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Abstract: Modeling seepage problems in rock fractures is an interesting research approach to eval-
uating rock slope instability that is attracting increasing attention. In the present study, a coupled
seepage–deformation model based on the numerical manifold method (NMM) is proposed, and the
flow of groundwater in a fracture network coupled with the effects of seepage pressure and rock
deformation are discussed. A global equilibrium equation of the system and a local factor of safety
(FoS) of arbitrary rock fractures are derived based on the principle of minimum energy, and a series
of verification examples are calculated. The simulation results show the robustness and effectiveness
of the proposed numerical model. Finally, a rock slope collapse accident caused by seepage effects is
simulated by the proposed method, and the failure process of the slope is reproduced. The simulation
results show that excessive hydraulic pressure caused the vertical fractures to open and augmented
the rock mass deformation, eventually leading to the failure of the slope. The proposed method
possesses the potential to simulate larger-scale engineering problems.

Keywords: fracture seepage; rock slope stability; seepage-deformation coupling; numerical
manifold method

1. Introduction

The stability of rock slopes is currently a hot topic in rock engineering and rock me-
chanics [1,2]. Normally, there are multiple discontinuities within a rock mass, such as joints
and fractures, which often reduce the strength of the rock mass and cause failure of the rock
slope. In addition, these discontinuities can serve as groundwater flow channels, forming
fracture seepage networks [3]. Seepage pressure and the hydraulic head of the groundwater
act on both surfaces of the fracture, which induces both hydrostatic pressure and seepage
forces, leading to rock deformation, changes in fracture aperture and permeability, and
even evolution of the fracture network (e.g., reducing the friction coefficient and strength
of the fracture) [4]. On the other hand, changes in the state of fractures back influence the
fluid flow, as shown in Figure 1: when the hydraulic pressure on the fracture interface is
greater than the normal contact compression, the fractures will open or expand. Thus, it is
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critical to consider a hydro-mechanical coupling model using numerical simulations when
seepage-deformation problems of rock fracture interaction are encountered. In addition,
engineering practices show that the rise of groundwater levels and seepage in fractures
are important causes of rock slope instability [5–7]. Therefore, it is essential to develop a
coupled seepage–deformation model to study the influence of fracture seepage on rock
slope stability.
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Figure 1. Seepage–deformation coupling mechanism for fracture rock.

The theoretical development in this field started with Biot [8], who proposed a theory
of poro-elasticity for a porous medium saturated with an incompressible fluid to consider
the coupled seepage–deformation mechanism. Rice and Cleary [9] extended the theory
to account for a compressible fluid. However, Biot’s theory is based on a continuum
theory, and no interactions between fractures are taken into consideration. Curran and
Carvalho [10,11] further extended the theory to include the effect of deformation of one
fracture on other fractures. Because of the complexity of fluid–solid interactions and
subsequent stress-induced fracture evolution, developing analytical models to realistically
account for such a complex process presents a challenge.

As an alternative to analytical models, numerical models of coupled hydro–mechanical
processes were developed based on Biot’s theory for porous media to simulate the coupling
effect of fracture seepage and rock deformation [12–16]. Normally, numerical models can
be classified into two categories: continuum-based models and discontinuous models
that include fractures or joints. In continuum models, e.g., finite element models (FEMs)
and phase-field methods (PFMs), a rock mass with joints and fractures is modeled as a
porous continuum whose properties take into account the information of joints/fractures.
In such a model, porosity and permeability coefficients are applied to simulate the seepage–
deformation coupling effect of fractured rock [12–14]. However, the model usually ignores
local seepage features, as only a homogenized seepage deformation law is used.

As an alternative, the discontinuous model combines the flow of fluid along the
fracture network and the effect of hydraulic pressure on the fracture interface [17]. Recently
developed discrete numerical methods, such as the distinct element method (DEM) [18,19]
and discontinuous deformation analysis (DDA) [3,20,21], treat the rock cut by joint fissures
as a discontinuum in which each cut block is regarded as a computational element. The
whole block system and fracture network are constructed by introducing contact springs
between the blocks; seepage along the fracture network and the coupling of seepage-stress
can be calculated accordingly. Resorting to the equilibrium equation of the block system, the
force and deformation of each element are determined. As an example in [19,22], the DEM
is applied to simulate the coupling problem of seepage and deformation, where seepage is
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calculated by a joint network and the width of the fracture is taken as a function of fracture
interface pressure. Since the DEM simulated the block system without considering the
deformation of the blocks, the DEM is not a real seepage–deformation coupling method.
In contrast to this method, the DDA method has the advantage of simulating the block
deformation problem, so it can be applied to calculate fracture seepage and deformation
accordingly. In [3,20,21,23], the DDA method is extended to simulate block movement
based on the Louis method and Darcy’s law of seepage. However, Louis’ formula ignores
the effect of fracture pressure on the fracture width. In most cases of simulations, there is
still contact pressure on the fracture/joint interface in addition to hydraulic pressure, and
the contact pressure directly affects the fracture width and permeability.

This study is based on the numerical manifold method (NMM) [24,25], which combines
the advantages of both the continuum-based FEM and the discontinuous DDA while
avoiding their shortcomings. NMM inherits the advantage of a FEM in delivering accurate
calculations of the stress and strain fields as well as the advantages of DDA in accounting for
the discontinuities. In the past two decades, many modifications have been carried out to
improve the performance of the NMM in rock fracture and seepage flow problems [26–31].
Wu and Wong [24] adopted the “cubic law” in the framework of the NMM to model fluid
flow through fractures and compute seepage forces acting on fractures from the nodal
piezometric heads. They proposed a hydro-mechanical model to investigate the effect
of water flow on the stability of a fractured rock mass; however, the complex hydraulic
fracturing cracks and fracture network were not discussed further. Hu et al. [32–34]
developed an NMM model to analyze coupled hydro–mechanical (HM) processes in
porous rock masses with complex fracture networks. However, as the discrete fracture
deformation and fracture fluid flow are coupled without considering the initial fracture
width and friction angle, the hydraulic pressure still exists even though the fractures are
closed. Yang et al. [35,36] developed a hydraulic fracturing model extending the enriched
NMM to simulate fluid-driven fracturing in a rock mass, but large fracture network seepage
problems were not involved in the simulations. Furthermore, other implementations [37,38],
such as coupled seepage–deformation analysis using the NMM, ignore the effect of fracture
pressure and contact pressure effects on the fracture width, and most of the abovementioned
coupling models are lacking necessary engineering case verifications.

