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Abstract: The overlyingweakly cemented, and poorly performing strata in Jurassic mines of western
China have mechanical properties that are generally lower than those in the Carboniferous‑Permian
coal mines of central and east China. During coal mining, the overlying strata easily deform and frac‑
ture. These then formed water‑conducting channels, triggering a series of eco‑environmental issues,
including ground fracturing, collapsed surfaces, declined underground water levels, deserted lands,
and even severewater/sand burst accidents. To study the fracture characteristics ofweakly cemented
overlying strata and the evolution lawofwater‑conducting fractures in Jurassic coalmines inwestern
China, this study selected Tashidian Erjingtian Mine in Korla, Xinjiang, as the research object. Based
on the simulation data obtained with physical analog model testing and field monitoring results, the
authors investigated the development of water‑conducting fractures in the weakly cemented overly‑
ing strata during the coal seam mining process. We simultaneously determined the location of key
strata in the working face based on key stratum theory. According to the present research results,
key strata controlled the development height of water‑conducting fractures. When the primary key
stratum or sub‑key stratum was not fractured, the development of water‑conducting fractures was
stagnant; water‑conducting fractures developed abruptly when the primary key stratum or sub‑key
stratum was cracked. The heights of water‑conducting fractures in the weakly cemented overlying
strata of western China exceeded that of similar stopes of central and east China. These research
results provided theoretical and technical support for safety in production at Tashidian Coal Mine.
In addition, they offered a reference for green and safe production in Jurassic coal mines of west‑
ern China.

Keywords: Jurassic coal mining area in western China; weakly cemented overlying strata; physical
analog model; key stratum theory; the height of the water‑conducting fracture zone

1. Introduction
Currently, coal resource development in east China has almost ended. The explo‑

ration of coal resources has started the strategic shift, i.e., the investigation has moved to
the western regions that are more abundant in resource reserves. Jurassic coal‑bearing
strata in west China show short diagenetic periods that differ from the Carboniferous and
Permian strata in central and east China. The overlaying strata show weakly cemented
argillaceous characteristics when encountering water, with low strength, poor cement‑
ing and easy‑to‑collapse performance, and a lower residual crack‑expansion coefficient of
rock [1–3]. Many researchers have studied rock–water interaction through various meth‑
ods, and have explored soft rock softening and its mechanism [4–8]. Weakly cemented
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rocks with weak performance contain many clay minerals, including montmorillonite, il‑
lite, and kaolinite [9]. Accordingly, weakly cemented rocks’ internal friction angle and
cohesive force are low. As a result, the overlying rocks showed low self‑bearing capacity,
poor self‑stabilization capacity, and short self‑stabilization time.

After the excavation of coal seams, a series of engineering disasters, including heavy
deformation and roof caving, quickly appeared in the weakly cemented overlaying rocks,
seriously affecting mine construction, safety, and high‑efficiency production. Weakly ce‑
mented rocks can be hard rocks in dry or natural conditions; however, when saturated,
weakly cemented rocks fall between soft rock and hard soil in terms of physical and me‑
chanical properties and are regarded as transitional rockmedia [10]. Researchers have con‑
ducted a great deal of research on the physical and mechanical properties of soft
rock [11–15]. Atapour concluded that the mechanical properties of cemented materials
mainly determine the mechanical characteristics of weakly cemented rocks [16]. Li et al.
used experimental studies on microstructures and mechanical response characteristics of
weakly cemented rocks with a scanning electron microscope and low‑field nuclear mag‑
netic resonance (NMR) [17,18]. According to previous research results, the content of
weakly cemented sandstone is relatively low, with a low cementing degree, large porosity,
and loose structure, leading to reasonably low compressive strength and elasticity modu‑
lus of weakly cemented sandstone and great deformation. During the excavation process,
deformation‑induced damage to the overlying strata quickly appeared in the weakly ce‑
mented strata. Then, water‑conducting channels triggered a series of environmental prob‑
lems and water/soil inrush accidents, mainly including the formation of ground fractures,
surface collapse, the decline of underground water level, water and soil erosion, and wa‑
ter/sand inrush accidents. Coal mining imposes enormous effects on the utilization of
water resources. Western China experiences severe scarcity of water resources and rela‑
tively vulnerable natural ecological conditions. Any carelessness in the extensive devel‑
opment and utilization of coal resources is highly likely to cause irreversible ecological
damages [19]. Therefore, prevention and treatment of roof water disasters in Jurassic coal
mines of western China andwater resources preservation duringmining have always been
hot topics arousing extensive concern. In particular, predicting the development height of
the water‑conducting fractured zone was a crucial link [20,21].

