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Abstract: A discharge uncertainty envelope is presented that provides an observation error model
for data assimilation (DA) using discharge observations derived from measurement of stage using a
rating curve. It uniquely represents the rating curve representation error, which is due to scale and
process incompatibility between the rating curve hydrodynamic model and “true” discharge, within
the observation error model. Ensemble methods, specifically, the iterative ensemble smoother (IES)
algorithms in PEST++, provide the DA framework for this observation error model. The purpose of
the uncertainty envelope is to describe prior observation uncertainty for ensemble methods of DA.
Envelope implementation goals are (1) limiting the spread of the envelope to avoid conditioning to
extreme parameter values and producing posterior parameter distributions with increased variance,
and (2) incorporating a representative degree of observation uncertainty to avoid overfitting, which
will introduce bias into posterior parameter estimates and predicted model outcomes. The expected
uncertainty envelope is flow regime dependent and is delineated using stochastic, statistical methods
before undertaking history matching with IES. Analysis of the goodness-of-fit between stochastically
estimated “true” discharge and observed discharge provides criteria for the selection of best-fit
parameter ensembles from IES results.

Keywords: data assimilation; ensemble methods; uncertainty analysis; PEST++; bias–variance trade-
off; observation error model

1. Introduction

Environmental models are constructed to test hypotheses and make predictions in sup-
port of resource management. Simulation results are typically accompanied by significant
uncertainty that must be accounted for during decision making and resource allocation.
This inherent uncertainty has many sources, but herein we focus on two widely recognized
sources of uncertainty: parameter variability and historical observations of system state.

Parameters are model input quantities, which are specified or predefined during
model development. Parameter valuation uncertainty is addressed through the description
of parameter value likelihood with probability distributions. Observations are measured
quantities. From the environmental model construction perspective, observations provide
“target” values used to assess model skill and capability with the goal of producing a
model that simulates or predicts values similar to observed values, i.e., history matching,
when the model is driven by parameter values that describe the current system state.
The inherent underlying assumption promoting environmental model construction is that
a model, with demonstrated history matching skill, will provide predictive capability when
“new” forcing is applied that represents an unobserved scenario used to guide resource
management decision making.

Data assimilation (DA) is a collection of methods and tools for the optimal combination
of information from numerical model simulations with observations to obtain the “best”
description of a dynamical system and the uncertainty contained within the optimal
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system description. It inherently accounts for parameter and observation uncertainty. In
DA, the numerical model provides a forecast which is adjusted to account for or better
represent observations.

DA, as an umbrella categorization, covers a variety of methods and techniques that are
derived from Bayes’ theorem [1]. Contained under the DA umbrella are inverse approaches
to environmental model calibration, which seek to vary input parameter values to provide
the best fit between simulated and observed values, including “calibration-constrained
uncertainty analyses” provided by the PEST suite of utilities [2–4].

Bayes’ theorem, see Equation (1), provides the fundamental starting point shared by
all DA methodologies [1]. Equation (1) quantifies the model parameter uncertainty, where
k represents the model parameters, observations or targets used in calibration are h, P() sig-
nifies a probability distribution, P(k) is the prior parameter probability distribution, P(h|k)
is the likelihood function, and P(k|h) is the posterior parameter probability distribution.
The posterior parameter probability distribution P(k|h) is the probability distribution of
model parameters conditioned on observations [3]:

P(k|h) = P(h|k)P(k) (1)

Modern Bayesian inverse techniques for hydrologic model calibration are an example
of the use of DA methods in hydrology. The goal of the inversion approach is the selection
of parameter values to generate the best fit between simulated values and observations,
where the best-fit is quantitatively evaluated using goodness-of-fit metrics. In the inverse
problem context, the observed values are “target” values. Assuming that the initial ranges
of parameter values in the inverse problem are constrained by professional knowledge,
the inverse problem approach to environmental model formulation seeks to adjust parame-
ters in ways that are in harmony with expert judgment and improve history matching. This
yields an approximation to the posterior parameter ensemble in a Bayesian sense, P(k|h) in
Equation (1), and explains why “calibration-constrained uncertainty analysis [4]” is a form
of DA.

In DA implementation, observations, k in Equation (1), include an observation er-
ror model that contains “measurement error”, or “observation error” that is propagated
through the assimilation to the posterior parameter probability distribution, P(k|h). “Obser-
vation error” always includes instrument error and may include representation error, which
accounts for different representations by the measurements and the numerical model [1].
Representation errors in numerical weather prediction and oceanographic implementations
are typically errors due to scales and physical processes that are unresolved by either the
numerical model or the observations [1,5]. Hereafter, representation error attributed to
scale or process incompatibility between the numerical forecast model and observations is
labeled “numerical representation error”.

This paper presents a discharge uncertainty envelope designed to provide an observa-
tion error model in DA implementations that use river discharge observations calculated
via a rating curve from an observed stage. For this type of observation, the rating curve
provides an additional source of representation error from scale and process incompatibility
between the rating curve hydrodynamic model and “true” discharge. Hereafter, this form of
representation error is termed “rating curve representation error”. The goal of the discharge
uncertainty envelope is to optimize the bias–variance trade-off impacts to the posterior
parameter probability distribution, P(k|h) in Equation (1). Figure 1 graphically explains
the bias–variance trade-off and the contribution of the discharge uncertainty envelope to a
robust DA implementation.



Water 2023, 15, 1133 3 of 23

Observed
Observation Uncertainty
Posterior
Prior

Ta
rg

et
 V

al
ue

TimeParameter Value

Pr
ob

ab
ili

ty
 D

en
si

ty

b)

Time

Ta
rg

et
 V

al
ue

Prior
Posterior
Observed

Parameter Value

Pr
ob

ab
ili

ty
 D

en
si

ty

a)

      
  Ensemble Methods for

         Data Assimilation (DA)

      
  Ensemble Methods for

 DA w/ Observation Uncertainty

Figure 1. Conceptual schematic of observation error models in data assimilation (DA) and optimizing
the bias–variance trade-off. The prior parameter distribution, “Prior”, is estimated using professional
judgment with the goal of uncovering a posterior parameter distribution, “Posterior”, that produces
numerical model forecasts, which are congruent with observations and that has minimum variance
and bias. Panel (a) represents the case of no observation error model in DA, where bias is a concern.
Here, the range of target values for each history matching interval is narrower than the expected
measurement and representation error, causing the inverse solution to overfit to a narrow range of
relatively unlikely parameter values as shown on the left-side of panel (a). Variance denotes the
spread of parameter values in the posterior. The goal of DA is to use observations to constrain,
or narrow, the posterior relative to the prior. In panel (b), the introduction of observation uncertainty
and the use of an observation error model promote a posterior with an expected value within
the range of relatively likely prior values from professional judgment and with reduced variance,
and thus reduced uncertainty, relative to the prior. Note that a single parameter and target are shown
for illustrative purposes. Ensemble methods for DA work with hundreds to millions of parameters
and hundreds to thousands of targets simultaneously.