In the present study, the logarithmic formula [5] is used to calculate the width/aperture
of a fracture under compression, and Darcy’s law is employed to simulate the coupling of
seepage–deformation along the fracture in combination with the NMM method. The fluid
pressure in the fractures is computed from the values of the pressure heads at the nodes
defining the fractures. The fluid pressures are then interpreted as point loads along the
sides of each fracture segment. Then, the original NMM method is extended to calculate the
factor of safety (FoS) along each potential slip surface, which makes it possible to analyze
rock slope stability within the fracture flow. In this paper, the extended NMM method is
used to simulate the global failure process of a slope with a tunnel under high seepage
pressure, and the influence of seepage pressure on the stability and safety of a rock slope
with pre-existing rock fractures is quantitatively analyzed.

2. Coupled Seepage–Deformation Model for the NMM
2.1. Fundamentals of the NMM

Traditional numerical methods use a single cover to mesh the physical domain, and
each finite element and distinct element are associated with nodes or a physical boundary.
In contrast to FEMs and DDA, NMM adopts a dual cover system containing a mathematical
cover (MC) and physical cover (PC) to describe the physical domain [25,27,29–31]. In this
sub-section, a brief introduction to NMM theory is presented by using the partition of unity
(PU) function.

The dual cover system in the NMM is constructed by means of MCs and PCs. The
MC consists of a collection of mathematical patches. Each mathematical patch is a simply
connected domain. By dissecting one or several mathematical patches with the components
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of the problem domain—namely, the boundary, the material interface, the joint/fracture,
and the crack—the physical patches are obtained. All these physical patches comprise the
PCs. The overlapping region of several PCs forms a manifold element (ME). Figure 2 gives
a brief illustration of a cover system employed in the NMM, and a sketch the construction
procedure of the cover system. When a hypothetical physical domain, Ω, is used for
modeling, the mathematical mesh covers the whole domain Ω, and the physical boundary
and discontinuities (i.e., rock fractures/fissures, joints and cracks, etc.) divide the domain
into many different PCs. As highlighted, inside the red dotted circle, three PCs, denoted
by P1

i , P2
i and Pj (subscripts i and j are the MC indices, respectively), are formed from the

fracture intersecting with the MCs. Then, the NMM elements are built by these overlapping
PCs: En and En+1 are formed from P1

i and P2
i , and En+k (subscripts n and k are the re-index

of the updated MEs) is formed by Pj.

Water 2023, 15, x FOR PEER REVIEW 4 of 23 
 

 

this sub-section, a brief introduction to NMM theory is presented by using the partition 

of unity (PU) function. 

The dual cover system in the NMM is constructed by means of MCs and PCs. The 

MC consists of a collection of mathematical patches. Each mathematical patch is a simply 

connected domain. By dissecting one or several mathematical patches with the compo-

nents of the problem domain—namely, the boundary, the material interface, the joint/frac-

ture, and the crack—the physical patches are obtained. All these physical patches com-

prise the PCs. The overlapping region of several PCs forms a manifold element (ME). Fig-

ure 2 gives a brief illustration of a cover system employed in the NMM, and a sketch the 

construction procedure of the cover system. When a hypothetical physical domain, 𝛺, is 

used for modeling, the mathematical mesh covers the whole domain 𝛺, and the physical 

boundary and discontinuities (i.e., rock fractures/fissures, joints and cracks, etc.) divide 

the domain into many different PCs. As highlighted, inside the red dotted circle, three 

PCs, denoted by 𝑃𝑖
1, 𝑃𝑖

2 and 𝑃𝑗 (subscripts i and j are the MC indices, respectively), are 

formed from the fracture intersecting with the MCs. Then, the NMM elements are built 

by these overlapping PCs: 𝐸𝑛  and 𝐸𝑛+1  are formed from 𝑃𝑖
1  and 𝑃𝑖

2 , and 𝐸𝑛+𝑘  (sub-

scripts n and k are the re-index of the updated MEs) is formed by 𝑃𝑗. 

 

Figure 2. The basic concept of cover system in the NMM. 

On each regular PC, a polynomial function of order n is employed to construct a local 

approximation function: 

𝑢𝑖(𝑥, 𝑦) = 𝑝(𝑥, 𝑦)
𝑇𝑑𝑖(𝑥, 𝑦) (1) 

where 𝑑𝑖(𝑥, 𝑦) is an array of unknown coefficients on 𝑃𝑖, and 𝑝(𝑥, 𝑦) is the matrix of pol-

ynomial bases. 𝑝(𝑥, 𝑦) = {1} is the zero-order polynomial function; 𝑝(𝑥, 𝑦) = {1, 𝑥, 𝑦}𝑇 is 

the first-order polynomial function; and 𝑝(𝑥, 𝑦) = {1, 𝑥, 𝑦, 𝑥𝑥, 𝑥𝑦, 𝑦𝑦}𝑇 is used for the sec-

ond-order polynomial function. In this study, 𝑝(𝑥, 𝑦) = {1} is adopted to avoid the linear 

dependence problem. 

Since NMM is also a PU-based method [39–41], the global approximation on each ME 

can then be constructed by connecting the weight functions with the local approximation 

functions as: 

𝑢(𝑥, 𝑦) =∑𝑤𝑖(𝑥, 𝑦) 𝑢𝑖(𝑥, 𝑦)

𝑛

𝑖=1

 (2) 

where n is the number of PCs for the ME and 𝑤𝑖(𝑥, 𝑦) is the weighting function, which 

satisfies: 

𝑤𝑖(𝑥, 𝑦) = 0, ∀(𝑥, 𝑦) ∉ 𝑃𝑖; 1 ≤ 𝑤𝑖(𝑥, 𝑦) ≤ 1 𝑎𝑛𝑑 ∑𝑤𝑖(𝑥, 𝑦) ≡ 1 , ∀(𝑥, 𝑦) ∈ 𝑃𝑖 (3) 

In the present study, a triangular mesh is used to construct the MC; thus, the shape func-

tion of a 3-node triangular patch is applied to construct the weight function, and the dis-

placements of 𝑃𝑖 can be rewritten as: 

Figure 2. The basic concept of cover system in the NMM.

On each regular PC, a polynomial function of order n is employed to construct a local
approximation function:

ui(x, y) = p(x, y)Tdi(x, y) (1)

where di(x, y) is an array of unknown coefficients on Pi, and p(x, y) is the matrix of poly-
nomial bases. p(x, y) = {1} is the zero-order polynomial function; p(x, y) = {1, x, y}T

is the first-order polynomial function; and p(x, y) = {1, x, y, xx, xy, yy}T is used for the
second-order polynomial function. In this study, p(x, y) = {1} is adopted to avoid the
linear dependence problem.