Coal resources in China’s weakly cemented strata are primarily in several main coal
bases, including Xinjiang, Shandong, the northern region of Shanxi, the eastern province
of Ningxia, the northern part of Shaanxi, Huanglong, the eastern part of Inner Mongolia,
and the Yunnan‑Guizhou region. The mines in western and northwestern China occupy
the most significant proportion. Currently, Xinjiang coal bases are in the early‑stage de‑
velopment phase, while other main coal bases are in the middle‑term development phases.
Fourteen coal base reserves accounted for 50.4% of China’s coal reserves. Mining weakly
cemented strata coal resource base reserves accounted for approximately 54.09%. Of the
14 base reserves, nearly half of the resources are in weakly cemented strata [22]. In the
past, the research on the development height of the water‑conducting fracture zone was
primarily concentrated in the Carboniferous‑Permian coal mining area in central and east‑
ern China. There were few studies in the western mining area. Many researchers focused
on the prediction of the development height of the water‑conducting fracture zone [23–29]
utilizing physical experiment, numerical simulation, theoretical analysis, geophysical ex‑
ploration, underground segmented water injection, leakage observation of drilling fluid,
and borehole TV. This study focused on TashidianMine, Korla City, Xinjiang, China. First,
it investigated the development characteristics of water‑conducting fractures in weakly ce‑
mented overlying strata during the coal seam mining process based on a physical model
test on similar materials. Next, according to key stratum theory, this study determined
the critical stratum position in the overlying strata of the working face. On that basis,
we concluded the fracturing characteristics of overlying strata and the evolution rules of
water‑conducting fractures. The present research results can provide theoretical support
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for safety production in Tashidian Coal and a reference for green and safety production in
Jurassic coal mines of western China.

2. Project Profile
The research region, located in Korla City, Bayingol Mongolian Autonomous Prefec‑

ture, Xinjiang, belongs to southern Xinjiang (see Figure 1). Tahitian mine is located at the
southwestern margin of Yanqi Basin and shows lower and middle hilly land. In terms of
terrain, thewestern regions are higher, themiddle is lower, the northern part is higher, and
the southern part is even lower. This study focused on the W8203 working face owned by
Tashidian Coal at the western edge of the well. In the primary mineable No. 8 coal seam,
the length and the width of the working face are 1588 and 135m, respectively, with amean
thickness of the coal seam of approximately 9.6m. Miningwas carried out with fullymech‑
anized top coal caving and a controlled roof with caving. As a result, the roof and floor
were easily inflated and softened when encountering water.
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Figure 1. Illustration of the traffic position of the research area.

Mining seas are located at theweak‑water‑abundance aquifer (H3) on the bearing frac‑
tures of the middle Jurassic Tashidian formation. As shown in Figure 2 (see Figure S1 in
Supplementary Material), four aquifers and aquicludes were above the mining coal seam,
which was the Quaternary permeable stratum. The aquiclude was of clayey mudstone
and siltstone in the Putaogou formation of the Neogene Pliocene series. The weak‑water‑
abundant aquifer on the bearing fractures of Oligocene‑Miocene Taoshuyuan Formation
in the Paleogene series and the aquiclude consist of paleo crust of weathering mudstone,
siltstone, and fine sandstone.

Aquifer (H1) is the main indirect water‑filled aquifer in the coal mine. The pumping
test of aquifer (H1) was carried out in the North 10–5 hole and the North 12–6 hole with
the nature of confined water. The thickness of the exposed strata was 9.74–138.04 m, with
an average thickness of 97.45 m. The thickness of aquifer (H1) is 106.99–138.04 m, the
static water level elevation is 1103.59–1124.183 m, the water inflow is 0.12–1.046 L/s, and
the permeability coefficient is 0.0097–0.0294 m/d. Aquifer (H3) is the direct water‑filled
aquifer of No.8 coal seam. The pumping test was carried out in aquifer (H3) in the North
10–5 hole and the North 12–6 hole with confined water properties. The drilling revealed
that the thickness was 28.66–193.74 m, and the average thickness was 72.92 m. The static
water level elevation is 1102.59–1124.083 m, the water inflow is 0.039–0.14 L/s, and the
permeability coefficient is 0.0019–0.0065 m/d. According to the completed pumping test
the inflow of water, static water level elevation, permeability coefficient and porosity of
aquifer (H1) and aquifer (H3) are shown in Table 1. A map of the groundwater flow is
shown in Figure 3.
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Table 1. Aquifer pumping test results table.