For implementation, the uncertainty envelope requires a DA framework that provides
for the propagation of prior observation uncertainty through the analysis to posterior
parameter uncertainty and for the adjustment of constraint on possible posterior param-
eter values to reflect the prior observation uncertainty. Ensemble methods, which are a
type of DA implementation, provide an explicit and natural approach to accommodate
a wide range of observation uncertainty representations. Consequently, the discharge
uncertainty envelope is specifically designed for use with the iterative ensemble smoother
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(iES) algorithm [6,7] within the PEST++ suite of DA tools, hereafter PESTPP-IES, as the data
assimilation engine because PESTPP-IES prior-data conflict capabilities address numerical
representation error [3,7]. The discharge uncertainty envelope addresses measurement
error and rating curve representation error, and the combination of PESTPP-IES and the
uncertainty envelope generates a DA implementation with a complete observation error
model accounting for measurement, numerical representation, and rating curve representa-
tion error.

2. Data and Methods

The primary data sets for this study are observations of river discharge. These data
are analyzed using flow duration curves (FDCs). A stochastic simulation approach is then
employed to generate the expected uncertainty envelope.

2.1. Discharge Observations

Data sets for this study are continuous, daily discharge observations from a collection
of stream gauging stations in central Texas (TX). Figure 2 displays study site location
and gauging station configuration across the study area. Table 1 provides descriptive
information for the 16 gauging stations shown on Figure 2. These data sets are publicly
available online [8,9].

Stream Gauging Stations

Subbasins

Legend

Figure 2. Study site location, stream gauging station configuration, and sub-basins. The study site is
between San Antonio and Austin in south-central Texas (TX). 16 stream gauging stations are shown
on the Blanco River, San Marcos River, Onion Creek, Bear Creek, and Barton Creek.
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Data sets were acquired as daily observations. Daily discharge units are listed as cubic
meters per second, days (m3/s-days). In some situations in this analysis, the monthly
averaged discharge is required. The monthly averaged discharge is the average across the
calendar month of the daily discharge observations and is presented with units of cubic
meters per second, months (m3/s-months).

Several of these stream-gauging stations provide unusual data sets whose records
show a sharp decrease in discharge moving downstream for medium to low flows and
identify that there are strong, spatially localized “losing” conditions. Discharge decreases
in these locations because of communication with the Balcones Fault Zone (BFZ) Edwards
Aquifer, which provides a significant source of water for the city of San Antonio and the
San Antonio–Austin corridor. A subset of the stream gauging stations in this study is used
to estimate recharge for the BFZ Edwards Aquifer [10,11].

All of the stations in the study use a water stage recorder method of discharge calcula-
tion. Stage is the normal depth of the water at the measurement location. A stage–discharge
rating curve is developed for the site and used to calculate or estimate discharge given
the observed stage. The rating curve is traditionally developed using discrete, concurrent
measurements of stage and discharge [12]. A combination of a water stage measurement
with a rating curve is often used to estimate discharge because discharge is difficult to
measure continuously while multiple methods for continuous measurement of stage are
available [13].

Multiple sources of uncertainty affect the rating curve-based stream discharge calcu-
lated from a stage measurement. However, there are two primary uncertainty components:
(1) measurement error in the concurrent stage and discharge measurements employed
to derive the rating curve and (2) model error from the limitations of the stage to dis-
charge transformation provided by the rating curve. Model error includes the necessity
of extrapolation to stages and discharges that are both higher and lower than those avail-
able in the underlying collection of concurrent stage and discharge measurements and
includes theoretical, physics-based limitations on the correlation between normal depth
and discharge [13,14].

For analysis of discharge data sets in this study, three flow regime-based discharge
uncertainty estimates are used that are provided by [14] as typical values: (1) ±50–100% for
low flows, (2) ±10–20% for medium or high (in-bank) flows, and (3) ±40% for out of bank
flows. These three flow regimes explicitly represent the flow regime-dependent uncertainty
associated with the stage–discharge estimation approaches.

2.2. Estimation of Flow Regime from Flow Duration Curves (FDCs)

A FDC depicts the relationship between magnitude and frequency of discharge for a
particular river basin and provides an estimate of the amount of time that a given discharge
has been matched or exceeded during the historical record. The FDC is the complement of
the cumulative distribution function (CDF) of stream discharge for the selected analysis
interval (e.g., daily, monthly, or annual). It provides a comprehensive, graphical description
of historical variability in the stream discharge [15].

In this study, daily FDCs are used as the basis for the identification of the flow regime.
Ref. [16] provides a review of the low flow hydrology, summarizes low flow measures and
indices, and describes methods for index estimation or calculation from discharge time
series. Discharges within the range of 70–99% time exceedence, as extracted from the FDC,
are typically used as design low flows; these flows are important for in-stream ecological
support and are of primary interest for water managers. The mean annual runoff (MAR)
provides an upper bound or threshold to the low flow regime; MAR is the mean of the
observed annual total discharge. The long-term mean daily discharge (MDF) is obtained
by dividing MAR by the number of seconds in a year [16]. For this study site, MDF is used
to delineate the low flow boundary because many of the discharge data sets have zero
discharge at the 70% time exceedance threshold in the daily FDC.
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Table 1. Stream gauging station metadata.

Gauge Id Agency River/Stream Description Watershed Area
(km2) Gauge Type WY 4 2021 Data

Quality

8155200 USGS 1 Barton Creek Barton Ck at SH 71 nr Oak Hill, TX 232.3 water stage recorder good

8158700 USGS 1 Onion Creek Onion Ck nr Driftwood, TX 321.2 water stage recorder fair

8158810 USGS 1 Bear Creek Bear Creek below Farm to Market Road 1826 near Driftwood, TX 31.6 water stage recorder fair

8158813 USGS 1 Bear Creek Bear Creek at Spillar Ranch Road nr Manchaca, TX 52.8 water stage recorder fair

8158827 USGS 1 Onion Creek Onion Creek at Twin Creeks Road near Manchaca, TX 468.8 water stage recorder fair

8170500 USGS 1 San Marcos River San Marcos Rv at San Marcos, TX (San Marcos Springs) 126.7 water stage and water
velocity recorders good

8170890 USGS 1 Little Blanco River Little Blanco Rv at FM 32 nr Fischer, TX 130.0 water stage recorder fair

8170950 USGS 1 Blanco River Blanco Rv at Fischer Store Rd nr Fischer, TX 696.7 water stage recorder fair

8170990 USGS 1 Cypress Creek Jacobs Well Spg nr Wimberley, TX NA water stage and water
velocity recorders poor

8171000 USGS 1 Blanco River Blanco Rv at Wimberley, TX 919.4 water stage recorder and
crest stage gauge fair

8171290 USGS 1 Blanco River Blanco Rv at Halifax Rch nr Kyle, TX 1012.7 water stage recorder fair

8171300 USGS 1 Blanco River Blanco Rv nr Kyle, TX 1067.1 water stage recorder fair

8171350 USGS 1 Blanco River Blanco Rv at San Marcos, TX 1129.2 water stage recorder fair

8171400 USGS 1 San Marcos River San Marcos Rv nr Martindale, TX 1416.7 water stage recorder fair

7817 LCRA 2 Blanco River Blanco River at Blanco, BRBT2 283.6 water stage recorder poor 3

4595 LCRA 2 Onion Creek Onion Creek at Buda, BDUT2 431.8 water stage recorder poor 3

1 USGS is the United States Geological Survey [9]. https://waterdata.usgs.gov/tx/nwis/rt (accessed on 13 September 2022), 2 LCRA is the Lower Colorado River Authority [8].
https://hydromet.lcra.org/ (accessed on 13 September 2022), 3 LCRA station data are demarcated as poor because they do not publish water year summary reports, 4 WY stands for
water year.

https://waterdata.usgs.gov/tx/nwis/rt
https://hydromet.lcra.org/
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Ref. [17] presents a process-based diagnostic approach to model evaluation. As part
of signature diagnostic measures related to vertical soil moisture redistribution, they par-
tition an FDC into three different segments: (1) high-flow segment demarcated by 0–2%
flow exceedance probabilities on the FDC; (2) mid-segment with 2–70% flow exceedance
probabilities; and (3) low-flow segment with the typical 70–100% flow exceedance proba-
bilities used for design bases. In this study, we assume that 0.02 (or 2%) flow exceedance
probability provides the threshold between out-of-bank high flows and in-bank high flows.

