer and the
intermediate pond water during winter (C/N > 10), whereas lower ratios were determined
around the mouth station (E10 and E11) and the intermediate pond water during summer,
reaching C/N < 8 (Figure 5B).
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3.4. Spearman Correlation Analyses Associated with Water Quality Parameters and GHG

Among the physicochemical parameters, pH and conductivity were significantly
linked to the water quality parameters, GHG concentrations, nutrients, and sediments
properties (Figure 6). For instance, pH was significantly negatively correlated with GHG
in the water and granulometry in the sediments (p-value < 0.05), while it was positively
correlated with TOM in the sediments (p-value < 0.05) (Figure 6). Conductivity was
significantly positively correlated with the TDS, sulfates, and sedimentary TOM (p-value
< 0.05). Water quality variables, such as turbidity, were significantly correlated with
color (p-value < 0.05) and with both BOD5, TDS, and sulfates (p-value < 0.05) in the
water and with TOM (p-value < 0.05) in the sediments. In addition, Chlorophyll-a was
significantly correlated with fecal coliforms, CO2, nitrate, nitrite, and δ15N (p-value < 0.05).
Interestingly, GHG was significantly correlated among them (p-value < 0.05), and also,
with nitrate (p-value < 0.05) (Figure 6). Regarding sediment granulometry, medium sand
was significantly correlated (p-value < 0.05) with those in the different categories and
with other sediment variables (Figure 6), for example, with TOM, δ15N and several water
physico-chemical variables, including Chlorophyll-a, GHG, nitrite, and nitrate. The coarse
sand percentage was also significantly correlated with pH, Chlorophyll-a, CH4, nitrite, and
nitrate (p-value < 0.05) (Figure 6).
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3.5. Benthic Microbial Community Composition

The benthic microbial communities of El Sauce estuary were characterized by the
presence of 56 bacterial and 8 archaea phyla (Supplementary Table S1). The microbial
communities were dominated by Proteobacteria affiliated to Gammaproteobacteria class,
mainly represented by the Betaproteobacterales order, followed by Bacteroidetes and
Chloroflexi. Both spatial and temporal variations were observed, including changes in
Chloroflexi that were predominantly detected towards the mouth of the estuary stations
(E10 and E11), whereas Firmicutes and Verrucomicrobia had a higher relative contribution
to the total microbial community towards the upper tributary (Stations F2 and F3), also
showing slight changes in the winter versus the summer (Figure 7).

SIMPER analysis considering the spatial grouping, excluding Station E7, indicated
that the core benthic microbial community, i.e., Proteobacteria, Bacteroidetes, and Verru-
comicrobia, were more consistently present at the predischarge site compared to those
in the discharge and post-discharge areas of the estuary (Figure S1). Discharge benthic
microbial communities were differentiated by a greater contribution of Firmicutes and
Spirochaetes and by the exclusive presence of Tenericutes, Lentisphaerae, Synergistetes, and
LCP-89. In addition, Hydrogenedentes, Nitrospirae, Latescibacteria, Gemmatimonadetes,
and Zixibacteria were exclusively found in the post-discharge area, whereas Actinobacteria,
Acidobacteria, Planctomycetes, and Cloroflexi had a greater contribution (Figure S1).

In the pre-discharge area, Xhantomonadales, Sphingobacteriales, Cytophagales, Ver-
rucomicrobiales, Flavobacteriales, and Pseudomonadales were among the twenty most
abundant orders, being the most abundant ones during winter (Figure 8). In the discharge
zone, Bacteroidales and Clostridiales were highly prevalent during winter and summer,
whereas Desulfuromonadales, Syntrobacterales, Chitinophagales, Campylobacterales, and
Spirochaetales had a greater contribution during summer. In the post-discharge zone, Desul-
fobacterales, Anaerolineales, and Myxococcales were abundant during winter and summer,
while Steroidobacterales exhibited a greater contribution during summer (Figure 8).
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Differential analysis based on the comparison of microbial communities at ASVs
level showed a greater number of ASVs present in the discharge compared to those in
the pre-discharge waters (Figure 9). Eighty-one ASVs predominantly affiliated to the
orders Betaproteobacteriales, Bacteroidales, Syntrophobacterales, Campylobacterales, and
Chitinophagales were more abundant ones in the discharge compared to those in the
pre-discharge site, followed by a lower proportion of ASVs belonging to Spirochaetales,
DTU014 (Clostridium), Izimaplasmatales, and Methanofastidiosales. In contrast, only eight
ASVs affiliated with the orders Verrucomicrobiales and Flavobacteriales were enriched in
the pre-discharge compared to those in the discharged water.
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The redundancy analysis (RDA) confirmed the spatial variability of the microbial
community structure at the phyla taxonomic level, revealing a clear separation between
the discharge station (F3) and the mouth stations (E10 and E11) (Figure 10). Both the
first and second axes account for 75.6% of the total variation in the benthic microbial
community structure. Among the environmental variables accounting for the microbial
community variability in the discharge waters, values of N2O and CH4 and medium and
coarse sands were significant, whereas the amount of very fine sand, TOM, pH, and δ15N
were significantly higher at the post-discharge stations E10 and E11 (Figure 10). Many
water column quality parameters were associated with the benthic microbial community
structure, but were not significant at a p value < 0.05.
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3.6. Functional Microbial Groups Spatial Variability during Winter and Summer in El Sauce
Estuary