Aquifer Pumping Test
Hole

Inflow of Water
(L/s)

Static Water Level
Elevation (m)

Permeability
Coefficient (m/d)

Porosity
(%)

H1
North 10–5 0.12–0.34 1124.183 0.0097–0.0104 3.45–6.99
North12–6 0.332–1.046 1103.59 0.0225–0.0294 3.45–6.99

H3
North 10–5 0.039 1124.083 0.0019 1.15–6.62
North 12–6 0.14 1102.59 0.0065 1.15–6.62
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Under mining, the weak‑water‑abundant aquifer (H3) structure bearing on the frac‑
tures of the middle Jurassic Tashidian formation destroyed the height of the water‑
conducting fracture zone beyond the mining range, leading to the formation of water‑
conducting channels. The water‑conducting channels were then interconnected to the up‑
per aquifer/aquiclude, imposing certain damages to the aquifer structure. According to the
statistics in recent years, the regular water inflow of the mine is approximately 3000 m3/d,
with a maximum value of 5040 m3/d (in the goaf drainage period), and the loss of under‑
ground water resources is excellent. A few species feature in the plant community in the
mine. However, the ecological environment was highly vulnerable, with a vegetation cov‑
erage rate of only 5%. Mining‑induced underground resource loss further aggravated the
deterioration of the ecological environment in the mine.

Based on the stratigraphic information of the mine and the related exploration data,
the physical and mechanical parameters of the overlaying strata were investigated and
determined, as shown in Table 2. Through analysis, the strata were mainly in argillaceous
cementation, with low overall strength. The uniaxial compressive strength ofmost strata is
lower than 30 MPa. The overlying strata have a loose structure and show easy weathering.
According to the related definitions in most studies, the overlying strata in the research
mine was regarded as weakly cemented overlying strata [30].

Table 2. Physical and mechanical parameters of strata in Tashidian Erjingtian Mine.

Lithology Unit Weight
(KN/m3)

Compressive
Strength
(MPa)

Tensile
Strength(MPa)

Elasticity
Modulus
(MPa)

Loose stratum 22 3.23 0.01 30
Sandy

conglomerate 25.3 25.4 6.75 1400

Mudstone 24 28.4 3.56 1550
Siltstone 25.6 37.67 8.12 1450
Medium
sandstone 23.6 20.4 5.02 1300
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3. Materials and Methods
3.1. Physical Analog Model

Fully mechanized top coal caving of the whole seam is quite tricky, which would in‑
evitably cause severe damage to the overlying strata and abnormal development of the
water‑conducting fracture zone [31,32]. Moreover, on account of the complex geological
conditions of the research area, field tests showed a high cost and low feasibility. As a
result, ideal observation conditions were difficult to obtain. By contrast, tests based on the
established physical model can display the movement of overlying strata and the develop‑
ment of water‑conducting fractures not only visually but also accurately predict the devel‑
opment height of thewater‑conducting fracture zone. Therefore, we established a physical
model on similar materials to reveal the development characteristics of water‑conducting
fractures inweakly cemented overlaying strata of thewestern Jurassic coalmine. We based
it on a reasonable generalization of the geological mining conditions of theW8203working
face in Tashidian Erjingtian Coal Mine. Figure 4 shows the detailed model parameters.
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Three similarity theorems, namely, the positive similarity theorem (the first theorem),
theπ theorem (the second theorem), and the inverse similarity theorem (the third theorem),
are the theoretical foundations for constructing a physical analog model. Our research test
model used the test platform developed by Mine Pressure and Strata Control Laboratory,
Xinjiang University, as shown in Figure 5, with a length × width × height of 250 cm ×
30 cm × 190 cm. The depth of strata in this study is 499.02 m. Based on the specifica‑
tions of the test devices and taking into full consideration the experimental condition, we
overcame the challenges in construction and safety during thewhole experimental process.
The geometrical factor of the physical analog model was 1:300; the volumetric weight ratio
and the dynamic ratio were 1:1.5 and 1:450.

Considering the weakly cemented properties of kaolin and the overlying strata in
Tashidian Erjingtian Mine [33], this study selected river sand as the aggregates and kaolin
and gypsum as the cementing materials for constructing the physical analog model test on
the W8203 working face. We determined the mixing proportions and water mass ratios
based on the related experimental results in the Similarity Theory and the Static Model
Test [33]. We validated the reliability of the modeling ratios with the tests performed on
the prepared samples (see Figure S1 in Supplementary Material). We added an appropri‑
ate gypsum retarder to the test materials to lower the material setting velocity. As shown
in Figure 6a, we made three specimens from each stratum according to the proportion.
Figure 6b shows the measurement of the uniaxial compressive strength test. The mean
of the measured strengths validated the reliability of the ratios. According to the present
measureddata of uniaxial compressive strength, the selectedproportions of similar propor‑
tioned materials satisfied the compressive strength criterion for the current similar model
test. Table 3 lists the ratios for each stratum.



