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Abstract: The estimation of reference evapotranspiration (ETo), a crucial step in the hydrologic cycle,
is essential for system design and management, including the balancing, planning, and scheduling
of agricultural water supply and water resources. When climates vary from arid to semi-arid, and
there are problems with a lack of meteorological data and a lack of future information on ETo, as is
the case in Egypt, it is more important to estimate ETo precisely. To address this, the current study
aimed to model ETo for Egypt’s most important agricultural governorates (Al Buhayrah, Alexandria,
Ismailiyah, and Minufiyah) using four machine learning (ML) algorithms: linear regression (LR),
random subspace (RSS), additive regression (AR), and reduced error pruning tree (REPTree). The
Climate Forecast System Reanalysis (CFSR) of the National Centers for Environmental Prediction
(NCEP) was used to gather daily climate data variables from 1979 to 2014. The datasets were split
into two sections: the training phase, i.e., 1979–2006, and the testing phase, i.e., 2007–2014. Maximum
temperature (Tmax), minimum temperature (Tmin), and solar radiation (SR) were found to be the
three input variables that had the most influence on the outcome of subset regression and sensitivity
analysis. A comparative analysis of ML models revealed that REPTree outperformed competitors by
achieving the best values for various performance matrices during the training and testing phases.
The study’s novelty lies in the use of REPTree to estimate and predict ETo, as this algorithm has not
been commonly used for this purpose. Given the sparse attempts to use this model for such research,
the remarkable accuracy of the REPTree model in predicting ETo highlighted the rarity of this study.
In order to combat the effects of aridity through better water resource management, the study also
cautions Egypt’s authorities to concentrate their policymaking on climate adaptation.

Keywords: reference evapotranspiration; machine learning algorithms; linear regression;
random subspace; additive regression; reduced error pruning tree; water resources management;
climate-resilient pathways

1. Introduction

Evapotranspiration is the sum of evaporation from the ground surface plus transpi-
ration from plants, and it represents the amount of water required by plants over time.
It is vital to the calculation and scheduling of irrigation water in the region and is one of
the most influential hydrological factors affecting a region’s climate. This variable must

Water 2023, 15, 1149. https://doi.org/10.3390/w15061149 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15061149
https://doi.org/10.3390/w15061149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-5506-9502
https://orcid.org/0000-0001-9253-3485
https://orcid.org/0000-0002-0471-9720
https://orcid.org/0000-0001-9207-5779
https://orcid.org/0000-0002-5833-2396
https://orcid.org/0000-0001-7086-0004
https://doi.org/10.3390/w15061149
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15061149?type=check_update&version=2


Water 2023, 15, 1149 2 of 17

be monitored before agricultural activities on a field may commence. Thus, it is essential
for agricultural water supply administrators and users to estimate it accurately. The food
and agriculture organization (FAO) standardized a method of Penman–Monteith 56 (FAO
PM-56) that estimates reference evapotranspiration (ETo) using various meteorological
data. The World Meteorological Organization (WMO) and the International Commission
on Irrigation and Drainage (ICID) introduced the model as a reliable method for estimating
ETo, and it was also approved as a suitable alternative to lysimeter data by the ICID [1].
One of the most significant issues in hydrology and agriculture is ETo modeling, which
allows for the prediction of future values of this variable. In fact, the forecast of this variable
tells us how much water the plant will need in the future. This method is quite successful
and is used in the region to schedule crop irrigation. Increased demand for limited water
resources, climate change, and certain agricultural commodities have all pointed to the
need for better ways to make efficient use of the water resources at our fingertips as well
as distribute them at the right time and through the right channel to produce premium
food [2]. Certain management actions, crop characteristics, weather conditions, land type,
and field operations are all key variables that influence the ETo process [3].

The ability to model ETo is critical in determining agricultural irrigation requirements
on a regional and global scale, preparing water budgets, and assessing the impact of various
climatic changes [4]. Significant problems arise when ETo modeling is tried to estimate
accurately using available meteorological data at different gauging stations [5]. A precise
measurement of the ETo serves a variety of purposes including not only the research of
climate change and the evaluation of water resources but also the efficient monitoring and
forecasting of droughts as well as the correct use and development of water resources [6].
Machine learning (ML) models based on robust algorithms are now being used to map
nonlinear processes employing input and output (target) variables. Raza et al. [7] examined
research publications on ETo estimation published in the last eight years (2012–2020) for
accuracy, structure, and usefulness. The presented studies’ main goal is to establish an
alternative ML model to the FAO-PM56 since it requires a substantial quantity of climatic
data as input, which is not accessible at many stations, especially in developing countries.
As a result, designing ML models employing all of the usable data comparable to FAO-
PM56 is not worthwhile. Moreover, a limited number of studies have investigated the
development of a generalized ETo model for accurate ETo estimation in all stations within
a region, such as Raza et al. [8]. This is particularly important in developing countries
since climatic data from most stations are either missing or unavailable owing to technical
challenges and a lack of technology. As a result, developing an ETo model with fewer
climatic inputs (such as temperature data) should be enough.

