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Abstract: Typhoon rain dominates meteorology-rainfall-runoff-environmental factor changes at the
regional scale and regulates water resources in the river network area by means of multi-field coupled
meteorological, hydrological, and geographic models, shaping complex water resources and water
environment scenarios in the Pearl River Delta. Because of limitations in the monitoring capacity
of the typhoon process, quantifying the ephemeral processes and spatial heterogeneity information
of typhoon rain events is difficult, which makes the degree of research on typhoon rainfall-runoff
transformation processes low and the progress in regional water resources and water environment
evaluations based on typhoon events slow. In this study, typhoon rain event data, namely, remote-
sensing spectra, measured water quality parameters, and meteorological factors, in the Pearl River
Delta during 2022 were first collected. Next, a dynamic coupling model between typhoon rain events
and the water network environment was established to simulate and predict the water environment
conditions of the Zhongshan City water network controlled by the regulation of typhoon rain events.
By inputting the quantitative data of the typhoon rain events, the water environment conditions
of the river network in Zhongshan City after the typhoon rain events were simulated and output.
The results showed that the distribution of dissolved oxygen concentrations and ammonia nitrogen
concentrations were consistent: the concentration was highest in the central urban area, which is
more urbanised than other areas, and it was lowest in the area far from the urban centre. Moreover,
under the influence of Typhoon Ma-on, the water environment of the Zhongshan City water network
changed over time: dissolved oxygen concentrations decreased and then increased, and ammonia
nitrogen concentrations increased and then decreased. The water quality prediction model proposed
in this study helps to improve the understanding of the dynamic impact of typhoon rain on the
water quality of an urban water network in the Pearl River Delta and is conducive to improving the
formulation of water environment control strategies during typhoon transit.

Keywords: typhoon rain events; water quality prediction model; artificial neural network; remote
sensing; diachronic change of water environment

1. Introduction

The development of the Guangdong-Hong Kong-Macao Greater Bay Area has rapidly
advanced the social economy and the living standard of individuals in the Pearl River
Delta region. However, the river network in the Pearl River Delta, an essential route
for the Pearl River to flow into the South China Sea, has been experiencing increasingly
prominent water quality pollution problems [1]. The Pearl River Delta is the area that is
most severely affected by typhoons in China [2], and it suffers economic losses and human
casualties from typhoons annually [3,4]. Under the influence of the global trend of frequent
extreme weather [5], typhoon rains present natural characteristics such as a high intensity,
wide distribution, rapid development and evolution, and suddenness [6]. Typhoons have
obvious seasonality [7], and in addition to triggering natural disasters such as mudslides [8]

Water 2023, 15, 1084. https://doi.org/10.3390/w15061084 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15061084
https://doi.org/10.3390/w15061084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-2554-8107
https://doi.org/10.3390/w15061084
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15061084?type=check_update&version=1


Water 2023, 15, 1084 2 of 15

and landslides [9], they accelerate the frequency of hydraulic exchange [10], intensify
bottom sediment disturbance [11], and increase the input of organic matter and nutrients
from terrestrial sources [12], affecting surface water quality [13,14]. Because the Pearl River
Delta is one of the most complex and variable environmental regions worldwide, traditional
water environment mathematical models are often not applicable [15], and most water
environment mathematical models involve increasingly complex elements and require an
increasing number of input parameters [16]. The aforementioned phenomenon and the high
cost of traditional water quality-monitoring methods [17] make gaining a comprehensive,
accurate understanding of the problem of water quality conditions difficult [18]. Therefore,
remote-sensing technology, which is fast, extensive, and time-sensitive, has become an
essential tool for assessing water quality conditions and must be applied flexibly [19].

A series of studies on water quality data have been conducted to improve the accuracy
of water quality predictions. Data-processing methods have included: Gray Relational
Analysis [20], Gaussian Cloud Transformation [21], Principal Component Analysis [22],
Wavelet Transform [23], and Moving Average Filter [24]. In 2011, Wang [25] et al. devel-
oped a prediction model based on an agenetic algorithm-back propagation model for the
concentrations of ammonia nitrogen and chemical oxygen demand in the Weihe River
region of China. Their results showed that the method had better prediction results than the
traditional statistical multiple regression method. Wang Jing [26] et al. used a GA-BP model
to consider four meteorological factors—air temperature, water temperature, water surface
evaporation, and rainfall—to establish a prediction model for the total concentration of
nitrogen and phosphorus in water bodies. Ye [27] and Nukapothula [28] et al. have studied
the spatial and temporal distribution of total suspended solids (TSS)’ concentrations in the
waters of the Pearl River Estuary based on MODIS. The authors pointed out that precipita-
tion, river flow, and wind play a key role in the variation in TSS concentrations. In 2020,
Kupssinskü [29] et al. used remote-sensing information and machine-learning techniques
to develop a prediction model for TSS and chlorophyll concentrations in the study area and
showed that the model had high accuracy. Li [30] et al. used MIKE21 to develop a GA-BP
model to simulate the chlorophyll content of the Wuhan East Lake.