Water 2023, 15, 1097 7 of 17Water 2023, 15, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 5. Test platform developed by the Mine Pressure and Stratum Control Laboratory. 

Considering the weakly cemented properties of kaolin and the overlying strata in 
Tashidian Erjingtian Mine [33], this study selected river sand as the aggregates and kaolin 
and gypsum as the cementing materials for constructing the physical analog model test 
on the W8203 working face. We determined the mixing proportions and water mass ratios 
based on the related experimental results in the Similarity Theory and the Static Model 
Test [33]. We validated the reliability of the modeling ratios with the tests performed on 
the prepared samples (see Figure S1 in Supplementary Material). We added an appropri-
ate gypsum retarder to the test materials to lower the material setting velocity. As shown 
in Figure 6a, we made three specimens from each stratum according to the proportion. 
Figure 6b shows the measurement of the uniaxial compressive strength test. The mean of 
the measured strengths validated the reliability of the ratios. According to the present 
measured data of uniaxial compressive strength, the selected proportions of similar pro-
portioned materials satisfied the compressive strength criterion for the current similar 
model test. Table 3 lists the ratios for each stratum. 

  
(a) (b) 

Figure 6. Tests performed on the samples: (a) view of the test samples, a group of three test samples 
from left to right are siltstone, mudstone, medium sandstone and sandy conglomerate; (b) uniaxial 
compressive strength measurement on the prepared test samples. 

  

Figure 5. Test platform developed by the Mine Pressure and Stratum Control Laboratory.

Water 2023, 15, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 5. Test platform developed by the Mine Pressure and Stratum Control Laboratory. 

Considering the weakly cemented properties of kaolin and the overlying strata in 
Tashidian Erjingtian Mine [33], this study selected river sand as the aggregates and kaolin 
and gypsum as the cementing materials for constructing the physical analog model test 
on the W8203 working face. We determined the mixing proportions and water mass ratios 
based on the related experimental results in the Similarity Theory and the Static Model 
Test [33]. We validated the reliability of the modeling ratios with the tests performed on 
the prepared samples (see Figure S1 in Supplementary Material). We added an appropri-
ate gypsum retarder to the test materials to lower the material setting velocity. As shown 
in Figure 6a, we made three specimens from each stratum according to the proportion. 
Figure 6b shows the measurement of the uniaxial compressive strength test. The mean of 
the measured strengths validated the reliability of the ratios. According to the present 
measured data of uniaxial compressive strength, the selected proportions of similar pro-
portioned materials satisfied the compressive strength criterion for the current similar 
model test. Table 3 lists the ratios for each stratum. 

  
(a) (b) 

Figure 6. Tests performed on the samples: (a) view of the test samples, a group of three test samples 
from left to right are siltstone, mudstone, medium sandstone and sandy conglomerate; (b) uniaxial 
compressive strength measurement on the prepared test samples. 

  

Figure 6. Tests performed on the samples: (a) view of the test samples, a group of three test samples
from left to right are siltstone, mudstone, medium sandstone and sandy conglomerate; (b) uniaxial
compressive strength measurement on the prepared test samples.

Table 3. Proportions for preparing thematerials similar to the overlying strata in Tashidian Erjingtian
Mine.

Lithology

Unit Weight of
Original
Stratum
(KN/m3)

Compressive
Strength of

Original Stratum
(MPa)

Unit Weight of
the Model
(KN/m3)

Compressive
Strength of the

Model
(kPa)

Proportion Water Mass
Ratio

Loose stratum 22 3.23 14.7 7.18 7:0.9:0.1 (791) 1/9
Glutenite 25.3 25.4 16.9 56.44 6:0.7:0.3 (673) 1/9
Mudstone 24 28.4 16 63.11 5:0.7:0.3 (573) 1/9
Siltstone 25.6 37.67 17.1 83.71 4:0.5:0.5 (455) 1/9
Medium
sandstone 23.6 20.4 15.7 45.33 7:0.7:0.3 (773) 1/9

Before laying the physical analog model, the experimental platform was cleaned up,
and lubricating oil was evenly applied on the inside of each guard plate to prevent damage
to the physical analog model when the guard plate was disassembled. The gap was sealed
with tape between the bottom guard plate and the model frame to prevent the leakage of
test materials. Following the previous similar material, the ratio was determined, the use
of electronic scales and measuring cylinders accurately measured experimental materials
in thewater to add an appropriate amount of gypsum retarder to delay the consolidation of
the material progress, and an electric stirrer evenly stirred after laying. The laying model
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was layered, and the compacted sleeper and hammer were used to push the compaction
evenly. After the compression, the leveling, as combined with the level, the plastering
knife was used to smooth, and the mica sheet was added between adjacent rock layers to
achieve the stratification effect. After the physical analog model was cured under constant
temperature and humidity for seven days, the board was dismantled. When the panel was
dismantled, the single guard plate was dismantled on the front side of the model, and the
even guard platewas disassembled on the back side. Then, the guard platewas dismantled
alternately regularly until the guard plate was dismantled entirely.