Different types of ML algorithms such as support vector machine (SVM) [9,10], least
square support vector machine [11], genetic programming [12–14], extreme learning ma-
chine (ELM) [15,16], tree-based models [17,18] such as M5 model tree [19–21], random
forest [22–25], and extreme gradient boosting (XGBoost) [10,19,26], artificial neural net-
works (ANNs) [27–29], and an adaptive neuro-fuzzy inference system (ANFIS) [30,31] were
used in ETo modeling for this purpose. Utilizing alternative ML models, it may be possible
to incorporate such inputs (simultaneously) into the daily ETo estimation.

According to the available literature, there is no comparison research in the literature
that uses random subspace (RSS), additive regression (AR), reduced error pruning tree
(REPTree), and linear regression (LR) algorithms to estimate ETo in the study area of Egypt
using daily time-scale data. As a result, this study aims to (i) investigate the historical
distributions of ETo from 1979 to 2014, (ii) evaluate the performance and accuracy of ML
algorithms in daily ETo estimation, and (iii) select the optimal ETo ML model based on
statistical metrics results. These data are essential for understanding the influence of climate
change on ETo in the study region.
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2. Materials and Methods
2.1. Study Area

The Nile Delta is Egypt’s economic and financial core and contains the country’s
richest agriculture. It is home to eleven governorates. Like the rest of Egypt, the Nile Delta
has a hot desert environment. The delta’s warmest months are July and August, when
temperatures reach a maximum average of 34 ◦C. During the winter, temperatures typically
range from 9 ◦C to 19 ◦C. The annual rainfall is 100–200 mm, with most falling during
the winter. Egypt is considered an arid region with a significant danger of water scarcity
in the near future. The agricultural sector requires a large amount of water, accounting
for around 85 percent of overall freshwater consumption. The study area includes four
governorates in Egypt: Al Buhayrah, Alexandria, Ismailiyah, and Minufiyah (Figure 1).
These four governorates are located in the Nile Delta, the northern part of Egypt. The
Al Buhayrah governorate is located in an important strategic place, west of the Rosetta
branch of the Nile River, about 123 km northwest of Cairo, and covers an area of 9826 km2.
The Alexandria governorate is located in the northern part of the country, directly on the
Mediterranean Sea, making it one of the most important harbors in Egypt. The Alexandria
governorate is located about 188.6 km northwest of Cairo and covers an area of 2818 km2.
The Ismailiyah governorate is one of the Canal Zone governorates of Egypt. Located in the
northeastern part of the country, it covers an area of 5066 km2 and is about 122.5 km away
from Cairo. The Minufiyah governorate is located in the Nile Delta’s northern part, north
of Cairo. It covers about 2543 km2. The population of Al Buhayrah, Alexandria, Ismailiyah,
and Minufiyah governorates are estimated by the Central Agency for Public Mobilization
and Statistics in Egypt (CAPMAS) [32] to be 6,723,269; 5,469,480; 1,419,631; and 4,640,003
people per capita on 1 January 2022.
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Figure 1. Location of the study area (Al Buhayrah, Alexandria, Ismailiyah, and Minufiyah gover-
norates) in Egypt.

2.2. Datasets Description

Daily climate data variables for the studied regions, such as minimum and maximum
temperatures, humidity, wind speed, vapor pressure deficit, and solar radiation, were
collected from the National Centers for Environmental Prediction (NCEP) Climate Fore-
cast System Reanalysis (CFSR) from 1979 to 2014. It was completed over 36 years from
1979 through 2014. Figure 2 demonstrates the time series of each variable for the period
1979–2014. The CFSR was designed and executed as a global, high-resolution, coupled
atmosphere-ocean-land surface-sea-ice system to provide the best estimate of the state of
these coupled domains over this period. The daily CFSR data (precipitation, wind, relative
humidity, and solar radiation) were downloaded in SWAT file format and CSV for the
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entire period in a zip file by continent. Table 1 presents a statistical analysis of climate data
variables in the governorates of Al Buhayrah, Alexandria, Ismailiyah, and Minufiyah from
1979 to 2014.
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Figure 2. Demonstration of time series of each input variable used for developing ML models for
simulating the evapotranspiration process.