Since NMM is also a PU-based method [39–41], the global approximation on each ME
can then be constructed by connecting the weight functions with the local approximation
functions as:

u(x, y) =
n

∑
i=1

wi(x, y) ui(x, y) (2)

where n is the number of PCs for the ME and wi(x, y) is the weighting function, which satisfies:

wi(x, y) = 0, ∀(x, y) /∈ Pi; 1 ≤ wi(x, y) ≤ 1 and ∑ wi(x, y) ≡ 1, ∀(x, y) ∈ Pi (3)

In the present study, a triangular mesh is used to construct the MC; thus, the shape
function of a 3-node triangular patch is applied to construct the weight function, and the
displacements of Pi can be rewritten as:

ui(x, y) =
6

∑
j=1

dj
i(x, y) (4)

where dj
i(x, y) denotes the degrees of freedom (DOFs) related to Pi. Finally, the displacement

for each ME can be expressed as:

u(x, y) =
3

∑
i=1

wi(x, y)
6

∑
j=1

dj
i(x, y) (5)
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Based on the minimum energy principle, the global equations of equilibrium are
derived by taking the derivatives of the DOFs, which can be simplified as:

[K][D] = {F} (6a)

where [K] is the coefficient sub-matrix and [D] and {F} are the DOF sub-vector and the
loading vector. Assuming that a discrete system consists of n PCs, Equation (6b) can be
re-expressed as:

K11
K21
K31

K12 K13
K22
K32

K23
K33

· · ·
· · ·

K1n
K2n
K3n

... ...
...

. . .
...

Kn1 Kn2 Kn3 · · · Knn




D1
D2
D3
...

Dn

 =



F1
F2
F3

...
Fn


(6b)

where Di, Fi (i = 1, 2, . . . , n) are 6 × 1 sub-matrices and Di is the deformation variable of PC
i; Fi is the load distributed to PC i; and Kij (i, j = 1, 2, . . . , n) is a 6 × 6 sub-matrix related to
the material itself (i.e., Kij, i = j) or the contact between block i and j (i.e., Kij, i 6= j). Then,
a simplex integration method is used to analytically evaluate the element matrices, and an
implicit Newmark time integration scheme is adopted to compute each step deformation
of the global system.

2.2. Basic Formulas of Seepage–Deformation Coupling Model

In this section, a coupled numerical model is implemented in which the fracture
conductivity will be influenced by the mechanical deformation and, conversely, fluid
pressure acting on the fracture interfaces will affect the mechanical deformation. As shown
in Figure 1, the fluid pressure P→ F means the hydraulic force acting on the fracture
surfaces leads to a change in the fracture aperture, such that a0 → a causes the fluid
pressure. The incompatibility between constant strain field and general block shape was
overcome by discretizations of deformable blocks. A residual flow method was introduced
into the NMM so that unconfined flow problems with moving boundaries or free surfaces
could be readily solved. For implementing the seepage–deformation coupling model into
the NMM, the basic assumptions are:

• The rock matrix is impermeable, and only fracture seepage is considered.
• The fluid flow is assumed to be laminar, steady, viscous, and incompressible, and the

fluid pressure is always positive.
• The fluid flow has no effect on the strength of the material, and no hydraulic fractures

initialize and propagate in the model.

Figure 3 shows a 2D example of a fracture network, in which the problem domain,
dissected by six intersecting fractures, consists of eight independent blocks (i.e., denoted by
numbers from 1© to 8©). Each block is constructed by several line segments and surrounded
by a closed loop to model the contact and fluid flow in the NMM simulations. Resorting
to the NMM mathematical meshing and physical meshes, each block is divided into a
series of MEs (e.g., Ei in Figure 3); then, the block system, consisting of a fracture network
and seepage paths, is established. In this way, the coupling between the fracture flow
and deformation block is built. For example, the aperture between two connected blocks,
denoted by 3© and 6©, is filled with flowing fluid. The seepage path of 1–6 is divided into
five small line segments by mathematical meshing, i.e., 1–2, 2–3, 3–4, 4–5, and 5–6, and each
divided seepage path has two surfaces, which constitutes a fracture seepage element. Each
coupled surface and separated seepage path is exactly a line segment of a loop belonging
to blocks 3© and 6©, respectively. Therefore, the closed loops are not only used to compute
the contact forces but are also employed to generate the potential fracture network for
calculating fluid flow. The simulations of seepage pressure in this study are based on the
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fracture coupling model, and the triangle meshing technique is employed to form MEs
(e.g., Ei in Figure 3) in the computations.
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Considering a single planar fracture with an aperture of a, as shown in Figure 1, and
taking into consideration that the flow is assumed to be laminar, the discharge through
fractures can be expressed by Richard’s equation, i.e., the “cubic law”, to be:

qij =
a3g
12µ
∇ij =

a3

12µ

∆pij

L
(7)

where qij is the flow rate of the seepage path with two end nodes i and j,∇ij is the hydraulic
gradient, a and L are the aperture and length of the fracture, µ is the kinematic viscosity of
fluid, and ∆pij is hydraulic pressure loss, which satisfies:

∆pij =
(

pj − pi
)
+ ρ f g

(
zj − zi

)
(8)

where pi and pj are the fluid pressure at nodes i and j, zi and zj are the piezometric heads
at nodes i and j, respectively; ρ f is the density of fluid, and g is the acceleration of gravity.
It can be deduced from Equation (9) that the flow rate can be calculated under a gravity
effect when both fluid pressures are zero. Since Darcy’s law for fluid flow has been widely
applied to simulate porous media [8,9,33], the “cubic law” can adequately compute fluid
flow through the fracture network.