We monitored the movements in the overlying strata and the evolution of water‑
conducting fractures in a similar physics model during the mining process (see Supple‑
mentary Material Figure S2 for the detailed laying process of the physical analog model).
This study used pins and coordinate papers to set the grids with a size of 10 cm × 10 cm.
We used a professional digital camera to record thewhole experimental process before and
after model excavation, as shown in Figure 7. Aiming to eliminate the boundary effect, we
reserved 40 cmmargins on two sides of the established similar physical model. TheW8203
working face advanced at a speed of approximately 2.4 m/d. According to the time similar‑
ity constant, the model excavated forwards 10 cm every 17 h (actually, 30 m in 12.5 days),
i.e., 17 excavations were required. In this study, wemined the coal seams from left to right.
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ward to 30m; (b) rockmass failure as the working facemoved forward to 120m; (c) rockmass failure
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ward to 180 m; (e) rock mass failure as the working face moved forward to 300 m; (f) rock mass
failure as the working face moved forward to 390 m.

As theworking face graduallymoved forward, themudstone false roof collapsed, and
the dangling distance below the main roof increased. As a result, the false roof fractured
at an excavated length of 150 m, which drastically increased the caving zone’s height. Con‑
currently, the water‑conducting fractured zone’s size changed abruptly to 41 m, as shown
in Figure 8c. As the working face moved forward to 180 m, four overlying strata (mud‑
stone, siltstone, medium sandstone, and mudstone strata) of the main roof fractured with
the main roof. After the fracturing, the rocks formed a stable hinged structure. As a result,
water‑conducting fractures developed rapidly below the upper siltstone stratum with a
thickness of 53.97 m, and the development height rapidly reached 111.41 m, as seen in
Figure 8d.

As theworking facemoved forward, themain roof and the upper four overlying strata
underwent periodic fractures. The development of thewater‑conducting fracture zonewas
stagnant, with an almost fixed height (approximately 111.41 m). As a result, the dangling
distance below the siltstone stratum, with a thickness of 53.97 m, increased. As the work‑
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ing face moved to 300 m, the siltstone stratum underwent the first fracture, and the frac‑
tured rocks formed a stable hinged structure. The water‑conducting fractures then rapidly
developed above the siltstone stratum, and the development height increased rapidly to
165.38 m, as shown in Figure 8e.

As the working face further moved to 330 m, the two overlaying strata (medium‑
sandstone and siltstone strata) were fractured, accompanied by the fracturing of the lower
siltstone stratum with a thickness of 53.97 m. The fractured rocks then formed a stable
hinged structure, and thewater‑conducting fractures developed rapidly to below the ultra‑
thick gravel stratumwith a thickness of 96.85 m, accompanied by the abrupt change in the
development height to 246.38 m. As the working face moved forward to 390 m, the overly‑
ing strata underwent periodic fracturing, and thewater‑conducting fracture zone no longer
developed upward. As shown in Figure 8f, the development height remained at 246.38 m.

As the working face moved to 510 m and mining was completed, we observed the
gravel stratum with a thickness of 96.85 m after the overlying stratum was fully stable.
No apparent fractures and cracks noticeably occurred in the gravel stratum. The water‑
conducting fracture zone stopped the development andmaintained its height at 246.28m—
a significant “ 八”‑shaped longitudinal fracture formed from the left side’s open‑off cut
extending to the right’s mining stop. As shown in Figure 9, the caving strata on the top of
the goaf showed saddle‑shaped distribution. According to the theory of the upper three
zones, it developed the caved zone, the fractured zone, and the continuous deformation
zone in the overlying strata of the W8203 working face. Based on the measured results in
Tashidian Erjingtian Mine, the height of the water‑conducting fracture zone on the roof of
the No. 8 coal seam was 229.32 m. The measured value was close to the simulation data
with the physical analog model, suggesting the reliability of the present physical analog
model tests.
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4. Theoretical Analysis of the Evolution Laws of Water‑Conducting Fractures
4.1. Brief Introduction to Key Stratum Theory

Based on roof strata’s research and practice results formany years, academicianMing‑
gao Qian proposed the key stratum theory and the definitions of primary key stratum and
sub‑key stratum [34]. The primary key stratum was the stratum, which played a decisive
role in the rock movement. In contrast, the sub‑key stratum referred to the stratum, which
played a decisive role partly in rock movements. The key strata in the overlying strata of
the stope showed the following characteristics:

(1) In terms of geometric characteristics, the key strata were thicker than the other
strata.