2.3. Stochastic Demarcation of Discharge Uncertainty Envelope

A Monte Carlo model is employed to generate realizations of “synthetic” discharge
from the time series provided for each gauging station. The synthetic time series incorpo-
rates flow regime-dependent uncertainty to provide realizations of what the actual stream
discharge could be given expectations for error in the calculated discharge record from
the gauging station. Flow regime dependent uncertainty of: (1) ±50–100% for low flows,
(2) ±10–20% for medium or high (in-bank) flows, and (3) ±40% for out of bank flows [14]
is used to derive synthetic discharge. To implement the flow regime delineation, two
discharge thresholds are required: (1) out-of-bank high flow and (2) low flow. The 2%
exceedance threshold on the FDC is used for the out-of-bank threshold, and the MDF is
used for the low flow threshold as discussed in Section 2.2.

Following [18], the synthetic discharge time series, xi, is divided into a deterministic
part, di, and a random component, ei, of the generating scheme shown in Equation (2),
where the subscript i denotes the interval of the time series:

xi = di + ei (2)

The deterministic portions, di, are the discharge observations from the gauging sta-
tion. The random components, ei, are estimated stochastically from the flow regime for
each di and expected error percentage corresponding to the flow regime, Pf , as shown in
Equation (3). Pf values are selected from ±50–100% for low flows, ±10–20% for medium
or high (in-bank) flows, and ±40% for out-of-bank flows [14]. The largest value in the
error range is used for Pf ; consequently, 100% is used for low flows and 20% for medium
flows. di values below the low flow threshold were also adjusted to the low flow threshold
discharge for use in Equation (3). Unaltered di values are used in Equation (3) for medium
and high flow regimes:

ei = ξi ×
(

Pf di

)
(3)

The stochastic part of the implementation comes from the random sampling variate, ξi,
which is sampled for each time interval from either a standard normal distribution (µ = 0.0
and σ = 1.0) representing unbiased measurement error or a shifted normal distribution
(µ = 1.0 and σ =

√
2) representing measurement and rating curve representation error.

µ is the population mean, and σ is the population standard deviation. Rating curve
representation error denotes the difference between the discharge estimated from the
rating-curve model and “true” discharge.

In the application of Equation (3), the form of the normal distribution for the random
sampling variate is selected based on the water year (WY) 2021 data quality assessment,
which is listed in Table 1. If the gauging station was assigned a data quality assessment
of “fair” or “poor”, the biased measurement and representation error descriptor is used
for that station. The unbiased measurement error descriptor is used for stations with data
quality assessed as “good”.

One thousand synthetic discharge time series are calculated with Equation (2) for each
gauge. Each of these time series is a Monte Carlo realization derived from the application of
Equations (2) and (3). The expected uncertainty envelope for each time series interval, i,
and each gauging station is estimated using the interval root mean square error (RMSE)
between synthetic realizations, xi,r, and the actual gauge data set, di, using Equation (4). r
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represents the realization index, which goes from 1, . . . , R where R = 1000 or the number
of realizations. RMSEi provides a standard error estimate for each history matching time, i,
in the dynamic DA analysis:

RMSEi =

√
∑R

r=1(xi,r − di)
2

R
(4)

Goodness-of-Fit Metrics

Three goodness-of-fit metrics are used to compare the synthetic time series to the
gauge record: (1) Nash–Sutcliffe efficiency (NSE) [19], (2) Kling–Gupta efficiency (KGE) [20],
and (3) sum of NSE and KGE (ΣNK). Metrics are calculated for each synthetic time-series
realization, r. The NSE, defined in Equation (5), overcomes two common issues with
correlation-based, goodness-of-fit metrics, which are sensitivity to extreme values (outliers)
and lack of sensitivity to additive and proportional differences between model predictions
and observations [19]:

NSEr = 1.0− ∑N
i=1(xi,r − di)

2

∑N
i=1(xi,r − x̄r)

2 (5)

The KGE metric, see Equation (6), was developed through the decomposition of
the NSE into the linear correlation coefficient between observed and simulated values,
ρ, a measure of relative variability in the simulated and observed values, α, and a bias
component, β [20]. Both NSE and KGE range from −∞ to 1.0 with 1.0 representing the
“perfect” match:

KGEr = 1−
√
(ρr − 1)2 + (αr − 1)2 + (βr − 1)2 (6)

ρr =
∑N

i=1
(
(xi,r − x̄r)

(
di − d̄

))
/N

σdσxr

(7)

αr =
σd
σxr

(8)

βr =
µd
µxr

(9)

The sum of NSE and KGE (ΣNK), see Equation (10), ranges from −∞ to 2.0 with 2.0
representing the “perfect” match. ΣNK provides a simple means to leverage the value of
NSE and KGE in a single metric:

ΣNK,r = NSEr + KGEr (10)

2.4. Uncertainty Analysis with Ensemble Methods

An expected uncertainty envelope for stream gauge discharge data sets is used to
derive an observation error model that portrays measurement error and rating curve
representation error. This enhanced observation error model is only useful in history
matching (i.e., DA) approaches that propagate observation uncertainty into the posterior
parameter probability distribution, P(k|h) in Equation (1).

The approach described in this paper is designed specifically for use with the PEST++
Iterative Ensemble Smoother (iES) toolset, PESTPP-IES [3,7,21]. PESTPP-IES simultaneously
adjusts an ensemble of parameter realizations and uses an ensemble of residuals to seek
an approximate posterior parameter ensemble. Residuals are the differences between
observations, or targets, and simulated values. PESTPP-IES was selected for the DA
framework because it provides for explicit incorporation of observation error models into
the calibration through specification of a standard error estimate for each history-matching
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time, it makes no assumptions regarding model linearity in the sampling of the posterior
parameter probability distribution and is thus better suited to DA using watershed and
surface water numerical models than the other tools in the PEST++ suite, and it (and
ensemble methods in general) is relatively efficient, computationally, with large numbers
of input parameters [7].

PEST++ tools, including PESTPP-IES, seek to minimize an objective function (Φ) to
identify the the posterior parameter distribution that produces best fit, history matching. Φ
is the sum of squared, weighted residuals. Because PESTPP-IES works with ensembles of
parameters, it produces ensembles of simulated values and residuals. The user must then
select the posterior parameter probability distributions, P(k|h) in Equation (1), by choosing
one or more parameter ensembles that provide best-fit or equally best-fit simulated values.
A single ensemble of parameters could be selected that produces the minimum Φ value.
However, parameter and observation uncertainty is typically significant, and a collection of
parameter ensembles will often provide the appropriate description of posterior parameter
uncertainty. When selecting a collection of best-fit parameter ensembles, a Φ threshold can
be used to identify collection members; in this case, parameter ensembles that produce Φ
values less than or equal to the threshold are the collection members [3,7,21].