As discussed in [42], the flow rates of the nodes, related to the piezometric heads for
an independent single fracture, are affected by saturation. Thus, to compute the flow rates
of the fracture network, flow rates in Equation (8) are essentially multiplied by a parameter,
fis, which is a function of saturation, si, satisfying 0 ≤ si ≤ 1.

fis = s2
i (3− 2si) (9)
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The total flow rate of node i can then be expressed as follows:

Qi = ∑N′

j=1 qij (10)

where N′ is the number of adjacent seepage paths around node i. It is found that the actual
flow rate entering node j from node i will decrease if node i becomes unsaturated. Then,
the flow rate between nodes i and j can be rewritten as:

qij = fis
a3

12µ

∆pij

L
(11)

Normally, the hydraulic aperture a referred to in Equation (12) is not constant, but
changes with the element contact states and hydraulic pressures. The value of a can be
assumed to be:

a = a0 + ∆a (12)

where a0 and ∆a are the initial aperture and normal increment, respectively. As discussed
in [43], the minimum and maximum values of the fracture aperture are prescribed as amin
and amax, respectively. The expression of increment ∆a can be written for both non-parallel
fracture and ideal parallel fracture elements (as can be seen in Figure 4) as follows:

∆a =
aaver

1 + r

(
16r2

1 + r

)1/3

(13)

where aaver = (ak + ak+1)/2, r = ak/ak+1, ak is the relative distance between points k in
the normal direction n, and ak+1 is the relative distance between points k + 1 in the normal
direction, as shown in Figure 5.
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Figure 6 gives an example of a typical fracture network model in the NMM. Within a
random time step, once the total flow rate Q1 at node 1 is collected by the surrounding four
connected seepage paths, the hydraulic pressure at node 1 can be calculated by Equation
(11) (i.e., q11, q12, q13, q14 in Figure 6). The new hydraulic pressure pi at node i can then be
expressed as:

pi = pi0 + k f Qi
∆t
Ai
− k f

∆Ai

Ai
(14)

where pi0 is the initial pressure at node i at the present time step, k f is the bulk modulus of
the fluid, ∆t is the time step size, and ∆Ai = Ai − Ai0 and Ai = (Ai + Ai0)/2 where Ai0
and Ai are the initial and current areas that surround node i in the time step, respectively.
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In this study, the area of given node i is defined as half of the total area of all fracture paths
connecting to the node. Thus, the area of node 1 as shown in Figure 6 can be obtained as:

A1 =
1
2

4

∑
j=1

A1j = (A11 + A12 + A13 + A14)/2 (15)

where A1j, j = 1, 2, 3, 4 is the volume of seepage paths connecting node 1.
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It is noted that if the fluid flow of node i is unsaturated, the value of the pressure pi in
Equation (15) is assumed to be zero. Then, saturation si can be expressed as:

si = si0 + Qi
∆t
Ai
− ∆Ai

Ai
(16)

where si0 is the initial saturation at the time step in node i. When si satisfies the condition
of si ≥ 1, pressure pi can be calculated by Equation (15), which ensures the conservation
of fluid mass in the simulations. Thus, Equation (11) satisfies the principle of fluid mass
conservation and can be rewritten as:(

∑N′

j=1 qij

)
i
+ Q

′
i ≡ 0 (17)

where Q
′
i is the total external recharge (or discharge) rate.

2.3. Fluid Pressure on Manifold Element Boundaries

Fluid flow in fractures imposes fluid pressure on the interface of the fractures, pro-
ducing deformation of rock fractures and changing the fracture aperture and the hydraulic
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conductivity of the fracture element. Subsequently, the hydraulic heads will be redis-
tributed in the flow network. In the present study, fluid pressure on the fracture element
can be assumed as a linear distributed behavior. As shown in Figure 6, the fluid pressure is
acting on the boundary of k− (k + 1) by the manifold element Ei. If pk =

(
pkx, pky

)
and

pk+1 =
(

p(k+1)x, p(k+1)y

)
are the fluid pressures acting on element Ei, the coordinates of

points k and (k + 1) are (xk, yk ) and (xk+1, yk+1 ), respectively. The fluid pressure at any
point on the element boundary can be expressed as:px(t) = pkx +

(
p(k+1)x − pkx

)
t

py(t) = pky +
(

p(k+1)y − pky

)
t
(0 ≤ t ≤ 1) (18)

The potential energy of the linear distributed fluid pressure acting on the side of Ei
can be written as:

∏l = −
∫ 1

0
(u(t) v(t))

px(t)

py(t)

ldt (19)

Substituting Equation (18) into Equation (19), the expression can be rewritten as:

∏l = −[Di]
T
∫ 1

0
[Ti]

T

px(t)

py(t)

ldt (20)

in which [Di] and [Ti] are the deformation matrix and displacement matrix of element Ei,
respectively. The length l of the element edge of Ei is:

l =
√
(xk+1 − xk)

2 + (yk+1 − yk)
2 (21)

To minimize the potential energy, the nodal load of element Ei caused by distributed
fluid pressure can be expressed as:

fi = −
∂Πl(0)

∂dri
=

∂

∂dri

[Di]
T
∫ 1

0
[Ti]

T

px(t)

py(t)

ldt

, r = 1, 2, · · · , 6 (22)

in which fi is a 6 × 1 submatrix, which then is added into the global force vector [Fi] as
follows:

fi =
∫ 1

0
[Ti]

T

px(t)

py(t)

ldt→ [Fi], r = 1, 2, · · · , 6 (23)

Subsequently, such line loading is equivalent to two forces [Fi] acting on the nodes of
fracture elements, and Equation (23) can be then simplified to:

[Fi] = (Ti(xk, yk))[E]{Wk(xk, yk)}+ (Ti(xk+1, yk+1))[E]{Wk+1(xk+1, yk+1)} (24)

where Ti(xk, yk) is an interpolation polynomial for element Ei [25], i.e., the weight func-
tion in an NMM or the shape function in a FEM; [E] is the hydraulic head matrix; and
Wk(xk, yk) is the weight matrix for line loading, expressed as follows:

Ti(xk, yk) =

(
wi(xk, yk) 0

0 wi(xk, yk)

)
Ti(xk+1, yk+1) =

(
wi(xk, yk) 0

0 wi(xk, yk)

) (25a)
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[E] =

−pksinα −pk+1sinα

pkcosα pk+1cosα

 (25b)

{
Wk(xk, yk) =

(
L/3 L/6

)T

Wk+1(xk+1, yk+1) =
(

L/6 L/3
)T (25c)

where wi(xk, yk) and wi(xk, yk) are weight functions over element Ei, L is the length of the
fracture, and α is the angle between the element boundary and the x-axis.

3. Modeling of Seepage along Fractured Network by the NMM
3.1. Calculation of Fluid Pressure along the Fracture Network

Although high normal contact acts on the fracture aperture of natural fractures, there
is still a certain fracture width and/or mechanical gap to allow fluid flow through the
fracture [44,45]. Based on the abovementioned theory of Darcy’s law of fluid flow in porous
media and fracture networks, the “cubic law” applied in the present study can describe
fluid flow through parallel and wedge fractures [46].