Table 1. Statistical analysis of climate data variables from 1979 to 2014 in the governorates of Al
Buhayrah, Alexandria, Ismailiyah, and Minufiyah.

Governorate Metrics Tmax
(◦C)

Tmin
(◦C)

Tmean
(◦C)

P
(mm)

WS
(Km/h)

RH
(%)

SR
(kWh/m2)

ETo
(mm/day)

Al Buhayrah

Maximum 47.59 26.38 35.09 40.50 9.14 0.98 30.68 34.01
Minimum 8.17 −2.69 6.36 0.00 0.75 0.11 0.00 0.00
Average 27.52 13.89 20.71 0.34 3.29 0.64 20.45 13.05

Std. deviation 6.81 5.28 5.72 1.50 0.92 0.10 7.84 6.83
Variance 46.40 27.84 32.70 2.24 0.84 0.01 61.53 46.70
Skewness −0.21 −0.20 −0.15 8.84 0.96 −0.98 −0.51 −0.06
Kurtosis −0.93 −0.97 −1.20 118.55 2.43 2.41 −0.89 −1.13

Alexandria

Maximum 43.43 29.82 35.15 32.97 12.88 0.94 30.49 29.83
Minimum 9.35 2.72 7.87 0.00 1.20 0.10 0.00 0.00
Average 26.11 15.98 21.04 0.38 4.52 0.64 20.48 11.28

Std. deviation 6.06 4.81 5.18 1.53 1.35 0.10 7.82 5.83
Variance 36.72 23.17 26.82 2.33 1.83 0.01 61.13 33.98
Skewness −0.19 −0.08 −0.12 7.69 1.01 −1.43 −0.53 −0.06
Kurtosis −0.93 −1.09 −1.21 83.65 2.33 3.14 −0.84 −1.03

Ismailiyah

Maximum 47.76 27.64 35.59 33.74 4.98 0.96 30.74 32.82
Minimum 7.06 −0.14 5.83 0.00 0.49 0.07 0.00 0.00
Average 28.81 12.78 20.79 0.18 1.70 0.59 20.71 14.49

Std. deviation 7.50 4.57 5.74 1.03 0.43 0.12 7.33 7.62
Variance 56.18 20.87 32.95 1.06 0.18 0.01 53.75 58.14
Skewness −0.24 −0.11 −0.15 13.61 1.44 −0.72 −0.42 0.02
Kurtosis −1.03 −0.96 −1.18 281.36 5.21 0.97 −0.98 −1.24

Minufiyah

Maximum 48.09 25.30 35.55 60.28 6.38 0.97 31.06 34.41
Minimum 6.77 −2.23 5.29 0.00 0.62 0.09 0.00 0.00
Average 29.42 12.84 21.13 0.16 2.36 0.57 20.92 15.00

Std. deviation 7.74 5.34 6.28 1.01 0.63 0.13 7.43 7.82
Variance 59.94 28.52 39.43 1.02 0.39 0.02 55.18 61.21
Skewness −0.23 −0.23 −0.17 25.06 0.78 −0.36 −0.44 −0.02
Kurtosis −1.07 −1.00 −1.23 1134.97 1.95 0.37 −0.97 −1.28

Note: Tmax, maximum temperature; Tmin, minimum temperature; Tmean, mean temperature; WS, wind speed;
SR, solar radiation.
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3. Methodology

The proposed model for ETo estimation methodology in the study (Figure 3) is based
on the following: (i) collection of daily databases; (ii) data preparation and selection of
the best variables; (iii) application of four forecasting machine learning models: linear
regression (LR), additive regression (AR), random subspace (RSS), and reduced error
pruning tree (REPTree); (iv) training and testing of developed models; (v) evaluation of the
results obtained based on RMSE, R2, MAE, and RRSE; (vi) selection of the best developed
model for ETo prediction; and finally, (vii) the end of the process. The four forecasting
machine learning models used in this study are discussed below:
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3.1. Machine Learning (ML) Models
3.1.1. Random Subspace (RSS)

The RSS is a technique for the collective knowledge approach; it is used to investigate
arrangement and regression. This model has been applied in land-use categorization,
hydrology, irrigation scheduling, evaporation measurement, and forest and agricultural
classification [33]. It is an ensemble classifier technique that Ho [34] proposed. In the
RSS, the training data are modified. However, this data modification is carried out in
the feature space. Hence, each training incidence Xi (i = 1, . . . , n) in the training sample
set X = [X1; . . . ; Xn] is defined as a p-dimensional vector Xi = (xi1, xi2, . . . , xip) and de-
fined by p features. Then, r < p features are randomly selected from the p-dimensional
dataset X. Consequently, the modified training set X
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• Aggregate classifiers Cb(x), b = 1, 2, . . . , B, by utilizing majority voting for the final

decision.