PESTPP-IES provides a “base realization” for conceptual checking and evaluation of
the calibration process. The “base realization” uses parameters directly from the input
specifications, and not subspace parameters obtained via singular value decomposition
(SVD), and pairs these parameters with unadjusted observed values for targets. The “base
realization” can also be employed to facilitate the selection of a Φ threshold [3,7,21].

Variability between parameter fields that sample the posterior parameter probability
distribution, P(k|h) in Equation (1), comes from three sources. The first is prior parameter
uncertainty, described with P(k). The second is insufficient information within the observed
data set of important outcomes to significantly reduce parameter uncertainty. In other
words, available data may be insufficient to constrain the range of feasible parameter values.
The third source comes from observation error [3].

The concern with discharge data sets derived from stage observations is that these
calculated values are contaminated by measurement error, derived from imperfect stage–
discharge estimation, and also representation error, derived from using a rating curve
which provides an imperfect hydrodynamics model. Rating curve representation error is
an extra representation error component for calibration within a DA framework in addition
to that expected from numerical representation error.

PESTPP-IES employs the realizations of random parameter fields and also realizations
of additive observation uncertainty (i.e., added to observed values) to explore posterior
parameter uncertainty and thus the predictive uncertainty of the model, arising from both
parameter uncertainty and observation uncertainty. Using observation uncertainty (or the
observation error model), PESTPP-IES creates a slightly different “target data set” for use
in each adjustment of each random parameter field during model calibration. The altered
target data set is created through the addition of a realization of observation uncertainties
to observed values [3]. The generation of the targets plus additive uncertainties realiza-
tions is simplified if the shape of the error distribution that generates the uncertainties
is known; consequently, most DA implementations use Gaussian additive observation
model errors [1,3], which results in a formulation similar to Equation (3), except with a
standard deviation value times the standard normal variate. In this study, the RMSEi,
from Equation (4) in Section 2.3, is provided to PESTPP-IES as this standard deviation value
for each history matching time, i.

These target realizations, observed discharge values combined with additive obser-
vation uncertainty, allow PESTPP-IES to identify and examine prior-data conflict [22–24].
Prior-data conflict occurs where simulated targets, produced from the prior parameter
ensemble, do not agree in a statistical sense with the observed values plus observation
uncertainty. Agreement is measured, within PESTPP-IES, by the statistical distance be-
tween the ensemble of simulated outputs and the ensemble of target realizations. Lack of
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agreement implies that extreme parameter values or extreme parameter combinations will
be needed to reproduce the conflicted observation values. In this case, extreme parameter
estimates can also be referred to as “biased” estimates; the continuation of parameter
adjustments in the presence of prior-data conflict will generate parameter bias and forecast
bias [3]. The identification and elimination of prior-data conflict provide adjustments
that address representation error related to the numerical model’s ability to simulate the
observations. When prior-data conflicts are removed, numerical representation error is not
propagated into posterior parameter uncertainty.

2.5. Numerical Model Employed for Data Assimilation (DA)

DA seeks to optimally combine information from numerical models with observations.
The expected discharge uncertainty envelope is designed to be used as the observation
error model within the PESTPP-IES, DA framework. The hydrological model used with
PESTPP-IES in the case study implementation, illustrating the use and advantages of the
observation uncertainty envelope, is the Hydrological Simulation Program FORTRAN
(HSPF) [25,26].

HSPF is a collection of routines that can simulate the hydrologic, and associated water
quality, processes on pervious and impervious land surfaces and in streams and well-mixed
impoundments. It provides a comprehensive package for the simulation of watershed
hydrology and surface water-related considerations at the watershed scale. HSPF was
originally developed as the Stanford Watershed Model in the 1960s [25].

Conceptually, HSPF utilizes the constructs of hydrologic response units (HRUs) and
well-mixed reservoirs to create a network of ordinary differential equations (ODEs) and
empirical relationships. This network is an example of hydrologic routing [27] and can
be solved in watershed routing order, i.e., upstream to downstream because the required
discharge inflow information is obtained from only the upstream routing unit. Physical pro-
cess representation in HSPF is much less advanced and accurate numerically relative to the
models typically used in weather and oceanographic DA implementations. Consequently,
the numerical representation error for HSPF to simulate stream discharge is expected to be
more significant than the numerical representation error components typically encountered
in weather and oceanographic DA implementations.

HSPF is applied to represent watershed processes across the study site, identified
in Figure 2. In the PESTPP-IES analysis, 948 parameters are varied, which characterize
pervious and impervious watershed properties and discharge from stream segments (i.e.,
FTABLE parameterization). In total, 2411 targets are used in the objective function, Φ; of
these, 791 targets are monthly averaged discharge observed at the stream gauging stations
listed on Table 1. The RMSEi, generated as described in Section 2.3, provides the specified
standard error for each of these 791 discharge targets. HSPF simulates 1 January 2015
through 31 December 2019 with a daily time step. The first six simulation months are used
as a “burn-in” period and do not contribute to the objective function calculation.

3. Results

Two related sets of results were obtained: (1) observation uncertainty for discharge
targets and (2) parameter uncertainty analysis accounting for parameter and observation
uncertainty. Expected uncertainty envelopes provide the discharge observation error model
and are developed independently of PESTPP-IES using the methods described in Section 2.3.
Observation uncertainty is provided to PESTPP-IES as a specification, and PESTPP-IES
considers observation uncertainty in conjunction with parameter uncertainty to constrain
the range of optimal parameter values, as discussed in Section 2.4.

3.1. Observation Uncertainties Estimated with Expected Uncertainty Envelopes

FDCs provide the means to delineate flow regime for discharge observation uncer-
tainty analysis. A FDC was created for each gauging station listed in Table 1 using daily
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averaged discharge observations. Flow regime threshold results and summary statistics of
the discharge data sets are presented in Table 2.

Figure 3 displays FDCs from two Blanco River gauging stations, 8171000 and 8171300.
8171000 is on the upstream side of the BFZ Edwards Aquifer Recharge Zone, and 8171300
is just downstream of the Recharge Zone. Although the watershed area of 8171300 is
about 148 km2 larger than that of 8171000, the 70th percentile discharge, on Figure 3 and in
Table 2, for 8171300 is 0.03 m3/s-days, while the corresponding discharge for 8171000 is
about 0.85 m3/s-days. Mid-range high to high flows (i.e., discharges greater than the 20th
percentile discharge) are approximately equal for 8171000 and 8171300.
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Figure 3. Flow duration curves (FDCs) for two Blanco River gauging stations on opposite ends
of the BFZ Edwards Aquifer Recharge Zone: 8171300 is at the downstream edge of the Recharge
Zone, and 8171000 is at the upstream edge. The low flow threshold for this study is the mean daily
flow (MDF) in Table 2, and MDF for these two gauging stations is approximately equal. Note that
discharge at 8171300 is generally less than discharge at 8171000 for values less than the MDF.

Figure 4 shows FDCs from two Onion Creek gauging stations, 8158700 and 4595.
These two stations are on opposite sides of the BFZ Edwards Aquifer Recharge Zone. For
4595, it has an approximately 111 km2 greater contributing area than 8158700, but the 70th
percentile discharge, in Figure 4 and Table 2, for 4595 is zero and that for 8158700 is about
0.05 m3/s-days. The daily FDCs for 8158700 and 4595 only have similar shapes above the
2nd percentile threshold for out-of-bank high flows.