The nitrifying communities’ contribution based on 16S rRNA gene sequencing from
the studied sediment presented distinct spatial patterns between winter and summer
(Figure 11A). For instance, the Nitrosomonadaceae family was ubiquitous all along the
stream during winter and summer, whereas Nitrospiraceae and ammonia-oxidizing archaea
were detected mainly at the estuary mouth stations (Figure 11A). A higher richness of
methanotrophs/methylotrophs were detected during winter compared to those in summer
(Figure 11B), with the detection of Methylococcaceae at the discharge station. El Sauce
benthic microbial communities were characterized by a rich methanogenic community
that was particularly abundant at the discharge station (F3) in winter (Figure 11C). During
winter, Methanobacteriaceae and Methanosarcinaceae were the predominant methanogens
at the mouth stations (Figure 11C).



Water 2023, 15, 1251 16 of 25
Water 2023, 15, x FOR PEER REVIEW 17 of 26 
 

 

 

Figure 11. Taxa bar plot showed functional group 16S metabarcoding abundance at the family level 

(A) Nitrifyiers, (B) Methanotrophs/Methylotrophs and (C) Methanogens during winter and summer 

in all sampled sites. Note that no sequencing data were available for E7 in summer. * Discharge 

Station. 

The abundance of the functional genes (amoA, comaA, pmoA, and mcrA) evaluated 

through qPCR showed a greater contribution of methanogens, ammonia, and methane 

oxidizers during summer compared to those in winter, especially at the estuary mouth 

(Figure 12A). In winter, the discharge station exhibited a lower abundance of ammonia 

and methane oxidizers compared to those of the pre- and post-discharge sites (Figure 

12A–C). During summer, Betaproteobacteria ammonia oxidizers (βAOB) decreased in 

abundance towards the estuary mouth (Figure 12A), unlike comammox bacteria, which 

presented a similarly high contribution at all the sites, with a slightly greater contribution 

at the discharge station (Figure 12B). On the other hand, during winter and summer, meth-

anogens abundance was higher in the discharge and post-discharge zones of the estuary 

(Figure 12D). 
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in all sampled sites. Note that no sequencing data were available for E7 in summer. * Discharge
Station.

The abundance of the functional genes (amoA, comaA, pmoA, and mcrA) evaluated
through qPCR showed a greater contribution of methanogens, ammonia, and methane
oxidizers during summer compared to those in winter, especially at the estuary mouth
(Figure 12A). In winter, the discharge station exhibited a lower abundance of ammonia and
methane oxidizers compared to those of the pre- and post-discharge sites (Figure 12A–C).
During summer, Betaproteobacteria ammonia oxidizers (βAOB) decreased in abundance
towards the estuary mouth (Figure 12A), unlike comammox bacteria, which presented
a similarly high contribution at all the sites, with a slightly greater contribution at the
discharge station (Figure 12B). On the other hand, during winter and summer, methanogens
abundance was higher in the discharge and post-discharge zones of the estuary (Figure 12D).
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Spearman multiple correlation analysis was carried out to evaluate the relationships
between the functional groups abundance based on qPCR and the contribution of func-
tional microbial groups composition by 16S rDNA sequencing. The mcrA gene abundance
(i.e., in copies/g sediment DW) showed a positive correlation between several taxa of
methanogens, including counts belonging to Methanomassilicoccaceae, Methanosaetaceae,
Methanoregulaceae correlated with Methanospirillaceae, Methanofastidiosaceae, and the
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total methanogens. On the other hand, methanotrophic communities quantification using
pmoA gene copies/g sediment DW was positively correlated with the Methylacidiphilaceae
family, whereas Methylococcaceae and Methylophilaceae families retrieved from 16S rRNA
gene sequencing correlated positively with the total MOB (Figure 13). Neither βAOB nor
commamox amoA gene copies/g sediment DW were correlated with the total nitrifiers
communities recovered from 16S rRNA gene sequencing. However, counts belonging to
several families of nitrifiers positively correlated with each other. This was the case for Ni-
trosopumilaceae and uncultured Crenarchaeota with Nitrosomonadaceae, Nitrosotaleaceae,
and Nitropiraceae, whereas Nitrosomonadaceae and Nitrosotaleaceae were correlated with
Nitropiraceae (Figure 13). Moreover, the functional microbial groups’ abundance based on
gene quantification qPCR were correlated with environmental factors (Table S2). Except for
methanogens, all the functional groups were significantly correlated with δ15N (p-value
< 0.05). Additionally, comammox and methanotrophs were significantly correlated with
temperature, BOD5, and TOM (p-value < 0.05). The commamox was significantly corre-
lated (p-value < 0.05) with conductivity and DTS, and methanogens were correlated with
phosphate (Table S2).
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4. Discussion