On implementation of the coupled seepage–deformation model, the piezometric head
H is taken into consideration to push Darcy’s law, and flow rate qi can be re-expressed as:

qi =
a3g
12µ
∇i =

a3

12µ

γ f ∆Hi

Li
=

KAi∆Hi
Li

(26)

where K =
a2γ f
12µ is the fracture hydraulic conductivity, Ai is the area of the fracture cross-

section, ∆Hi is the piezometric head loss, and Li is the length of the fracture segment i.
Then, the discharge at two end nodes of fluid element i can be obtained based on Equation
(26), which is expressed as: {

qi
1

qi
2

}
= Ti

[
1 −1
−1 1

]{
Hi

1
Hi

2

}
(27)

where qi
1 and qi

2 are the nodal discharge vectors at end nodes 1 and 2 of the fluid element i,

Ti =
γ f a3

12µLi
is the fracture characteristic matrix, and Hi

1 and Hi
2 are the nodal piezometric

head vectors at nodes 1 and 2, respectively.
Take a simplified example of a fracture network as shown in Figure 7. Assuming Q1

to be the element nodal 1 discharge, the total flow discharge of inflow or outflow at node 1
can be written as:

Q1 = ∑N′

i=1 qi
1 (28)

where N′ is the total number of element boundaries connected to node 1. Assembling all
the element nodes to be positioned within the local seepage paths, the global equilibrium
equations can be obtained as:

[T]{H} = {Q} (29)

where [T] is the network characteristic matrix, {H} is the network piezometric head
vector, and {Q} is the network flow vector. Then, a system of equilibrium equations from
Equation (29) can be rewritten as:

T11
T21
T31

T12 T13
T22
T32

T23
T33

· · ·
· · ·

T1n
T2n
T3n

...
...

...
. . .

...

Tn1 Tn2 Tn3 · · · Tnn





H1
H2
H3

...
Hn


=



Q1
Q2
Q3

...
Qn


(30)
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Referring to Equation (30), the piezometric head, Hi (i = 1, 2, · · · , n), at each fluid
node can be obtained. Then, the fluid pressure pi can be calculated from Hi and the
elevation head, he = zi − zd, as:

pi = γ f hp = γ f (Hi − he) = γ f (Hi − zi + zd) (31)

where hp is the pressure head, zi is the vertical coordinate of the fracture node i, and zd is
the vertical coordinate of the datum line.

It is noted that Equation (7) contains an unknown vector of Equation (30)—piezometric
head {H}—while the coefficient matrix [T] of Equation (30) contains the unknown vector
[D] of Equation (7). Therefore, the two equations are coupled. However, since the matrix
[T] and the displacement vector [D] are not linear, Equations (7) and (30) can not be written
as a unified formula and can only be solved by sequential iteration methods.

3.2. Calculation of Factor of Safety (FoS) along Rock Fractures

Normally, the stability of a rock slope has been evaluated by the global factor of safety
(FoS), but real instability always starts from the most detrimental site. Therefore, rather
than using the global FoS, if the local FoS can be applied, slope stability will be evaluated
more accurately.

In the NMM simulations, discontinuities such as fractures/joints and weak interlayers
between the fractured rock masses are modeled as a contact block, and a pair of normal
and shear springs then connect the adjacent elements. A normal penalty function on the
contact elements is then introduced. The stiffnesses of the shear spring is set as follows:{

kn = l
2 E

ks =
l
2

E
2(1+ν)

= l
2 G (32)

where kn and ks are the normal and shear spring stiffness, E and G are the Young’s and
shear modulus, ν is Poisson’s ratio, and l is the length of the contact edge.

Assuming that a continuous edge is divided into M segments, the normal and shear
forces on 2M segments can be calculated correspondingly. Thus, the contact force act-
ing on the ith edge (i.e., i ∈ (0, M]) between two contact elements can be expressed as
the following:

σi1 = 2ki
ndi1

n
l , σi2 = 2ki

ndi2
n

l

τi1 = 2ki
sdi1

n
l , τi2 = 2ki

sdi2
n

l

}
(33)

where σi1, σi2 and τi1, τi2 are the normal and shear contact stresses from edge i to i + 1 and
di1

n and di2
n are normal and shear deformation of the contact springs, respectively.
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The local shear and tensile FoS between contact elements can be calculated as follows:FoSij =
fiki

ndij
n+τ0i li/2

ki
sdij

s

FoS
′
ij =

2T0i
ki

n(di1
n +di2

n )

(i = 1, 2, · · · , M; j = 1, 2) (34)

where FoSij and FoS
′
ij are the local shear and tensile FoS, respectively. The global shear FoS

can be then obtained as:

FoS =
∑M

i=1

[
fiki

n
(
di1

n + di2
n
)
+ fiki

ndij
n + τ0il2

]
∑M

i=1 ki
s
(
di1

s + di2
s
) (35)

where fi and τ0i are the friction coefficient and cohesion of the ith contact pair and T0i is the
tensile strength of ith contact segment.

4. Numerical Examples
4.1. Verification of the Coupled Seepage–Deformation Model

Firstly, to verify the proposed coupled model for the NMM, a 2D flow in a homoge-
neous aquifer is studied. As can be seen from Figure 8, the length of the model is L and the
prescribed water heads are h1 and h2. The bottom boundary of the model is assumed to be
impermeable (i.e., q = 0). The analytical solution of the total discharge for this model is [47]:

Q = k
h2

1 − h2
2

2L
(36)

in which Q is the total discharge and k is the permeability coefficient.
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𝑖 𝑑𝑛

𝑖𝑗
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𝑖=1
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𝑖=1

  (35) 
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As shown in Figure 9, a 2D model of a fracture system consisting of constant fracture
spacing S and aperture a is taken into consideration. The average velocity of fluid flow in
an equivalent porous medium can be calculated using Darcy’s Law as follows:

v =
q
S
=

(
a3∆p
12µL

)
/S = ρ f g

a3

12µL
∆h
S

(37)

where q is the flow rate through a divided fracture with length S. As the hydraulic gradient
i = ∆h/L can be described directly, the equivalent permeability coefficient for the model
can be obtained as:

k =
a3

12µ

ρ f g
S

(38)



Water 2023, 15, 1163 13 of 23

Water 2023, 15, x FOR PEER REVIEW 13 of 23 
 

 

𝑄 =
𝑎3

12𝜇

𝜌𝑓𝑔

𝑆

ℎ1
2−ℎ2

2

2𝐿
  (39) 