The MDF value in Table 2 provides the low flow threshold for each gauging station,
and the 2nd percentile provides the out-of-bank high flow threshold. 1000 synthetic
discharge time series were created from the analysis of the gauging station record using
Equation (2). The RMSEi calculated from the comparison of synthetic discharge series to
observed series from the gauging station provides the expected uncertainty for each time
interval. The series of expected uncertainties creates the expected uncertainty envelope for
each gauge that spans all time intervals, and the expected uncertainty envelope provides
an estimate of dynamic observation uncertainty.

For NSE, Equation (5), KGE, Equation (6), and ΣNK, Equation (10), goodness-of-fit
metrics were calculated from the comparison of each synthetic discharge time series to the
gauged time series. Tables 3 and 4 provide a summary of the 1000 calculated metric values
(i.e., a value is calculated for each realization) for daily time series. Tables 5 and 6 provide
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summary metrics calculated from comparison of monthly series. As expected, estimation
of the synthetic discharge series using the biased variate produces relatively lower NSE,
KGE, and ΣNK values.
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Figure 4. Flow duration curves (FDCs) for two Onion Creek gauging stations on opposite ends of the
BFZ Edwards Aquifer Recharge Zone. The contributing area for 4595 is about 110 km2 larger than
that for 8158700. For all discharges with a greater than 2% probability of exceedance, the discharge
observed at 8158700 is significantly larger than the discharge at 4595.

On Tables 3–6, the mean KGE value is generally, but not always, smaller than the
mean NSE value. Because the relative relationship between KGE and NSE is not entirely
consistent, ΣNK provides the preferred goodness-of-fit statistic for this study because it
leverages the value of both statistics.

One gauging station in Tables 3–6 provides consistently lower NSE, KGE, and ΣNK
values; this station is 8170500, which measures the outflow from Spring Lake in San Marcos,
TX. Outflow from Spring Lake provides the starting point for the San Marcos River, and the
primary source of water for Spring Lake is San Marcos Springs. Figure 5 shows the FDC for
8170500. This FDC is relatively flat between the 20th and 95th percentiles and ranges from
approximately 3 to 7 m3/s-days. Consequently, there are not “low flows” in this FDC, such
as Figures 3 and 4, because of the significant groundwater contribution from San Marcos
Springs. In this case, MDF does not provide a robust low flow threshold because base flow
is unusually large relative to the other gauging stations in the study area.

For daily time series produced with the unbiased variate, the average ΣNK in Table 3
is 1.53. Average ΣNK across the biased variate, mean values in Table 4 is 0.89. These
averages exclude gauging station 8170500. Table 5 provides unbiased variate, goodness-of-
fit statistics for monthly interval time series. Here, the average ΣNK is 1.73. The average
biased variate ΣNK is 0.92 in Table 6. These averages exclude 8170500. The monthly interval
agreement always improves relative to the daily interval agreement for unbiased variate
ΣNK. For the biased variate, the monthly agreement generally improves relative to the daily
interval agreement. Improvement for monthly, relative to daily, values is expected because
the averaging process inherent in obtaining monthly averaged values from a daily series
will act to counteract the noise introduced by the unbiased random variate in Equation (2).
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Table 2. Flow duration curve (FDC) analysis results.

Gauge ID Start of Record 1 Record Length
(N)

Mean Annual
Runoff (MAR)

Long Term Mean
Daily Flow

(MDF) 2

70th Percentile
Threshold 3

20th Percentile
Threshold 4

2nd Percentile
Threshold 5

Standard
Deviation

Days m3 m3/s-days m3/s-days m3/s-days m3/s-days m3/s-days

8155200 1 January 1991 11,578 3.901 × 107 1.24 0.03 1.48 8.40 4.64

8158700 1 January 1991 11,578 4.854 × 107 1.54 0.05 1.96 10.3 5.29

8158810 1 January 1991 11,578 7.171 × 106 0.23 0.01 0.27 1.53 0.98

8158813 30 September 2015 2540 1.352 × 107 0.43 0.04 0.44 2.00 1.02

8158827 1 July 2004 6648 3.021 × 107 0.96 0.01 0.24 9.52 8.90

8170500 1 October 1994 10,209 1.690 × 108 5.36 3.88 6.88 10.2 3.52

8170890 19 May 2016 2309 9.352 × 106 0.30 0.00 0.25 2.05 0.76

8170950 30 August 2016 2205 4.926 × 107 1.56 0.49 1.90 5.50 3.58

8170990 23 April 2005 6352 7.863 × 106 0.25 0.05 0.37 1.46 0.37

8171000 1 January 1991 11,578 1.500 × 108 4.75 0.85 4.71 26.3 25.9

8171290 1 October 2017 1808 7.088 × 107 2.25 0.73 2.64 10.7 2.96

8171300 1 January 1991 11,578 1.469 × 108 4.65 0.03 4.71 28.9 29.3

8171350 22 January 2015 2791 1.538 × 108 4.87 0.03 4.81 24.8 42.7

8171400 19 May 2011 4135 2.649 × 108 8.39 4.42 9.98 27.2 14.9

7817 17 March 2016 2371 2.365 × 107 0.75 0.34 1.03 3.77 1.66

4595 5 October 2006 5822 2.528 × 107 0.80 0.00 0.08 8.14 7.28

1 12 September 2022 is the end date for all records. 2 Mean daily flow (MDF) provides the low flow threshold for this study and is the upper limit for low flow indices [16]. It is used here
because the 70th percentile threshold is often zero or <0.1 m3/s-days. 3 The flow duration curve (FDC) 70th percentile threshold is a commonly used low flow index [16]. 4 The 20th
percentile is a threshold for high to medium flows [17]. 5 The 2nd percentile is the threshold for out of bank, high flows [17] in this study.
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Table 3. Daily ‘goodness-of-fit metrics’ between gauge discharge and synthetic, unbiased discharge
time series.

NSE KGE ΣNK

Gauge ID Max. Mean Min Max. Mean Min Max. Mean Min

8155200 0.91 0.84 0.60 0.80 0.76 0.60 1.70 1.60 1.32
8158700 0.90 0.83 0.65 0.80 0.76 0.61 1.68 1.60 1.39
8158810 0.93 0.84 0.46 0.81 0.75 0.41 1.72 1.59 1.14
8158813 0.90 0.79 0.13 0.79 0.71 0.29 1.66 1.50 0.71
8158827 0.96 0.85 −1.04 0.82 0.72 0.25 1.74 1.57 −0.62
8170500 0.56 0.41 −0.05 0.53 0.45 0.20 0.97 0.86 0.33
8170890 0.89 0.80 0.56 0.78 0.71 0.53 1.64 1.51 1.25
8170950 0.91 0.77 −0.48 0.85 0.73 0.14 1.75 1.51 −0.02
8170990 0.77 0.74 0.69 0.80 0.77 0.73 1.56 1.51 1.46
8171000 0.96 0.83 −0.75 0.85 0.74 0.26 1.78 1.57 −0.30
8171290 0.77 0.68 0.46 0.79 0.73 0.57 1.55 1.41 1.17
8171300 0.96 0.83 −0.29 0.82 0.71 −0.14 1.76 1.54 0.20
8171350 0.99 0.77 −5.02 0.79 0.65 −0.24 1.77 1.42 −4.83
8171400 0.85 0.74 0.26 0.85 0.76 0.43 1.66 1.50 0.91

7817 0.90 0.78 −0.20 0.88 0.77 0.20 1.76 1.54 0.33
4595 0.96 0.84 −0.14 0.79 0.69 0.27 1.72 1.53 0.38

Table 4. Daily ‘goodness-of-fit metrics’ between gauge discharge and synthetic, biased discharge
time series.