(2) Regarding lithological characteristics, key strata were more rigid than others.
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(3) In terms of deformation characteristics, the key strata sink in synchronized and
coordinated patterns with the whole or part of the overlying strata.

(4) In terms of fracture characteristics, the fracture of key strata can rupture the whole
or part of the overlying strata.

(5) In terms of bearing characteristics, the plate or beam structure of the stratumbefore
the failure serves as the primary bearing structure of the whole or part of the strata, i.e.,
the key strata after fracture still show the bearing capacity to a certain degree.

4.2. Determination Method of the Locations of Key Stratum
We judged the locations of key stratum according to the following procedures.
First, we determined the locations of hard strata in the overlying strata based on the

calculated loads. As described in [34], the load on the stratum included two parts—the
load induced by the self‑gravity and the load caused by the interaction of the upper strata
(see Figure 10). The load on the stratum could be calculated using Equation (1). If the
overlying load qn+1 < qn, the n‑th layer was a key stratum. All hard strata that satisfy the
above conditions were the key strata.
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We calculated the load on the stratum as:

(qn)1 =
E1h3

1(r1h1 + r2h2 + . . . + rnhn)

E1h3
1 + E2h3

2 + . . . + Enh3
n

(1)

where E1, E2, . . . , and En denote the elastic modulus of the 1st, the 2nd,... and the nth
strata, respectively, with a unit of MPa; h1, h2, . . . , hn denote the thicknesses of the 1st, the
2nd,... and the nth strata, respectively, with a unit of m; γ1, γ2, . . . , γn denote the body
forces on the 1st, the 2nd,... and the nth strata, respectively, with a unit of MN/m3.

Next, we took the judgment based on the calculated fracturing distances of various
hard strata according to Equation (2). If the calculated fracturing distance ln+1 > ln was
simultaneously satisfied, the hard stratum was the key stratum. Therefore, the fracturing
distance was calculated as:

l = h

√
2RT

q
(2)

where h was the thickness of the stratum, with a unit of m; RT was the tensile strength of
the stratum, with a unit of MPa; qwas the load on the stratum, with a unit of MPa.
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4.3. Determination of Key Strata in the Working Face
Based on the above‑described judgmentmethod of key strata, each stratum’s load and

fracturing distances were calculated layer by layer from bottom to top and compared with
that of the adjacent strata to determine the location of the key stratum further.

Table 4 lists the overlying strata’s physical and mechanical parameters in the W8203
working face. For the enhancement of calculation precision and the convenience ofwriting,
the unit of the calculated load on the strata was converted into KPa.

Table 4. Physical and mechanical parameters of the overlying strata.

Serial Number of
the Stratum Lithology

Thickness of
Stratum
(m)

Body Force
(MN/m3)

Tensile Strength
(MPa)

Elasticity
Modulus
(MPa)

1 Mudstone (false
roof) 3.00 0.024 3.56 1550

2 Siltstone (main
roof) 39.00 0.0256 8.12 1450

3 Mudstone 19.80 0.024 3.56 1550
4 Siltstone 27.00 0.0256 8.12 1450

5 Medium
sandstone 6.92 0.0236 5.02 1300

6 Mudstone 15.69 0.024 3.56 1550
7 Siltstone 53.97 0.0256 8.12 1450

8 Medium
sandstone 54.00 0.0236 5.02 1300

9 Siltstone 27.00 0.0256 8.12 1450
10 Glutenite 96.85 0.0253 6.75 1400
11 Mudstone 86.66 0.024 3.56 1550
12 Glutenite 37.63 0.0253 6.75 1400
13 Loose stratum 15.90 0.022 0.01 30

Based on the calculated results (see Equations (S1)–(S10) in Supplementary Material),
the 1st stratum and the 2nd stratum were hard, and the fracturing distances of the mud‑
stone false roof and the 2nd siltstone stratum satisfy the condition: l1 < l2. Therefore, both
mudstone false roof and main roof were identified as key strata. Due to the limited space
in this study, the calculation processes for many strata were tedious and not repeated here.
However, through calculation, there existed four key strata in the overlying strata of the
W8203 working face from bottom to top; namely, the 1st mudstone, the 2nd siltstone, the
7th siltstone, and the 10th glutenite strata, in which the 10‑the glutenite stratum was the
primary key stratum and the rest were sub‑key strata (see Table 5).