In the simulations, a discretized model by the NMM as plotted in Figure 9 is estab-

lished in which two sets of parallel fractures are distributed throughout the homogenous 

mass with the prescribed geometric dimensions of a = 0.1 mm, S = 0.5 m, L = 8.0 m, ℎ1 = 

4.0 m, and ℎ2 = 1.0 m. The input physical parameters applied into the model are as fol-

lows: the unit weight is 25.5 kN/m3, Young’s modulus is 75 GPa, Poisson’s ratio is 0.22, 

fluid viscosity coefficient is 1.005 × 10−3 Pa s, cohesion of the fracture is 0.1 MPa/m2, fric-

tion angle is 25°, and the normal contact stiffness is 200 GPa. To obtain computational 

accuracy, a constant time step, ∆𝑡, 5 × 10−8 s is applied. In the model, a total of 2800 PCs, 

3688 MEs, and 128 flow segments are obtained, and 7 measured points are prescribed to 

sum the discharge of the fracture network system. The total discharge can then be written 

as: 

𝑄 = ∑ 𝑄𝑖
7
𝑖=1   (40) 

Finally, the total discharge calculated by the analytical equation of Equation (40) is: 

𝑄 = 1.563 × 10−6 m3/s  (41) 

The total discharge simulated by the NMM is: 

𝑄 = ∑ 𝑄𝑖
7
𝑖=1 = (0 + 0.706 + 0.631 + 0.143 + 0 + 0 + 0) × 10−6 = 1.480 × 10−6m3/s   (42) 

Comparing the analytical solution to Equation (39), one can see that the relative error 

of the NMM simulation is only 5.31%. It is seen that the simulated results using the pro-

posed coupled model agree well with the analytical solution. 

 

Figure 9. The NMM model of the 2D flow problem with two sets of fractures. 

4.2. Fracture Seepage of Fluid Flow through a Regular Fracture Network 

The verification of this example focuses on the developed fluid flow algorithm based 

on the coupled seepage–deformation model for determining the position of the phreatic 

surface. As referred to in [21,48], an earlier experiment of water flow through a regular 

fracture network is conducted in which the fracture system consists of two perpendicular 

sets of parallel fractures, and 28 stacking blocks with uniform spacing of ∆h = 0.2 m are 

assembled (as seen in Figure 10). To simulate the pressure head distribution of the phreatic 

surface along the bottom of impermeable boundaries, the fractures are prescribed a uni-

form aperture, a, of 0.4 mm; the hydraulic boundary conditions used in the NMM are 

listed as follows: a constant water head, h, of 2.9 m is assigned to the left side of the model, 

Figure 9. The NMM model of the 2D flow problem with two sets of fractures.

Thus, the final discharge can then be expressed as:

Q =
a3

12µ

ρ f g
S

h2
1 − h2

2
2L

(39)

In the simulations, a discretized model by the NMM as plotted in Figure 9 is established
in which two sets of parallel fractures are distributed throughout the homogenous mass
with the prescribed geometric dimensions of a = 0.1 mm, S = 0.5 m, L = 8.0 m, h1 = 4.0 m,
and h2 = 1.0 m. The input physical parameters applied into the model are as follows:
the unit weight is 25.5 kN/m3, Young’s modulus is 75 GPa, Poisson’s ratio is 0.22, fluid
viscosity coefficient is 1.005× 10−3 Pa s, cohesion of the fracture is 0.1 MPa/m2, friction
angle is 25◦, and the normal contact stiffness is 200 GPa. To obtain computational accuracy,
a constant time step, ∆t, 5 × 10−8 s is applied. In the model, a total of 2800 PCs, 3688 MEs,
and 128 flow segments are obtained, and 7 measured points are prescribed to sum the
discharge of the fracture network system. The total discharge can then be written as:

Q = ∑7
i=1 Qi (40)

Finally, the total discharge calculated by the analytical equation of Equation (40) is:

Q = 1.563× 10−6 m3/s (41)

The total discharge simulated by the NMM is:

Q = ∑7
i=1 Qi = (0 + 0.706 + 0.631 + 0.143 + 0 + 0 + 0)× 10−6 = 1.480× 10−6m3/s (42)

Comparing the analytical solution to Equation (39), one can see that the relative error of
the NMM simulation is only 5.31%. It is seen that the simulated results using the proposed
coupled model agree well with the analytical solution.

4.2. Fracture Seepage of Fluid Flow through a Regular Fracture Network

The verification of this example focuses on the developed fluid flow algorithm based
on the coupled seepage–deformation model for determining the position of the phreatic
surface. As referred to in [21,48], an earlier experiment of water flow through a regular
fracture network is conducted in which the fracture system consists of two perpendicular
sets of parallel fractures, and 28 stacking blocks with uniform spacing of ∆h = 0.2 m are
assembled (as seen in Figure 10). To simulate the pressure head distribution of the phreatic
surface along the bottom of impermeable boundaries, the fractures are prescribed a uniform
aperture, a, of 0.4 mm; the hydraulic boundary conditions used in the NMM are listed
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as follows: a constant water head, h, of 2.9 m is assigned to the left side of the model, a
constant velocity of 50 cm/s at the lower-right corner is prescribed, and there is no flow
rate for the other boundaries.
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Figure 10. Fracture seepage model of a regular fracture network.

A comparison of the measured and simulated results of the water head along the base
of the model is plotted in Figure 11, and the simulated results (denoted by the red line)
agree well with the results (presented by the black line) measured by the experiments.
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Following the aforementioned fracture network (i.e., see Figure 11), two assumptions
are carried out here by changing the hydraulic boundary conditions as follows:

• h0 = 0.8 m is prescribed at the left side of the model, and except for the impermeable
base, the other boundaries are free surfaces;

• h0 = 0.8 m is prescribed at the left side of the model, but the right side has a water
head of h = 0.4 m.

The simulated results of the phreatic surfaces using the proposed flow algorithm for
the above two assumptions are plotted in Figure 12. The simulated results of assumptions
of h0 = 0.8, h = 0.4 (denoted by the red line and bar charts) and h0 = 0.8, h = 0.0 (plotted by
the black line) agree well with the experiment [48], which achieves the expectation to the
fracture model and further verifies the proposed seepage–deformation model.