The RSS can benefit from using random subspaces for both building and combining
the classifiers. When the number of training incidences is comparatively small compared
to the data dimension, the small sample size problem can be solved by building classifiers
in random subspaces. The subspace dimension will be less than the original feature space,
while the number of training incidence is kept the same. Thus, the relative training sample
size increases. Once the data have several redundant features, a better classifier can be
found in random subspaces than in the original feature space. The aggregated decision
of such classifiers might be better than a single classifier built on the original training set
in the entire feature space [36]. The parameters used in this model were as follows: batch
size—100, classifier—REPTree, random seed—1, subspace size—0.5, number of execution
slots—1, number of iterations—10.

3.1.2. Additive Regression (AR)

Regression estimation and variable selection are two important tasks for high-dimensional
data mining [37]. Sparse additive models aiming to deal with the above tasks simulta-
neously have been extensively investigated in the mean regression setting. As a class of
models between linear and non-parametric regression, these methods inherit the flexibility
from nonparametric regression and the interpretability from linear regression [38]. the
generalized additive model (GAM) was constructed by Hastie and Tibshiran [39], which
is an extension of the generalized linear model (GLM). The GLM model implies that the
parameters are linear, but the GAM model assumes that there is no dependency and that
the connection is not necessarily linear [40]. Linear dependence is substituted in that model
with broader dependency characteristics [41].

The algorithm’s equation is as follows:

g(E(y)) = β0 + f 1x1 + f2x2 + · · ·+ fpxp + ε (1)

For each single explanatory vector xi, the computation of the application of this model
comprises the nonlinear smooth functions fi(xi), i = 1, . . . , p.

Several dataset split features are chosen using the standard deviation error (SDR) as a
parameter for the optimum characteristics to divide the data set into each node. The chosen
attribute is meant to reduce mistakes.

SDR = SD(Tree)− Σ
Treei
Tree
∗SD(Treei) (2)

where Treei is the subset of cases containing the product of the potential evaluations, and
SD (·) denotes the standard deviation of the argument. The stop conditions are either
the number of occurrences remaining to accomplish a specific number or a minor type
value change. Table 2 displays the parameters that were used for technique. Parameters
selected for applying this method were as follows: batch size—100, classifier—bagging,
shrinkage—1, number of iterations—30.
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Table 2. Analysis of best subset regression for determining the best input combinations.

No. of
Variables Variables MSE R2 Adjusted R2 Mallows’

Cp
Akaike’s

AIC
Schwarz’s

SBC
Amemiya’s

PC

1 SR 7.670 0.853 0.853 178,771.227 105,837.493 105,855.209 0.147
2 Tmax/SR 2.773 0.947 0.947 31,471.556 52,988.983 53,015.557 0.053
3 Tmax/Tmean/SR 1.728 0.967 0.967 26.095 28,408.184 28,443.616 0.033
4 Tmax/Tmean/RH/SR 1.727 0.967 0.967 4.195 28,386.287 28,430.577 0.033

5 * Tmax/Tmin/RH/SR 1.727 0.967 0.967 4.195 28,386.287 28,430.577 0.033
6 Tmax/Tmin/WS/RH/SR 1.727 0.967 0.967 6.000 28,388.092 28,441.240 0.033

Note: * The best model for the selected selection criterion is displayed in bold blue. As the number of requested
variables could not be entered into the model, the results are unreliable, and the model is not necessarily the
best one.

3.1.3. Reduced Error Pruning Tree (REPTree)

The REPTree process is a basic decision tree beginning method that designs and
utilizes condensed error trimming to create a regression tree using variance data [42]. As
a fast decision tree approach, the REPTree classifier is based on the idea of calculating
information acquisition with entropy and minimizing the error caused by variance [43].
The REPTree creates multiple trees in regression tree modified iterations. Then, the best of
the trees produced is selected. This algorithm creates a regression/decision tree within the
variance framework and the knowledge gain approach. By using the method of linking,
this algorithm reduces the pruning error rate. The measure used in pruning the tree is the
error in the average frame predicted by the tree. The values of numerical attributes are
sorted at the beginning of the modeling process. As with the C4.5 algorithm, this algorithm
divides the corresponding samples into pieces and processes the missing values [44].