NSE KGE ΣNK

Gauge ID Max. Mean Min Max. Mean Min Max. Mean Min

8155200 0.80 0.72 0.61 0.43 0.27 −0.03 1.17 0.99 0.61
8158700 0.77 0.71 0.62 0.42 0.27 0.07 1.14 0.98 0.71
8158810 0.81 0.74 0.54 0.45 0.26 −0.19 1.22 1.00 0.43
8158813 0.70 0.61 0.14 0.41 0.22 −0.32 1.06 0.84 0.22
8158827 0.89 0.78 0.45 0.45 0.24 −0.35 1.31 1.02 0.26
8170500 0.12 −0.10 −0.50 −0.10 −0.25 −0.57 −0.25 −0.35 −0.66
8170890 0.70 0.63 0.41 0.39 0.23 −0.19 1.03 0.86 0.38
8170950 0.71 0.62 −0.37 0.47 0.23 −0.71 1.12 0.85 −0.20
8170990 0.39 0.35 0.28 0.37 0.32 0.24 0.73 0.67 0.60
8171000 0.88 0.75 0.19 0.47 0.24 −0.58 1.32 1.00 −0.01
8171290 0.38 0.27 −0.03 0.33 0.21 −0.08 0.60 0.48 0.23
8171300 0.88 0.77 0.11 0.46 0.25 −0.61 1.32 1.02 −0.06
8171350 0.95 0.78 −1.98 0.46 0.20 −0.90 1.40 0.98 −1.82
8171400 0.61 0.53 0.05 0.44 0.22 −0.32 0.95 0.75 0.17

7817 0.70 0.61 0.04 0.52 0.29 −0.52 1.14 0.90 −0.01
4595 0.91 0.78 0.24 0.45 0.22 −0.65 1.31 1.00 −0.09
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Table 5. Monthly ‘goodness-of-fit metrics’ between gauge discharge and synthetic, unbiased dis-
charge time series.

NSE KGE ΣNK

Gauge ID Max. Mean Min Max. Mean Min Max. Mean Min

8155200 0.97 0.95 0.90 0.81 0.79 0.77 1.77 1.74 1.68
8158700 0.96 0.95 0.91 0.81 0.79 0.76 1.77 1.74 1.69
8158810 0.96 0.94 0.85 0.81 0.79 0.73 1.76 1.73 1.61
8158813 0.94 0.89 0.76 0.81 0.77 0.71 1.74 1.66 1.48
8158827 0.97 0.93 0.64 0.79 0.74 0.53 1.74 1.67 1.34
8170500 0.87 0.80 0.64 0.91 0.86 0.78 1.78 1.66 1.42
8170890 0.98 0.96 0.80 0.83 0.78 0.67 1.81 1.74 1.52
8170950 0.98 0.95 0.65 0.90 0.83 0.63 1.87 1.78 1.30
8170990 0.96 0.95 0.93 0.84 0.82 0.80 1.80 1.77 1.73
8171000 0.98 0.94 0.65 0.85 0.81 0.67 1.82 1.75 1.34
8171290 0.97 0.94 0.86 0.89 0.84 0.77 1.86 1.77 1.63
8171300 0.98 0.94 0.72 0.82 0.78 0.54 1.79 1.73 1.33
8171350 0.98 0.91 −0.21 0.84 0.73 0.12 1.80 1.64 0.29
8171400 0.95 0.92 0.77 0.91 0.87 0.74 1.85 1.78 1.51

7817 0.98 0.94 0.58 0.90 0.83 0.61 1.87 1.77 1.23
4595 0.98 0.94 0.70 0.79 0.74 0.58 1.75 1.68 1.42

Table 6. Monthly ‘goodness-of-fit metrics’ between gauge discharge and synthetic, biased discharge
time series.

NSE KGE ΣNK

Gauge ID Max. Mean Min Max. Mean Min Max. Mean Min

8155200 0.69 0.67 0.63 0.48 0.42 0.34 1.15 1.09 0.98
8158700 0.68 0.65 0.61 0.48 0.43 0.36 1.14 1.08 1.00
8158810 0.65 0.62 0.51 0.48 0.42 0.29 1.09 1.04 0.87
8158813 0.26 0.06 −0.32 0.46 0.43 0.33 0.69 0.48 0.11
8158827 0.80 0.74 0.60 0.45 0.32 −0.08 1.21 1.06 0.52
8170500 −2.64 −4.27 −6.44 0.36 0.30 0.17 −2.29 −3.97 −6.27
8170890 0.78 0.73 0.65 0.49 0.40 0.17 1.26 1.13 0.86
8170950 0.61 0.51 0.05 0.53 0.44 0.08 1.08 0.95 0.53
8170990 0.43 0.35 0.27 0.51 0.50 0.48 0.94 0.85 0.77
8171000 0.74 0.70 0.57 0.49 0.38 0.06 1.21 1.08 0.66
8171290 0.35 0.12 −0.24 0.53 0.50 0.44 0.85 0.62 0.25
8171300 0.79 0.75 0.57 0.48 0.37 0.07 1.25 1.12 0.73
8171350 0.85 0.77 0.34 0.50 0.31 −0.37 1.33 1.08 0.22
8171400 0.15 −0.16 −0.87 0.53 0.47 0.25 0.53 0.31 −0.39

7817 0.51 0.35 −0.95 0.54 0.47 0.15 0.98 0.82 −0.54
4595 0.83 0.77 0.62 0.46 0.32 −0.01 1.27 1.08 0.61
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Figure 5. Daily flow duration curve (FDC) for station 8170500 on the San Marcos River. Note that all
observed discharge values are greater than 2 m3/s-days denoting consistent and significant base flow
from San Marcos Springs, which are located just upstream of this gauging station.

3.2. Parameter Uncertainty Analysis and Prior–Data Conflict Results

RMSEi, see Equation (4), calculated for each gauging station and time interval gener-
ates the observation error model in a PESTPP-IES calibration-constrained, model predictive
uncertainty analysis. These uncertainty envelopes are provided as part of target spec-
ifications using the calculated RMSEi for the “standard deviation” for each discharge
target interval.

PESTPP-IES uncertainty analysis employed 3488 total HSPF model simulations, using
the HSPF model described in Section 2.5, split across three iterations with 848 realizations.
The “base” realization from iteration 3 had the lowest “base” realization Φ value; this Φ
value was used as the Φ threshold to identify a collection of 94 best-fit parameter ensembles.

Figure 6 displays an example of the implementation of the expected uncertainty enve-
lope as the observation error model for discharge targets in a DA implementation. This
figure also shows a subset of the best-fit results from a PESTPP-IES analysis; 24 of the 94 en-
sembles are shown on this figure. The 24 selected ensembles are those that produce an ΣNK
value≥ 1.00, which is the minimum ΣNK for 8158700 in Table 6. Results in Figure 6 are from
a preliminary analysis, whose purpose is to constrain watershed parameters. The discharge
targets, incorporating observation uncertainty, provide constraint on posterior parameter
values for these watershed parameters.