4.3. Joint Seepage in an Arbitrary Complex Rock Fracture Network

To further validate the coupled seepage–deformation algorithm, a steady-state flow
problem in a complex fracture network is simulated, and comparison with the experimental
results as referred to in [49] is then carried out to check the proposed method. As shown
in Figure 13, a schematic of the complete laboratory device is illustrated, and a physical
experimental model to simulate 2D flow through jointed fractures is then constructed. The
depth and width of the model are assumed to be 45.72 cm and 60.96 cm, respectively.
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Figure 13. Experiment model in [49]: (a) schematic of the complete laboratory device; (b) fracture
flow network in the physical model.

In the present study, hydraulic pressure is simulated at 24 joint intersection ports
according to the previous four typical tests in [48] (T1–7 to T1–10) (as listed in Table 1) sub-
jected to a hydraulic gradient i = ∆h/L ranging between 0.01 and 2.84 and corresponding
head differential ∆h = H − h from 0.762 cm to 172.84 cm. The physical input parameters
are the following: the unit weight is 25.0 kN/m3, Young’s Modulus is 3.1 GPa, Poisson’s
ratio is 0.35, and the kinematic viscosity of water is 1.005 × 10−3 Pa s. Four representative
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tests (T1–7 to T1–10) are analyzed by the NMM, and the simulated results are listed in
Table 2, in which the errors in head value, Er, at each measured port are expressed as:

Er =
hl − hn

H − h
(43)

where hl is the experimental head value, hn is the value simulated by the NMM, H is the
upstream head, and h is the downstream head. For each test, the average error in head
value, Ear, can be obtained as:

Ear =
1
n ∑n|Er| (44)

where n (n = 24) is the number of measured ports. Values of Ear are assembled from Table 2.
It is found that the simulated results indicate that Ear is not more than 3.53% and increases
with the increasing hydraulic gradient.

Table 1. Test parameters for the experimental model.

Work No. T1–7 T1–8 T1–9 T1–10

H (cm) 115.70 134.37 151.38 227.20
h (cm) 71.37 71.37 72.01 54.36

∆h (cm) 44.33 63.00 79.37 172.84
i(∆h/L) 0.727 1.033 1.302 2.835

Table 2. Comparison of the hydraulic heads between the coupled model and experimental results
in [49].

Port
No.

T1–7 T1–8 T1–9 T1–10

hn (cm) hl (cm) Er (%) hn (cm) hl (cm) Er (%) hn (cm) hl (cm) Er (%) hn (cm) hl (cm) Er (%)

1 112.74 112.65 −0.20 130.06 130.56 0.79 146.18 147.45 1.60 215.36 217.81 1.42
2 113.06 113.16 0.23 129.97 131.19 1.94 146.63 147.70 1.35 217.03 218.57 0.89
3 109.44 109.22 −0.50 124.51 126.37 2.95 140.17 142.49 2.92 201.45 201.93 0.28
4 112.95 112.52 −0.97 130.32 130.56 0.38 146.53 146.94 0.52 216.78 217.04 0.15
5 113.28 113.54 0.59 130.78 131.32 0.86 147.16 148.08 1.16 217.15 218.06 0.53
6 114.36 114.68 0.72 133.19 133.10 −0.14 150.27 150.11 −0.20 223.86 224.03 0.10
7 107.89 108.20 0.70 123.58 124.84 2.00 138.22 140.97 3.46 193.95 200.79 3.96
8 108.12 108.46 0.77 124.26 125.10 1.33 138.49 141.35 3.60 194.88 201.17 3.64
9 90.27 91.19 2.08 102.43 102.11 −0.51 111.75 114.81 3.86 141.72 141.61 −0.06

10 88.32 89.41 2.46 97.83 98.55 1.14 105.38 111.00 7.08 134.37 133.86 −0.30
11 91.95 91.82 −0.29 101.35 103.51 3.43 110.73 116.33 7.06 139.26 144.40 2.97
12 97.68 97.79 0.25 109.37 111.38 3.19 121.64 125.60 4.99 154.32 165.10 6.24
13 98.48 98.68 0.45 110.69 112.40 2.71 124.38 127.00 3.30 156.87 167.39 6.09
14 95.88 95.63 −0.56 107.41 107.32 −0.14 119.59 120.90 1.65 148.37 157.99 5.57
15 97.06 96.52 −1.22 108.14 109.73 2.52 120.15 123.44 4.15 152.64 163.20 6.11
16 96.97 97.28 0.70 108.66 110.36 2.70 120.63 123.95 4.18 153.33 163.96 6.15
17 76.75 77.72 2.19 81.06 82.30 1.97 83.47 89.41 7.48 81.06 86.49 3.14
18 75.22 76.45 2.77 77.98 78.99 1.60 81.46 85.09 4.57 75.12 77.98 1.65
19 80.17 81.79 3.65 89.16 88.65 −0.81 90.16 96.14 7.53 94.75 100.46 3.30
20 77.28 78.74 3.29 82.57 83.31 1.17 91.07 90.68 −0.49 83.16 89.66 3.76
21 83.43 84.33 2.03 93.08 92.96 −0.19 97.32 100.46 3.96 105.47 113.67 4.74
22 76.45 77.34 2.01 83.78 83.06 −1.14 87.95 87.63 −0.40 76.04 87.76 6.78
23 75.56 75.82 0.59 78.64 79.50 1.37 81.26 83.82 3.23 70.73 78.11 4.27
24 74.34 74.17 −0.38 76.86 77.09 0.37 79.34 80.39 1.32 66.18 71.63 3.15

The pressure and flow rate distributions of the fractures are calculated by the NMM.
As shown in Figure 14, the calculated hydraulic pressure with rock matrix permeability
(e.g., 1.0 × 10−14 m2) by FEM code indicates the pressure distribution when porous media
is considered (Figure 14a), but the simulated results using the proposed model (Figure 15b)
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by the NMM agree very well with both the hydraulic pressures and the flow rates at the
measured ports. It is clear that the proposed seepage–deformation model is more efficient
and flexible for simulating steady-state fluid flow in discrete fracture networks.
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17 76.75 77.72 2.19 81.06 82.30 1.97 83.47 89.41 7.48 81.06 86.49 3.14 