For numeric characteristics, the algorithm only examines values once. It is primarily
the method of constructing a common set of decision-making instructions using a forecaster
variable quantity [45,46]. The REPTree decision algorithm is a highly fast learning technique
with a low-error pruning tree. It builds a decision/regression tree and prunes it using back-
fitting with reduced error based on the data gain/variance [47]. The model’s parameters
were as follows: batch size—100, initial count—0, number of folds—3, random seed—1,
minimum proportion of the variance—0.001, minimum number—2, maxdepth—1.

3.1.4. Linear Regression (LR)

Linear regression is a potent method for analyzing data in diverse fields [48]. LR
predicts a variable’s value based on another variable’s value. The linear regression (LR)
model is utilized in numerous application areas [49]: for example, engineering, economics,
ecological, social sciences, and medicines, among many others. Hence, linear regression is
a powerful and flexible technique to address regression issues. Thus, the trend of the LR
model is an extensive topic of significant interest for researchers [50,51]. The parameters
selected for implementing this model were as follows: attribute selection method—M5
method; batch size—100; eliminate co-linear attributes—true.

3.2. Performance Metrics

Five performance indicators were employed to evaluate the performances of the
applied algorithm as follows: mean absolute error (MAE), mean absolute error (MAE),
root mean square error (RMSE), relative absolute error (RAE), root relative squared er-
ror (RRSE), and correlation coefficient (R). These parameters were determined using the
following equations:

MAE =
1
N

N

∑
i=1
|Xi −Yi| (3)

MSE =
1
N

N

∑
i=1

(Xi −Yi)
2 (4)
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RMSR =

√√√√ 1
N

N

∑
i=1

(Xi −Yi)
2 (5)

RAE =

∣∣∣∣Xi −Yi
Yi

∣∣∣∣× 100 (6)

RRSE =

√
∑N

i=1(Yi − Xi)
2√

∑N
i=1

(
Xi −

−
X
)2

(7)

R =
∑N

i

(
Xi −

−
X
)(

Yi −
−
Y
)

√
∑N

i

(
Xi −

−
X
)2

∑N
i

(
Yi −

−
Y
)2

(8)

where N is the total number of measurements; Xi is the observed values, and Yi is the

estimated values;
−
X is the mean of observed values in X variables;

−
Y is the mean of

estimated values in Y variables.

4. Results
4.1. Analysis of Best Subset Regression for Determining Best Input Combinations

Determining the best input parameters is necessary to achieve the best performance
of the selected models. This requires varying combinations of meteorological parameters
for shortlisting the best input combinations. The present study aims to develop a joint
model for the four study sites (stations), i.e., Alexandria, Al Buhayrah, Minufiyah, and
Ismailiyah of Egypt. Shortlisting the best input combinations for the developed models
was conducted using the six statistical criteria, i.e., MSE, R2, adjusted R2, Mallows’ Cp,
Akaike’s AIC, Schwarz’s SBC, and Amemiya’s PC, whose results are shown in Table 2. It
can be inferred that four input variables, i.e., Tmax, Tmin, RH, and SR (displayed in bold),
were identified as the best input combination given they had the lowest values of Mallows’
Cp (4.195) and Amemiya’s PC (0.033) and the highest value of R2 (0.967) and adjusted R2

(0.967) amid all input combinations.
Furthermore, this study conducted correlation analysis to ascertain variable correla-

tions, as shown in Figure 4. In general, the study recorded significantly higher correlations
of independent variables with the dependent variable ETo, for example, 0.907 with Tmax,
0.806 with Tmean, and 0.923 with SR. To take advantage of long-term time-series datasets
for ETo, the present study categorized the complete dataset into two sets, of which the
first segment comprised 75% of the dataset for training purposes (for the training period
1979–2006), while the second segment comprised 25% for validation/testing purposes (for
the testing period 2007–2014) of the models.

4.2. Sensitivity Analysis

The different combinations of input variables provided the performance of the mod-
els such that some combinations yielded positive contributions to the accuracy, while
some yielded negative contributions under each case of the selected models. Sensitivity
analysis was conducted to shortlist the best influential variables so as to identify the best
performance of the models in predicting the ETo with greater accuracy. Findings from
regression analysis on all input variables are summarized in Table 3. It can be inferred in
terms of absolute standard coefficients that the variables such as Tmax (0.649), Tmin (−0.205),
RH (−0.005), and SR (0.525) are the most influential input variables. These standardized
coefficients of input variables for sensitivity analysis for ETo are further demonstrated in
Figure 5.
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Table 3. Regression analysis for identifying the most effective parameters for ETo.