El Sauce estuary is a fresh surface water body located in the Valparaíso region whose
main water flow comes from Las Cenizas basin. Previous studies have reported that El
Sauce is under anthropogenic pressure, categorizing the estuary as a permanent hyper-
trophic estuarine environment mainly impacted by WWTP discharges, as well as percolated
liquids from a nearby landfill and sewage discharges from houses not included in the
sewage system (Rivera-Castro et al., 2020) [31]. These inputs are often composed of a mix-
ture of partially degraded OM, nutrients, and microorganisms, many of them pathogens,
and emerging contaminants that have the potential to reshape the natural community
structure and biogeochemical activity, especially in semi-closed environments such as El
Sauce. Our study reports the first evidence of the WWTP discharge’s impact on the water
quality, benthic microbial communities, and dissolved greenhouse gases of El Sauce estuary,
providing new insights into how WWTP discharges influence the biogeochemistry of re-
ceiving water bodies, especially in complex and fragile environments such as the polluted
coastal ecosystem of the Valparaiso region.

4.1. The WWTP Altered Physicochemical Properties of El Sauce Estuary

The physicochemical conditions of the watershed, such as color, transparency, tur-
bidity, DTS, and total coliforms, suggest its poor water quality (Table 2). Moreover, the
WWTP discharge (F3 station) considerably affected the physicochemistry of the estuary,
decreasing the pH and the concentration of nitrate, nitrite, and phosphate compared to
those levels in the upper tributary water in both winter and summer (Figure 2A,B). The
DO decreased exclusively in summer, whereas the water temperature increased in both
seasons. The discharge comes from Esval-Placilla wastewater treatment plant (WWTP),
which includes an aerated lagoon and uses chloride gas bubbling as a secondary treatment,
thus explaining the changes in the pH, temperature, and nutrient concentrations during our
study. Our results agree with previous reports showing that El Sauce estuary is significantly
affected by WWTP water discharge besides other sources of pollution, which have catego-
rized the estuary as a eutrophic system for many years [31]. Moreover, in our study, the
WWTP discharge station (F3) exhibited a twenty higher more dissolved CH4 concentration
compared to those of the other stations, including the stations situated at the mouth of
El Sauce catchment area (Figure 3). Similar results have been found in sewage draining
rivers and in the Guadalete estuary (e.g., Hu et al. 2018, Burgos et al. 2015) [61,62]. The
CH4 accumulation observed in the WWTP discharge station may be explained either by a
stimulation of the methanogenesis or by the inhibition of CH4 oxidation [63]. Additionally,
the aerated lagoon may stimulate nitrification and denitrification processes, contributing to
nitrogen loss by means of NO, N2O, and N2 production [64,65].

The isotopic composition of OM exhibited a marked spatial variability between the up-
stream stations (pre-discharge and discharge areas) and the mouth stations (post-discharge
area) (Figure 5A). The values of the sedimentary isotopic signatures indicated that OM in
the upstream station was associated with a terrestrial OM origin (from δ13C = −28 to −29.5
and from δ15N = 4 to 8.7), unlike those of the mouth of the estuary (from δ13C = −25.3 to
−26.5 and from δ15N = 8.4 to 14.2) that evidenced a marine OM origin (Figure 4A). The OM
isotopic δ13C magnitudes were within values previously reported in estuaries in temperate
areas, i.e., Godavari (−24.6), Loire (−26.8), Ems (−24.2), and the Sado (−25.6) mouth
estuary [66,67]. Conversely, the OM isotopic δ15N values determined in our study could
be associated with various origins, including phytoplankton or residual anthropogenic
nitrogen by rivers and diffuse runoff, i.e., δ15N = 7.3 ± 2.1 % [68,69].