Table 5. Calculation results of key strata of working face W8203 of Tashidian Erjingtian Mine.

Key Stratum Serial Number
of Strata Lithology Load on the

Stratum (KPa)
Fracturing
Distance (m)

Sub‑key stratum 1 1 Mudstone 75.900 29.056

Sub‑key stratum 2 2 Siltstone 1749.111 118.836

Sub‑key stratum 3 7 Siltstone 1654.379 169.094

Primary key
stratum 10 Glutenite 3149.173 200.525

4.4. Application of Key Stratum Theory
Based on the similar model test results of the W8203 working face and the related

monitoring data, the variation curves of the development height of the fractured water‑
conducting zone in the roof of the coal seam with the advancing distance were plotted, as
shown in Figure 11.
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As shown in Figure 10, the height of the water‑conducting fracture zone did not in‑
crease with the advancing distance in a simple linear pattern, attenuation, and mutation.
Next, based on the physical analog model experimental result and key stratum theory,
we dynamically analyzed the development process of water‑conducting fractures in the
W8203 working face.

Based on the judgment results of the locations of key strata in the working face, the
mudstone false roof with a thickness of 3 m was determined as the sub‑key stratum 1.
The sub‑key stratum 2 was above the sub‑key stratum 1; therefore, the latter had no con‑
trolled stratum, which fell with mining during the advancing process. Therefore, a water‑
conducting fracture zone immediately developed when the W8203 working face began
to move forward. At an advancing range of 0~120 m, the height of the water‑conducting
fracture zone was 3 m. As the operational front of the working face moved to 150 m, the
sub‑key strata 2 was first fractured, and the height of the water‑conducting fracture zone
changed abruptly and briefly stayed at 41 m. As the working face moved to 180 m, four
strata controlled by the sub‑key stratum underwent the first fracture, and the height of the
water‑conducting fracture zone developed upwards to the bottom of the sub‑key stratum
3 and reached up to 111.41 m. Afterward, as the working face moved to 180~279 m since
the sub‑key stratum showed no fracturing, the development of water‑conducting fractures
was stagnant. As the working facemoved to 300m, the suspended span below the sub‑key
stratum 3 reached the limit of caving fracturing distance. At that moment, the sub‑key stra‑
tum 3 was fractured first, and the height of the water‑conducting fracture zone changed
abruptly and briefly stayed at 165.38m. As theworking facemoved to 330m, two overlying
strata controlled by the sub‑key stratum 3 fractured first, the water‑conducting fractured
zone developed upwards, and the water‑conducting fracture height changed abruptly to
the bottom of the primary key stratum, reaching up to 246.38 m. As the working face
moved from 330 to 510 m (the terminal mining line), the primary key strata were not frac‑
tured, and the development of water‑conducting fractures tended to be stable and showed
no change. Finally, the height of the water‑conducting fracture zone was maintained at
246.38 m.

5. Discussion
By combining similar material physical model simulation, field monitoring, and theo‑

retical analysis, this study explored the fracture characteristics of weakly cemented overly‑
ing strata and the evolution rules of water‑conducting fractures. We found that the weakly
cemented overlying strata in western China were easily deformed and fractured, and key
strata controlled the development height of thewater‑conducting fracture zone on the roof.
When the key or sub‑key strata were not cracked, the height of the water‑conducting frac‑
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tured zone stagnated in development. When the primary key or sub‑key strata were frac‑
tured, the size of water‑conducting fractures changed abruptly. According to the collected
data, 28.57% of strata were regarded as mediocre hard strata, while 71.43% were soft and
weak. Only a few key strata controlled the movement of strata in the weakly cemented
overlying strata.

Additionally, most of themechanical properties of theweakly cemented rocks inwest‑
ern China were smaller than the lower limits of the parameters in similar rocks of central
and east China [22]. Accordingly, the key strata in the stopes of western China were more
easily fractured than those in central and east China. The weakly cemented rocks in west
China also have a smaller residual bulking coefficient than those in eastern and central
China, thereby showing a consolidation phenomenon similar to the soil under sufficient
pressure [35–37]. Atmospheric precipitation and snow melt water recharge groundwa‑
ter through vertical infiltration of surface rock pores and fissures. Coal seam mining will
produce water‑conducting fractures, communicate the upper aquifer, and other recharge
methods will flow into the goaf. Through the drainage system and the drainage of the
goaf water, it will be discharged to the surface to ensure safe production. The weakly ce‑
mented strata quickly disintegrated when encountering water. Once the interconnected
water‑conducting fractures were formed, the water circulation would aggravate this phe‑
nomenon in addition, and the residual bulking coefficient can even be 1 [3]. Accordingly,
under the same mining height, the variation of the caved zone in the western weakly ce‑
mented overlying strata was more evident than those in the overlying strata of central and
east China when compacted and stabilized. Compared with the rocks of central and east
China, it was not easy to form a stable hinged structure after the rock stratum was broken,
leading to the greater height ofwater‑conducting fractures in thewesternweakly cemented
strata. Some previous studies proved the conclusion.