Source Value Standard
Error t Pr > |t| Lower Bound

(95%)
Upper Bound

(95%)

Tmax 0.649 0.002 366.370 <0.0001 0.646 0.653
Tmin −0.205 0.001 −167.137 <0.0001 −0.208 −0.203

Tmean 0.000 0.000
WS 0.000 0.000
RH −0.005 0.001 −4.889 <0.0001 −0.007 −0.003
SR 0.525 0.001 414.793 <0.0001 0.523 0.527
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4.3. Comparison of ML Algorithms for ETo Estimation

ETo was estimated by implementing four ML algorithms, i.e., linear regression (LR),
random subspace (RSS), additive regression (AR), and reduced error pruning tree (REP-
Tree). To evaluate the performances of the applied algorithm, five performance indicators
were employed, i.e., mean absolute error (MAE), root mean square error (RMSE), relative
absolute error (RAE), root relative squared error (RRSE), and correlation coefficient (R).
The best performance of the models was identified based on the higher value for r (close to
one) and lower values for MAE, RMSE, RAE, and RRSE (close to zero). Table 3 shows the
general trend for these performance indicators corresponding to each model. Following
the aforementioned performance quantification criteria, the model REPTree was observed
as the best model during both the training and testing phase, followed by the LR model
(Table 4). This implied that the REPTree model has the potential to estimate the ETo with
greater accuracy as compared with other algorithms. In the training phase, the model
REPTree yielded the highest value for r (0.99) and lowest values for MAE (0.21), RMSE
(0.28), RAE (3.45%), and RRSE (4.01%); during the testing phase also, the model REPTree
yielded the highest value for r (0.99) and lowest values for MAE (0.28), RMSE (0.37), RAE
(4.13%), and RRSE (4.72%), as shown in Table 4. The changes in the values for these perfor-
mance indicators between the training and testing phases were found insignificant; thus,
the model was considered suitable for the present study site. Following REPTree, the model
LR was the second-best performing model, as in the training phase, the model LR yielded
a higher value for r (0.98) and lower values for MAE (1.00), RMSE (1.30), RAE (16.66%),
and RRSE (18.47%); during the testing phase also, the model LR yielded a higher value for
r (0.98) and lower values for MAE (1.10), RMSE (1.37), RAE (16.28%), and RRSE (17.70%).

Table 4. Performance metrics for the models developed during the training and testing phase for
ETo estimation.

ML
Algorithms

Training Phase Testing Phase

MAE RMSE RAE (%) RRSE
(%) r MAE RMSE RAE (%) RRSE

(%) r

LR 1.0099 1.3011 16.6612 18.4732 0.9828 1.1050 1.3717 16.2809 17.7032 0.9849
RSS 1.3673 1.7407 22.5558 24.7149 0.9757 1.6727 2.1425 24.6466 27.6511 0.9838
AR 1.5913 1.9876 26.2524 28.2209 0.9595 1.6378 2.0703 24.1312 26.7191 0.9644

REPTree 0.2095 0.2828 3.4565 4.0159 0.9992 0.2806 0.3659 4.1344 4.7224 0.9989

As seen in Figure 6, time-series plots representing observed and modeled ETo data
and scattered plots showing the whole testing dataset of observed vs. estimated ETo values
were developed for the LR, RSS, AR, and REPTree models throughout the testing phase.
The regression line, as shown in the scatter plot, was used for the assessment of model
performance. The R2 value was assessed to be 0.9867 for the LR model, 0.9838 for the
RSS model, 0.9644 for the AR model, and 0.9989 for the REPTree model. All the models
(except for REPTree) underestimated the ETo prediction, as the models were observed
located below the best-fit 1:1 line. Nevertheless, the REPtree model was observed located
nearest to the best-fit 1:1 line. In coherence to the inference made in the previous section,
the model REPTree here, too, was implied as the best model for estimating the daily ETo for
the present study site. For this, an additional sample time-series and scatter plot is shown
in Figure 6e, indicating a higher correlation (similar to the entire time-series and scatter
plot of REPTree) for the most recent study year.
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A radar chart for demonstrating the best performance indicators (i.e., best-calculated
values for MAE, RMSE, RAE, RRSE, and r) of LR, RSS, AR, and REPTree models observed
during the testing phase is shown in Figure 7. This allowed for better diagnostic assessment
of the efficiency of all models. Results indicated that the model REPTree has lower values
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for MAE, RMSE, RAE, and RRSE and higher values for r as compared to the other models.
It can be inferred that performance-wise, the model REPTree outperformed other models.
Furthermore, a comparative analysis was conducted between the aforesaid models using
the Taylor diagram, as shown in Figure 8. This exercise was based on the magnitudes of
standard deviation (SD), r, and RMSE obtained during the testing phase. Findings indicated
that the model REPTree was found to be the closest to the observed location, while the
model AR was found to be the furthest. Given this evidence, the present study summarized
that the model AR is the worst-performing model, whereas the model REPTree is the
best-performing model among the selected models.
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5. Discussion