The FDC for 8158700 is provided on Figure 4. In this implementation, monthly
averaged discharges from the gauging station are the “Observed” values shown on Figure 6.
The monthly averaged RMSEi was calculated by aggregating the gauge discharge time
series and synthetic discharge time series to monthly averaged intervals and then using
monthly, rather than daily, intervals for i in Equation (4). Shading in Figure 6 shows the
RMSEi for each monthly target. A similar envelope, calculated from the standard deviation
value as the monthly average gauge discharge (observed) plus the standard deviation,
is labeled “±Standard deviation” and shown for comparison purposes. The standard
deviation of the observed discharge time series is 2.82 m3/s-months.

The posterior realizations, selected as the realizations producing Φ values ≤ the
threshold and ΣNK values ≥ 1.00, are the ’best-fit, simulated’ lines in Figure 6. Simu-
lated discharge generally falls within the expected uncertainty envelope. The comparison
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“±Standard deviation” envelope is typically larger than “observation uncertainty”, which
is the expected uncertainty envelope.
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Figure 6. PESTPP-IES uncertainty analysis results for 8158700. Panel (a) displays observed discharge
along with observation uncertainty descriptions. Observation uncertainty is the RMSE estimated
for each month as described in Section 2.3, or the expected uncertainty envelope. The standard
deviation of observed discharge is displayed for comparison with the expected uncertainty envelope,
and± standard deviation provides an independent estimate of observation uncertainty. The expected
uncertainty envelope is tighter, or narrower, relative to the standard deviation envelope at low and
medium discharges and is larger at high discharges. Panel (b) displays simulated discharges from
24 best-fit, parameter ensembles. These 24 best-fit ensembles achieve a Φ threshold that identifies the
overall best-fit parameter ensembles and produce ΣNK values ranging from 1.00 to 1.24. In Table 6,
ΣNK for 8158700 ranges from a minimum of 1.00 to a maximum of 1.14 with an average of 1.08.

Eight prior-data conflicts were identified at two different gauging stations during the
PESTPP-IES analysis, see Table 7. There are 16 stream gauging stations that provide a
total of 791 monthly averaged discharge targets; prior-data conflicts are about 1% of the
discharge observations. Herein, prior-data conflicts are addressed by instructing PESTPP-
IES to remove the corresponding target value from the analysis. This means that agreement
between simulated and observed values for these intervals is not used to constrain optimal
parameter ensembles.

Table 7. Listing of discharge target, prior-data conflicts.

Observed RMSE 1

Gauge ID Month m3/s-months m3/s-months

7817

2017-01 1.11 0.23
2017-02 1.03 0.21
2019-03 1.14 0.24
2019-04 1.03 0.21

8170290

2019-02 5.37 1.12
2019-03 3.26 0.67
2019-04 2.74 0.70
2019-06 4.77 0.98

1 Root mean square error (RMSE) is calculated with Equation (4).
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Figure 7 shows an example of the uncertainty envelope implementation for Station
8171290, which has four prior-data conflicts. Station 8171290 is located between 8171000
and 8171300 (see Figures 2 and 3) on the Blanco River. Although the target values for the
prior-data conflicts are removed, the simulated values for the prior-data conflict intervals
are still tracked.
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Figure 7. PESTPP-IES uncertainty analysis results for 8171290. Panel (a) displays observed discharge
and observation uncertainty descriptions. “Observation uncertainty” is the RMSE, calculated as
described in Section 2.3, or the expected uncertainty envelope. The standard deviation of the
observed discharge time series is displayed for comparison, and “±Standard deviation” provides
an independent estimate of observation uncertainty. The expected uncertainty envelope is tighter,
or narrower, relative to the standard deviation envelope at low and medium discharges and is larger
at high discharges. Prior-data conflicts are observed values that the model cannot reproduce, when
including observation uncertainty with observed values. Panel (b) shows simulated discharges from
38 best-fit, parameter ensembles. These 38 best-fit ensembles achieve a Φ threshold that identifies the
overall best-fit parameter ensembles and produce a ΣNK values from 0.26 to 0.71. In Table 6, ΣNK for
8171290 range from a minimum of 0.25 to a maximum of 0.85 with a mean value of 0.62.

4. Discussion

In generic DA terms, the observation uncertainty envelope provides an observation
error model for discharge observations that accounts for measurement error and rating
curve representation error. PESTPP-IES inherently addresses numerical representation error
with its prior-data conflict resolution abilities. Combining the discharge observation uncer-
tainty envelope with PESTPP-IES produces a DA observation error model that accounts for
measurement error, rating curve representation error, and numerical representation error.

The goal of the uncertainty envelope, and all DA observation error models, is to avoid
bias in and minimize the variance of the posterior parameter distribution. PESTPP-IES
uses the observation error model to convert targets to a range of acceptable values for each
history matching time. If the range is too large, conditioning information on parameter
values will be greatly reduced, and large posterior parameter uncertainties will result.
This effect will produce excess variance in predictions made with the model. If the target
range is too small, then too much accuracy and precision are attributed to the observed
values, and the posterior parameter ensemble may be overly narrow and biased as a
result of “overfitting”. This bias in estimated parameters ultimately translates to bias in
the important predictive outcomes. The alternatives of encouraging overfitting, due to
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artificially specifying too much target constraint, and larger spread in posterior parameter
ranges, due to lack of target constraint, define a bias–variance trade-off.

Two alternative discharge observation error models, (1) no observation error model
and (2) the standard deviation of the gauge record, were implicitly examined. The al-
ternative of no observation error model is described in Figure 1; the concern with no
observation error model is that the range of target values for each history matching time,
i, will be too narrow and will promote overfitting and introduce bias into the posterior
parameter distribution.

The other alternative discharge observation error model is the “± Standard deviation”
envelope shown on Figures 6 and 7. This discharge observation error model is the standard
deviation of the observed monthly discharge time series added to and subtracted from the
monthly averaged observed discharge. In this case, a constant standard deviation value is
used for all i for targets observed at the same gauging station. Because PESTPP-IES (and
DA implementations in general) uses an additive Gaussian error model for each history
matching time, i, a constant value across all i will provide a poorly resolved observation
error model for highly variable and dynamic observation sequences, such as those obtained
from gauges in the study area and shown in Figures 3 and 4.

Examination of Figures 6 and 7 shows that “Observation Uncertainty” envelopes,
which are the expected uncertainty envelope observation error model, generally have a
smaller range than “±Standard deviation” envelopes, which are the standard deviation
observation error model, suggesting that the expected uncertainty envelope will produce
relatively narrow posterior distributions, denoting a decrease in parameter variance and
amelioration of the variance portion of the bias–variance trade-off.

The expected uncertainty envelope created by RMSEi produces a different additive
Gaussian error model for each history-matching time, i. This permits the inclusion of
different relative errors for low flows (±100%), high flows (±40%) and medium flows
(±20%). It also allows the use of non-Gaussian random variates in Equation (3) to generate
RMSEi values. River flow, and most other hydrology data sets, are often best described
with non-Gaussian distributions, such as extreme value distributions.

In this study, prior-data conflicts, such as those highlighted on Figure 7, are on the
falling limbs of the hydrographs. The study environment is karst terrain characterized by
complex and largely unknown enhanced flow pathways in caves, conduits, and regions
of enhanced secondary porosity. We hypothesize that the subsurface storm flow will be
an important stream flow generation mechanism across the study area and will contribute
significantly to the falling limb of discharge hydrographs. This physical process is not
represented in the HSPF models used to produce Figures 6 and 7. The watershed parameter
values that are the focus of the calibration-constrained, model predictive uncertainty
analysis that generated these figures will not significantly impact the representation of
subsurface storm flow. The exclusion of these prior-data conflicts prevents the inversion
process from calibrating bias into the best-fit watershed parameter values for targets, where
these parameters should not be directly relevant. This is a specific example of the inherent
numerical representation error handling capabilities in PESTPP-IES.