4.2. Benthic Microbial Communities and Functional Groups of El Sauce Estuary

El Sauce estuary holds a diverse benthic microbial community with the predomi-
nance of Proteobacteria, mainly Betaproteobacteriales and Bacteroidetes phyla (Figure 7).
These results agree with microbial community composition reported from coastal wet-
lands of the semi-arid zone of central Chile [70] and with other tidal estuarine sediment
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systems [71]. Regarding the water physicochemical properties, the benthic microbial com-
munity structure along El Sauce estuary was enriched with Firmicutes (Clostridiales order)
and Bacteroidetes (Bacteroidales order), mainly in the WWTP discharge waters (Figure 7).
These bacterial phyla are often dominant during wastewater treatment processes [72–74].
Moreover, in our study, Tenericutes, Lentisphaerae, Synergistetes, and LCP-89 phyla were
exclusively detected in the WWTP discharge station (F3) and not in the other sampling
areas (e.g., Figure S1). Moreover, a significant number of ASVs changed at the discharge
station compared to those at the pre-discharge station (Figure 9). Firmicutes have been
reported to be prevalent in the human stool microbiome, and therefore, are enriched in
WWTP discharge [75,76]. In particular, the orders Clostridiales and Bacteroidales have
been proposed as good bioindicators to estimate the degree of influence of sewage and
fecal source in water catchment impacted by WWTP discharge [73,77,78]. However, its
integration with alternative tools to identify and model the influence of WWTP discharge
on the microbial communities in aquatic environments remains to be explored in depth.

In general, microbial groups belonging to Proteobacteria, Verrucomicrobia, and Acti-
nobacteria were the dominant phyla in upstream waters of El Sauce estuary, as well as
other wetlands of the semi-arid region of central Chile [70]. These groups were found
to significantly decrease in the WWTP discharge station; however, they recovered again
in the mouth of the estuary. Similar studies associated with WWTP discharge in urban
and sub-urban rivers also found shifts in relevant phyla characterized by an increment in
Verrucomicrobia and Actinobacteria and a decrease in Deltaproteobacteria [77].

Moreover, the phylum associated with functional groups, such as Cyanobacteria,
showed a low abundance in all the sampled sites (Figure 7), which is probably attributed to
the higher water turbidity, which decreases the solar radiation penetration to the sediment,
thus inhibiting benthic photosynthetic processes [79]. In addition, other known functional
taxa associated with nutrient recycling, such as the Nitrospirae and Chloroflexi phyla,
were rare or undetected at the WWTP discharge station compared to those at the Estuary
mouth (Figure 7). These phyla increased their relative sequence abundance towards the
mouth (E10 and E11 stations) of the estuary (Figure 7), where higher dissolved nutrient
concentrations were detected in the water. Nutrient availability and other compounds
in the WWTP effluent could affect sensitive microbes such as Chloroflexi, as previously
suggested [77].

The quantification of specific functional microbial groups by qPCR associated with
nutrients and GHG recycling were influenced by the WWTP discharge and by the sampling
season. The nitrifying (βAOB and comammox) and methanotrophic communities abun-
dances decreased at the WWTP discharge station (F3) during winter (Figure 12A,C) and
increased towards the mouth, which is important since they can still co-oxidize a variety of
remaining xenobiotic compounds [80]. These results are in agreement with the decrease in
the relative abundance of the Betaproteobacteriales order at the WWTP discharge station
(Figure 9). Similarly, βAOB gene abundances were low in activated sludge from WWTP
compared to those in coastal sediments (5.68 × 10−6 − 4.79 × 10−5 versus 5.4 × 10−1 −
34.4 × 10−1 copies/g sample) [81] and between the sewage effluents in eutrophic lakes
sediments, unlike in the adjacent areas [82]. Further research is required to elucidate if the
decrease in Betaproteobacteriales is due to outcompetition with ammonia-oxidizing archaea
and anaerobic ammonium-oxidizing bacteria or other specific environmental fluctuations.