The present study attempted to test various ML algorithms and their accuracy in
predicting the ETo variable. Considering the findings of this study, it can be broadly inferred
that all the four ML algorithm-based models, i.e., LR, RSS, AR, and REPTree, developed
in this study more or less demonstrated their predictive capabilities in estimating ETo.
Through a comparative analysis, this study suggested REPTree as the most suitable model
for advancing further investigation in the study area. The model REPTree was observed
to outclass other models based on satisfying all criteria for performance indicators, as
the indicators obtained the most-appropriate values (lowest for MAE, RMSE, RAE, and
RRSE and highest for r). These results were further supported by the findings from
time-series and scattered plots (refer to Figure 6) as well as from radar chart (Figure 7)
and Taylor diagram (Figure 8) developed for comparing the four ML algorithms. They
comprehensively indicated REPTree as the best model for the prediction of ETo, followed
by LR, while the model AR was comparatively found to be the worst-performing model
for the present study site.

Amidst the ongoing research on estimating reference evapotranspiration, it is imper-
ative to highlight here that the point of novelty for this research lies in using the model
REPTree for estimating and predicting ETo. In addition, the present study determined
REPTree as the most suitable model among the models developed to estimate the same.
Both these inferences are against the ongoing trend, where researchers have primarily
focused on estimating ETo using other machine learning algorithms. Many studies in
recent times have been conducted to estimate hydrologic variables such as pan evaporation,
evapotranspiration, etc., from across the globe using ML algorithms. Sattari et al. [52] suc-
cessfully evaluated the deep learning-based gated recurrent units (GRUs) and tree-based
models for estimating ETo as a case study in Turkey. They found GRUs as the best- and
REPTree as the worst-performing model. Kushwaha et al. [53] examined the performance
of the four meta-heuristic algorithms, i.e., support vector machine (SVM), random tree
(RT), REPTree, and RSS, for simulating daily pan evaporation at two different locations in
north India and observed the greater suitability of the model SVM for prediction compared
to the others. Nhu et al. [54] predicted the daily water level of Zrebar Lake in Iran using
M5P, random forest (RF), random tree (RT), and REPTree algorithms, wherein their results
indicated a good prediction capability for all the developed models other than REPTree.
Furthermore, if the literature focusing ETo estimation using ML algorithms is only consid-
ered, no recent studies are found to employ the model REPTree. For example, Salam and
Islam [55] evaluated the potential of RT, bagging, and RS ensemble learning algorithms
for ETo prediction in Bangladesh. In that, their study found the model RT to outperform
other models while estimating daily ETo. Tikhamarine et al. [56] explored the potential
of support vector regression (SVR) integrated with grey wolf optimizer (SVR-GWO) for
ETo estimation in the north of Algeria and concluded its suitability in the study stations.
Kisi et al. [57] developed a radial-basis M5 model tree (RM5Tree) for ETo prediction in
Turkey and evaluated it better than the traditional M5 model tree. Bai et al. [58] evalu-
ated four ensemble ET models (EEMs) that use different ML classifiers such as K-nearest
neighbors, RF, SVM, and multi-layer perception neural network (MLP). Their study found
that ML-based EEMs outperformed individual ET and conventional EEMs. Granata [20]
assessed the M5P tree, bagging, RF, and SVR for how precise an ETo prediction could be
obtained in central Florida by developing models in a varying combination of influencing
variables. Mehdizadeh et al. [9] successfully evaluated gene expression programming
(GEP), SVM, and multivariate adaptive regression splines (MARS) in estimating ETo in Iran.
Their results shown that the MARS had the best performance in the weather-data-based
scenarios. Ferreira et al. [10] estimated daily ETo in Brazil using ANN and SVM. They
found that the ANN and SVM models outperformed the empirical equations studied.
Fan et al. [19] successfully evaluated random forest (RF), M5Tree, gradient boosting de-
cision tree (GBDT), and extreme gradient boosting (XGBoost) for estimating daily ETo in
China. According to the results, the ELM and SVM models achieved the best combination
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of prediction accuracy and stability. The XGBoost and GBDT models performed similarly
to the SVM and ELM models in terms of accuracy and stability but with significantly
lower computation time. Bellido-Jiménez et al. [59] successfully evaluated MLP, gener-
alized regression neural network (GRNN), extreme learning machine (ELM), SVM, RF,
and XGBoost for estimating daily ETo in Spain. Their findings revealed that GRNN and
ELM had the lowest computation time, while MLP and ELM were generally the models
with the better performances. In general, all the aforementioned studies jointly concluded
through their various model assessments that, other than REPTree, the entire presently
developed model in this study was observed to be one of the suitable models among many
machine-learning-algorithm-based models for estimating hydrologic variables, especially
the ETo.