According to the statistics in [38], researchers found that the fracture‑to‑mining ra‑
tio of the deeply buried coal seam in Dongsheng Coal of western China ranged from
17.2 to 24. The statistics in [39] revealed that the fracture‑to‑mining ratio of the deeply
buried coal seam in the Hujierte Mine in western China ranged from 17.7 to 24.56. Based
on the statistics of the collected cases in [3], the fracture‑to‑mining ratio of nearly 50%
of weakly cemented strata in large‑mining‑height working faces exceeded 15. Even se‑
riously, the fracture‑to‑mining ratio of the S19 drill in the No. 31401 working face of the
Qilianta Coal Mine reached 34.98. the fracture‑to‑mining ratio of No. 23101 working face
in Buertai Coal Mine reached 48.67. The fracture‑to‑mining ratio can rarely be excellent
in the Carboniferous‑Permian large‑mining‑height working front. It was noted that the
mining height of Tashidian Erjingtian Mine was 9.6 m, and the measured size of the water‑
conducting fracture zonewas 229.32m, with a fracture‑to‑mining ratio of 23.89, fittingwell
with the existing research results.

In this study, by collecting the measured data of the height of the water‑conducting
fracture zone in different mining areas and physical analog model, the characteristics that
the weakly cemented overburden in the west was easy to deform and destroy and the
height of the water‑conducting fracture was higher than that of the similar stopes in the
central and eastern mining areas were qualitatively demonstrated. Under the background
that the development of mining areas in east and central China is approaching the end and
the ‘strategic westward shift’ of coal resource exploration and development, this feature
needs to be paid attention to by practitioners. In the future, various research methods
will be used to strengthen the research on the development height of the water‑conducting
fracture zone of the weakly cemented overburden in the western Jurassic coal mine to
provide a basis for green and safe production in mining of the west area. By collecting
the measured height data of the fractured water‑conducting zone of the Jurassic coal seam
in western China, the prediction formula of the water‑flowing fractured zone height of
the Jurassic coal seam roof in western China is given by multiple regression analysis. The
physical analog model, numerical simulation, theoretical analysis, and field measurement
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are combined to study the fracture law of overburdened rock and the development height
of the water‑conducting fracture zone from multiple dimensions.

6. Conclusions
The present research results can provide theoretical support for safety products in

the Tashidian Coal Mine and offer guidance for safety products in the western Jurassic
coal mines. The main conclusions are outlined.

(1) Using the established physical analog model, the fracturing characteristics of overly‑
ing strata in the W8203 working face and the evolution rules of the water‑conducting
fracture zone were investigated in depth. Experimental results revealed that the de‑
velopment height of water‑conducting fractures on the roof of coal seam did not lin‑
early increase with the advancing of the working face, certain stagnation, and mu‑
tability. Finally, the development height of the water‑conducting fracture zone was
246.38 m.

(2) Based on the upper‑three‑zone theory, the caved zone, the fractured zone, and the
continuous deformation zone in the overlying strata of the W8203 working face all
developed. According to the measured data, the height of the water‑conducting frac‑
ture zone in the No. 8 coal seam was 229.32 m. The measured value is close to the
test result, which can objectively confirm the experimental reliability.

(3) Based on key‑stratum theory, we determined that one primary key‑stratum and three
sub‑key strata existed in the overlying strata of the W8203 working face of Tashid‑
ian Erjingtian Mine. The key strata controlled the development height of the water‑
conducting fracture zone. When the primary key stratum or sub‑key stratum was
fractured, the size of the water‑conducting fracture zone developed abruptly.

(4) Overall, the heights of water‑conducting fractures in the weakly cemented overlying
strata of western China exceeded that of similar stopes of central and east China. This
should arouse great attention from the practitioners. Researchers should strengthen
the research on the development height of the water‑conducting fracture zone in the
Jurassic weakly cemented overlying strata of western China to provide the basis for
safety and green production in the western mines.
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