In addition, all the targeted functional groups (βAOB, comammox, and methan-
otrophic) were enriched in the discharge area during summer, unlike winter, and in both
seasons downstream at the estuary mouth (Figure 12A–C). In particular, a higher abun-
dance of methanogenic communities was observed in the areas affected by the WWTP
discharge (Figure 12D) than those in the other estuaries impacted by WWTP effluents [29].
Moreover, a rich methanogenic community was observed in winter at the discharge sta-
tion and downstream based on 16S rRNA sequencing, accounting for the relevance of
methanogenesis in wetlands.
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The BOD5 in the water, as well as the total OM and δ15N in the sediments, were
significantly correlated with comammox and methanotrophic abundances. In general,
both functional groups increased downstream towards the estuary mouth (Figure 12A–C),
where greater δ15N values and more nutrients were found during both winter and summer
(Figure 4A). Moreover, methanotrophic abundance in the estuary was significantly corre-
lated with methanogens and with nitrifiers (Figure 13), indicating the potential metabolic
interaction between these three functional groups. This is the case of nitrite-dependent
anaerobic methane oxidation by bacteria, including Methylomirabilaceae (Figure 11), which
could benefit from the nitrite produced by ammonia oxidation, linking carbon and nitrogen
cycling in wetlands, as previously reported [83,84].

Benthic OM considering nitrogen availability could be relevant for the resistance or
tolerance of the functional microbial groups to the WWTP discharge in the estuary. Winter
conditions were unfavorable for methanotrophs and nitrifying assemblages, potentially
reducing their role in nutrient and GHG recycling. Nutrient accumulation towards the
mouth was evidenced during both seasons, confirming the pervasive eutrophic conditions
of El Sauce estuary [31].

These results, together with previous studies on the same ecosystem, encourage
further research on the current effects of WWTP discharges, an issue that has aroused
wide public concern, especially in rural areas, since more infrastructure, resources, and
higher regulatory standards are often oriented towards increasing the wastewater treatment
capacity of cities [28,85]. This situation is even worse in countries such as Chile, where a
relevant fraction of rural residents has a lower income, less education, and more importantly,
less access to public utilities compared to those of their urban counterparts [86]. The
effects on water availability and quality caused by these discharges and other sources of
contamination are often suffered by more vulnerable rural communities that experience
reduced fishery resources, agricultural production, and health [87].

This is the case of Laguna Verde and the community residing near El Sauce estuary,
which is an area of rapid population growth in the Valparaiso area, and precarious urban
development, and is highly dependent on agriculture [88]. Thereby, gaining insights into
the interaction of the negative impacts that these discharges have on water quality is
necessary to optimally address, not only their consequences on the environment at the local
level, but also their effects on greenhouse gas dynamics.

5. Conclusions

In summary, our results confirm that El Sauce Estuary is an anthropogenically im-
pacted ecosystem characterized by with poor-quality conditions in 40–60% of the variables.
Among other anthropogenic pressures, including leachate from a municipal landfill and
domestic water inputs that have permanently contributed to this eutrophic system, our
study concluded that WWTP effluents play a major role in shaping the microbial and
biogeochemical processes, resulting in GHG accumulation. For instance, WWTP efflu-
ent was found to have a greater impact in the upstream area compared to those in the
pre- and post-discharge sites on the physicochemical conditions and the dissolved GHG
concentration in the water, especially for CH4 and N2O by one order of magnitude. The
organic matter quality varied spatially along the estuary, shifting upstream towards the
mouth associated with terrestrial (δ13C = from −28 to −29.5 and δ15N = from 4 to 8.7,
respectively) vs. estuarine (δ13C = from −25.3 to −26.5 and δ15N = from 8.4 to 14.2, respec-
tively) origins. The benthic microbial community composition in the estuary followed the
same trend as that of OM, characterized by the enrichment and enhancement of functional
groups of methanotrophs and methanogens, reaching up to 6.5 × 105 and 2.1 × 105 abun-
dance towards the mouth. However, the anthropogenic impact of the WWTP-discharge
effluent upstream contributed to reshaping the benthic microbial community composition
even at the phylum level by introducing allochthonous phyla and changing the relative
contribution of core wetland taxa, thus potentially limiting the growth of nitrifying and
methanotrophic bacteria during winter. Therefore, the spatio-temporal (winter vs. summer)
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natural conditions and anthropogenic sources of perturbations strongly drive the dynamics
of the benthic microbial community composition, and potentially, the way nutrients and
GHG are recycled in El Sauce estuary.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15061251/s1, Figure S1: (A) Total organic matter percentage
and (B) sediment granulometry distribution; Table S1: Benthic microbial community comparison
between winter (W) and summer (S) sequences reads retrieved at El Sauce estuary sampling stations;
Table S2: Spearman correlation analyses between functional group abundance quantification (qPCR)
and the physicochemical variables studied.
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