4.1. Limitations of the Expected Discharge Uncertainty Envelope

The expected uncertainty envelope provides an observation error model accounting
for measurement error and representation error between the rating-curve discharge model
and observations. Consequently, it is only applicable when discharge is (1) an observed
value for DA and (2) calculated or estimated rather than measured. These two limitations
restrict its use case to hydrologic studies focused on regional and sub-regional water
budget representation that employ hydrologic routing (i.e, using hydrologic models which
simulate discharge).

Studies that use hydrodynamic models, comprised of partial differential equations
solving for spatial and temporal variation in free surface elevation and conservation of
momentum, to simulate river flow will not use discharge as an observation for DA. This
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type of numerical model provides a more robust and accurate calculation of discharge
than a rating curve and could use observed water depth from the gauging station as
observations for data assimilation. When hydrodynamic models that explicitly simulate
spatially variable flow, rather than discharge, are used, other types of observations that
involve direct measurement of flow velocity, such as the observations obtained from an
acoustic Doppler current profiler (ADCP) are often preferred [28].

For the study area, the identification of flow regime is an important component of
generating the expected uncertainty envelope because low flows occur frequently and
provide for the largest relative error expectation (i.e., ±100%). Low flows are also a
water resources management focus in this region. However, study areas, or sub-areas,
with limited discharge variability, such as Figure 5, do not require a flow-regime dependent,
uncertainty representation. With a relatively constant discharge record, the RMSEi values
will likely be similar to the standard deviation of the record. In the case of limited dynamic
variation in the observation record, a flow-regime dependent observation error model is
not needed.

4.2. Goodness-of-Fit Metric Values

NSE and KGE, the two goodness-of-fit metrics used in this paper, have a range of −∞,
for no predictive skill, to 1, for perfect predictive skill. Examination of Tables 3–6 suggests
that KGE is generally smaller than NSE but that there is not a completely consistent
relationship between the two metrics for the study area data sets and implementation.
Consequently, ΣNK, which combines NSE and KGE, is used as a single goodness-of-fit
metric; it has a range of −∞, for no predictive skill, to 2.0, for perfect predictive skill.

Discharge observations derived from stage measurements using a rating curve are
expected to generate significant observation model error components for DA because a
rating curve provides an imperfect hydrodynamics model for streams and rivers. Hydro-
dynamics models such as [28,29] simulate spatial and temporal variation in free surface
elevation and the conservation and transport of momentum, which are the primary drivers
of stream and river flow at frequencies higher than daily. When constant water density is
assumed, the transport of momentum can be simplified to the transport of velocity and
velocity travels with the fluid, such as a scalar [29–31]. Consequently, there is not a robust,
physics-based rationale to expect a strong correlation between stage and discharge for
frequencies higher than the daily one, and a rating curve provides a limited and imperfect
hydrodynamics model at these higher frequencies. These limitations are reflected in the
mean ΣNK values obtained from the comparison of stream gauge discharge data sets to the
stochastically estimated discharge series, see Tables 3 and 4.

For lower-frequency discharge estimation, such as monthly, relative improvement
in mean ΣNK values in Tables 5 and 6 suggest that a rating curve provides a more robust
hydrodynamics model for monthly discharge estimation, relative to daily discharge es-
timation. The unbiased variate mean ΣNK, for monthly series comparison in Table 5, is
always greater than 1.6, which denotes significant skill in estimation of “true” discharge
values. Intuitively, it is reasonable to expect that an increase in the average stage across an
interval of days to weeks correlates with an increase in the average discharge across the
same interval.

PESTPP-IES produces an ensemble of parameters that provide best-fit history matching
between simulated values and target values. An ensemble of parameters necessarily
generates an ensemble of results. An important analysis decision when using ensemble
methods is selecting which ensembles represent equally good reproduction of observed
history. This selection is complicated by the fact that target data and parameterization
knowledge are limited and there is uncertainty for both target and parameter values.

The NSE, KGE, and ΣNK values in Tables 3–6 can be employed as thresholds, or criteria,
for the selection of equally best-fit ensembles. The evaluation threshold for each gauge and
each metric would be the unbiased variate mean value for gauging stations with “good”
data quality during WY2021 (see Table 1) and the biased variate mean value for gauging
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stations with “fair” or “poor” data quality. These criteria provide several of many criteria,
assuming that other target types besides discharge are employed, by which the “final”
collection of equally best-fit parameter ensembles would be selected from the PESTPP-IES
ensemble results. To illustrate this, ΣNK values from Table 6 are used to select the best-fit
ensembles shown in Figures 6 and 7.

In conceptualization, these goodness-of-fit thresholds provide an estimate of the
information content in the discharge record accounting for the observation error model.
If the calibrated or trained environmental model results produce NSE, KGE, or ΣNK metrics
that exceed these thresholds, that is good, but it is possible that the model is being calibrated
to overfit these targets, if the calibration enforces parameter selection to achieve history
matching beyond the maximum thresholds.

5. Conclusions

A discharge observation uncertainty envelope is presented and developed that pro-
vides an observation error model for ensemble methods of DA. It uniquely accounts
for the rating curve representation error, related to differences between the rating curve
model of discharge and “true” discharge, and measurement error. In this formulation, the
discharge observation uncertainty is flow regime dependent and has the largest relative
uncertainty for low flows and then for high flows, with relatively reduced uncertainty for
“normal” flows.

The goal of the uncertainty envelope is to avoid bias in and minimize the variance
of the posterior parameter distribution. It is compared with two other observation error
models: no error model and a standard deviation envelope. The discharge observation
uncertainty envelope reduces bias relative to the no-error model because it provides for a
range of target values for each history matching interval. It reduces variance relative to
the standard deviation envelope because it generally provides a narrower range of target
values for each history matching interval.

The observation uncertainty envelope is designed specifically for use with PESTPP-IES,
which accounts for numerical representation error through prior-data conflict identification.
The combination of the discharge observation uncertainty envelope and PESTPP-IES gen-
erates a DA observation error model that addresses the measurement error, rating curve
representation error, and numerical representation error. Goodness-of-fit metric thresholds,
i.e., NSE, KGE, and ΣNK thresholds, are identified as part of the observation uncertainty en-
velope development that can be used as selection criteria for the identification of posterior
parameter values from PESTPP-IES uncertainty analysis results.
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Abbreviations
The following abbreviations are used in this manuscript:

ADCP Acoustic Doppler Current Profiler
BFZ Balcones Fault Zone
CDF Cumulative distribution function
DA Data assimilation
FDC Flow duration curve
HSPF Hydrological Simulation Program FORTRAN
HRU Hydrologic response units
iES Iterative ensemble smoother
KGE Kling–Gupta efficiency
LCRA Lower Colorado River Authority
MAR Mean annual runoff
MDF Long-term mean daily discharge
NSE Nash–Sutcliffe efficiency
ODE Ordinary differential equation
PEST Parameter estimation
PDE Partial differential equation
RMSE Root mean square error
Std Standard deviation
SVD Singular value decomposition
TX Texas
USGS United States Geological Survey
WY Water year
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