To summarize, the present study finds its significance in ascertaining studies related
to coupling hydrological investigations with climate change vulnerabilities in view of
employing the REPTree model. Given the rapid land-use transformations, especially the
agricultural land cover over the Earth, alongside aggravating extreme climatic events such
as recurring floods [60,61] immediately followed by chronic droughts [62,63], the 21st
century’s climatological research demands improved understanding of various hydrologic
variables, such as for the ETo investigated in the present study. Hence, knowledge of
ML algorithms becomes paramount, especially when applying certain algorithms; for
example, REPTree is limited while estimating ETo. Such a study allows estimating the
future magnitudes, thereby informing the concerned authorities and administrators to
orient their policymaking towards more specific climate-resilient pathways.

6. Conclusions

This research verifies the ability of different techniques of machine learning, such as
linear regression (LR), random subspace (RSS), additive regression (AR), and reduced error
pruning tree (REPTree) models, to estimate the long-series daily reference evapotranspi-
ration (ETo) for four sites in Egypt (Al Buhayrah, Alexandria, Ismailiyah, and Minufiyah
governorates). In order to achieve this, daily climate data variables (including minimum
and maximum temperatures, humidity, wind speed, vapor pressure deficit, and solar
radiation) for the studied regions over 36 years from 1979 to 2014 were collected from the
National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis
(CFSR). In addition, the best subset regression analysis was used to determine the best input
combinations of meteorological parameters for calculating the ETo. Sensitivity analysis
was carried out and included all input variables in determining the most influential input
variables to predict the ETo with greater accuracy. The following findings were obtained:

- The results showed that the best input combination for the ETo model was determined
as four input combinations (Tmax/Tmin/RH/SR) with high R2 (0.967) and high Adj-R2

(0.967) and MSE of 1.727;
- The most sensitive input variables to predict the ETo with greater accuracy were Tmax,

Tmin, and SR;
- The REPTree model generated the best results with the highest value for r (0.99) and

the lowest values for MAE (0.21), RMSE (0.28), RAE (3.45%), and RRSE (4.01%) during
the training phase; it also generated the highest value for r (0.99) and the lowest values
for MAE (0.28), RMSE (0.37), RAE (4.13%), and RRSE during the testing phase (4.72%);

- The AR model generated the worst results with R = 0.9595, MAE = 1.5914, RMSE = 1.9876,
RAE = 26.25%, and RRSE = 28.22% during the training phase.

The study found that all four models demonstrated their predictive capabilities, with
REPTree emerging as the most suitable model for further investigation. This conclusion is
significant, as it diverges from the current trend of using other machine learning algorithms
to estimate ETo. The study’s novelty lies in using REPTree to estimate and predict ETo, as
this algorithm has not been commonly used for this purpose. This finding is important
given the urgent need to better understand hydrological variables in light of climate change
and land-use transformations. The study underscores the importance of machine learning
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algorithms in predicting ETo and their potential for estimating future magnitudes to guide
climate-resilient policymaking. The study’s results have broader implications beyond ETo
prediction, as machine learning algorithms have been increasingly employed in hydrologic
research. The study contributes to the growing literature on using machine learning
algorithms to estimate hydrologic variables such as evapotranspiration, pan evaporation,
and water levels. The study’s findings suggest that researchers should consider using
REPTree rather than other commonly used algorithms for ETo prediction. In summary,
this study highlights the significance of using REPTree in hydrologic research and its
potential for predicting ETo. The study’s results underscore the importance of machine
learning algorithms in guiding climate-resilient policymaking in the face of ongoing climate
change and land-use transformations. This research could be useful for managing the water
resources in the study area.
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