18 75.22 76.45 2.77 77.98 78.99 1.60 81.46 85.09 4.57 75.12 77.98 1.65 

19 80.17 81.79 3.65 89.16 88.65 −0.81 90.16 96.14 7.53 94.75 100.46 3.30 

20 77.28 78.74 3.29 82.57 83.31 1.17 91.07 90.68 −0.49 83.16 89.66 3.76 

21 83.43 84.33 2.03 93.08 92.96 −0.19 97.32 100.46 3.96 105.47 113.67 4.74 

22 76.45 77.34 2.01 83.78 83.06 −1.14 87.95 87.63 −0.40 76.04 87.76 6.78 

23 75.56 75.82 0.59 78.64 79.50 1.37 81.26 83.82 3.23 70.73 78.11 4.27 

24 74.34 74.17 −0.38 76.86 77.09 0.37 79.34 80.39 1.32 66.18 71.63 3.15 
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Figure 14. Seepage modeling using the numerical methods (e.g., T1–10): (a) hydraulic pressure with
rock matrix permeability (e.g., 1.0 × 10−14 m2) by the FEM code [49]; (b) flow rate without rock
matrix permeability by the NMM.
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4.4. Rock Slope Stability Analysis Using the Coupled Seepage–Deformation Model

In this study, the proposed seepage–deformation model by the NMM method is used
to simulate the failure process of a rock slope with a tunnel and to calculate FoS considering
the effects of fracture flow on the rock masses. As shown in Figure 15, the NMM model
consists of rock blocks and fracture networks containing both the existing fractures and
virtual/potential fractures. The height and width of the slope are selected as 70 m and
50 m, respectively. A total of 1427 PCs, 2053 MEs, and 46 flow segments are obtained, and
208 measured points are prescribed to calculate the fluid flow rates of the fracture network
system. The aforementioned fracture network is taken as a seepage path, and the strengths
of potential failure features are considered as being equal to those of the intact rock mass.
The division of blocks is investigated after a collapse disaster [50,51]. The input parameters,
based on the investigation and experimental results, are listed in Table 3.

Table 3. Input parameters for the seepage NMM model.

Material Young’s Modulus
(GPa) Poisson’s Ratio Tensile

Strength (MPa)
Cohesion

(kPa)
Internal Friction

Angle (◦)
Density
(kN/m3)

Rock mass 5 0.25 1.0 1.5 45 24
Tunnel lining 20 0.2 1.5 2.0 45 25

Fracture / / / 0.0 30 /

According to the expected failure mode, the main persistent fracture from the crest of
the slope to the lower tunnel (see Figure 15) is taken as the possible sliding surface, and
the local FoS, distributing along the sliding surface, is calculated under the following three
considered cases:

1. The effect of groundwater is ignored, and only the self-weight of the rock mass is
considered (i.e., Condition 1);

2. The effect of groundwater is not ignored, the highest groundwater head is located at
the top of the slope (see Figure 15), and the bottom of the slope is taken as an outlet
for the water flow (i.e., Condition 2);

3. The highest groundwater head is the same as Condition 2, but considering the condi-
tion under a frozen state of the rock slope surface, the groundwater outlet is blocked
(i.e., Condition 3).

The local FoS can be calculated by Equation (36), and the distribution of the local FoS
along the main sliding surface under the three prescribed conditions is plotted in Figure 16.
It can be seen that each local FoS represents the typical stability state of a segment of
sliding surface (i.e., l/2 in Equation (33)). When the effect of fracture flow is not considered
under Condition 1, the FoS of the other parts is greater than 4.0, except for the FoS of
3.95 near an elevation of 26.37 m (see Figure 16). This shows that the slope is stable without
considering groundwater.

When Condition 2 is considered, the water flow and pressure head of groundwater
along the fracture are shown in Figure 17a. It can be seen that the groundwater flows
out from the outlet points on the slope, which shows that the water flow calculated by
the NMM is reasonable. Although the drainage of the slope is considered, there is still
high water pressure in the top segment, which causes a large tensile stress of 0.833 MPa
near an elevation of 45.2 m (see Figure 16). Therefore, the local FoS at the top segment
of the main fracture is declined dramatically, and the minimum FoS decreases to 1.26 to
approach the limit equilibrium state. On the contrary, under Condition 3 (see Figure 17b),
the groundwater cannot flow out along the rock slope surfaces, and the hydraulic pressure
is equal to the difference between the highest water head and the elevation of each segment
(i.e., ∆h = h− z). Then, near the bottom of the slopes, the pressure head is greater, which
decreases the local FoS along the whole sliding surface (see Figure 16). However, the
minimum FoS still appears at the top of the slope, as the open fracture is less than 1.0,
which creates the instability of the slope.
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Figure 17. Fluid flow and pressure head (unit: mm) when groundwater is considered: (a) Condition 2;
(b) Condition 3.

Due to the persistent effects of water pressure, once the fracture/crack expands
downward, it will lead to the instability of the whole slope. Figure 18 shows the failure
process simulated by the NMM using the proposed seepage–deformation algorithm. When
the top segment of the fracture begins to expand, it rapidly penetrates the whole sliding
surface and leads to the failure of other potential fractures (see Figure 18b). When the rock
mass outside the sliding surface slides downward, the rock mass surrounding the tunnel
(e.g., the triangular parts) falls, all the weight acts on the tunnel and the tunnel is crushed
(see Figure 18c,d), and finally, complete failure occurs as shown in Figure 18e,f.
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5. Conclusions

In the stability analysis of a rock slope, the effects of groundwater in rock fractures
can not be neglected, as seepage and groundwater flow in the fracture network reduces
the normal and shear effective stresses between the fractures and ultimately results in
failure of the slope. In the present study, the coupling effects of fracture seepage, hydraulic
pressures, and rock deformation are taken into consideration in the framework of the NMM.
A coupled seepage–deformation model is developed to fully reveal the effects of fracture
flow on the stability of a rock slope. To validate the ability of the proposed numerical
model, three numerical examples of discharge through a homogeneous aquifer, fracture
seepage of fluid flow through a regular fracture network, and joint seepage in a complex
rock fracture network are simulated, in which the relative error of the NMM simulation is
only 5.31% for the homogeneous aquifer simulations, and the calculated value of Ear is not
more than 3.53% of the experimental results as referred to in [49]. The simulated results
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agree well with the analytical and/or experimental ones, which suggests the robustness
and effectiveness of the proposed coupled seepage–deformation model. To further check
the proposed seepage NMM model, the failure process of a rock slope with a tunnel is
simulated and the local FoS of the model with and without considering groundwater
effects are computed. The calculated minimum FoS approaches less than 1.0. The simulated
results show that fracture hydraulic pressure is the direct cause of slope failure. The stability
analysis results of the FoS are consistent with those of in situ investigations. Furthermore,
the tunnel collapse and failure of the rock slope in different stages are reproduced. It shows
that the proposed method can not only simulate the coupling effect of fracture seepage and
rock mass deformation but also simulate the failure process of a rock mass system.
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