In summary, typhoon rain events regulate water resources and the water environ-
ment in the water network globally, coordinate meteorological and hydrological mod-
els with strong coupling ability, and dominate integrated meteorological-rainfall-runoff-
environmental change scenarios, resulting in significant changes in the water environment
conditions in their impact areas. Therefore, research on the prediction of water environ-
ment conditions in urban water networks under the influence of typhoon rain events can
facilitate the sustainable development of the urban economy and water ecology. As the
area most severely affected by typhoon rain events in China, the Pearl River Delta is not
only affected by typhoon rain events annually, but it has also incurred the phenomenon of
multiple typhoons in a single typhoon rain event on a time scale. Moreover, the typhoon
cloud system covers a wide area, and the clouds are dense during the typhoon impact,
posing a substantial challenge to the monitoring of water environment conditions by optical
remote-sensing satellites, and thus weakening the study of the typhoon rainfall-runoff
transformation process. To study the urban water environment conditions under the influ-
ence of typhoon rain events, we established a water quality parameter prediction model
based on a BP artificial neural network, considering remote-sensing waveform information,
meteorological factors, interval time, and water quality parameter information. Few studies
have explored the prediction of water quality under the influence of typhoon rain events;
therefore, this study has exemplary significance and promotion value. The remote-sensing
processing methods used in this study are conventional and mature. The processing algo-
rithms for remote-sensing data and the differences between different algorithms are not
within the scope of this study.
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2. Data and Methods
2.1. Study Area

Zhongshan is in the south-central part of Guangdong Province, south of the central
part of the Pearl River Delta at the lower reaches of the West and North Rivers. It is
an important node city in the Guangdong-Hong Kong-Macao Greater Bay Area. The
administrative jurisdiction of the city covers an area of 1800.14 km2, between latitudes
22◦11′–22◦47′ north and longitudes 113◦09′–113◦46′ east. The topography of Zhongshan
City is mainly plain, with the central part of the terrain being high and the surrounding area
being flat. The plain area slopes from northwest to southeast, of which low mountains, hills,
and terraces account for 24% of the total area, with a general elevation from 10 m to 200 m.
Rivers account for 8% of the entire territory. The Modaomen Waterway and the Xihai
Waterway of the Xijiang River flow downstream from north to south through the western
boundary of Zhongshan City and exit the South China Sea by the Modaomen. The Hongqili
Waterway of the Beijiang River flows downstream from northwest to southeast through the
northeast boundary of Zhongshan City and exits the Pearl River Estuary by the Hongqili.
Zhongshan City has a subtropical monsoon climate, with abundant heat, light, and rainfall,
and it is a water-rich region. The annual average temperature is 22.5 ◦C, the annual average
precipitation is 1886 mm, and the total precipitation reaches 29.18 billion m3. Disaster
weather mainly includes typhoons, heavy rains, and strong convection, with a lot of rain
and high intensity. The study area is shown in Figure 1.
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Figure 1. Map of the study area.

2.2. Typhoon Data

The typhoon data used in this study were obtained from the Typhoon Network
(http://typhoon.weather.com.cn/index.shtml) (accessed on 23 November 2022). Four
typhoon events (Chaba, Mulan, Ma-on, and Nalgae) affecting the study area in 2022 were
used as study cases. Typhoon Chaba was generated in the South China Sea on 30 June
2022 and made landfall in Dianbai, Guangdong Province on 2 July with a landfall wind
speed of 35 m/s. Chaba had an asymmetrical structure, a large circulation range of the
cloud system, slow movement, a long influence time, and a wide range. Typhoon Mulan

http://typhoon.weather.com.cn/index.shtml
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was generated in the South China Sea on 8 August 2022 and landed in Xuwen, Guangdong
Province on 10 August with a landing wind speed of 23 m/s. Mulan had characteristics of,
for example, a large size, a peculiar path, a short life cycle, a wide impact range, and strong
local rain. Typhoon Ma-on was generated in the ocean east of the Philippines on 21 August
2022 and made landfall in Isabela Province, Philippines on 23 August and in Dianbai,
Guangdong Province on 25 August. Ma-on was fast moving and had an asymmetric
structure. Typhoon Nalgae was generated in the northwest Pacific Ocean on 27 October
2022 and made landfall in Catanduanes, Philippines on 29 October and Zhuhai, Guangdong
Province on 3 November. Nalgae was characterised by low intensity and a loose structure
with a large cloud scale. The typhoon path is shown in Figure 2.
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2.3. Remote-Sensing Data and Pre-Processing

The remote-sensing image data used in this study were obtained from the Resolution
Imaging Spectrometer (MODIS) remote-sensing image files of the Earth Observing System
programme conducted by NASA (https://ladsweb.modaps.eosdis.nasa.gov/) (accessed on
29 November 2022). MODIS has 36 discrete spectral bands to achieve full spectral coverage
from visible to thermal infrared, with a swath width of 2330 km and ground resolutions
of 250 m, 500 m, and 1000 m, respectively, and global observations can be acquired every
1 to 2 d. After acquiring the images, geometric correction was performed to eliminate
the ‘double-eye’ phenomenon and the reprojection operation. Next, FLASSH atmospheric
correction was performed to eliminate the influence of atmospheric and lighting factors on
the reflection of features to obtain the remote-sensing images that fulfil the requirements of
this study.

The principle of geometric correction is as follows [31]:{
x = p−1(ξ, η)
y = q−1(ξ, η)

(1)

where x and y are the image element coordinates in the aberrated image space, and ξ and
η are the image element coordinates corresponding to x and y in the corrected image space,
called the conjugate points of x and y.

https://ladsweb.modaps.eosdis.nasa.gov/
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FLASSH atmospheric correction is an image-level atmospheric correction model devel-
oped based on the MODTRAN4+ radiative transfer model [32], where the spectral radiance
equation for calculating the surface reflectance value (ρ) is:

L =

(
Aρ

1− ρes

)
+

(
Bρe

1− ρes

)
+ La (2)

Le =

(
(A + B)ρe

1− ρes

)
+ La (ρ = ρe) (3)

where L is the radiance of the image element, ρ is the surface reflectance of the image
element, ρe is the average surface reflectance of the image element and the surrounding
area, s is the spherical reflectance of the atmosphere, La is the atmospheric backscatter, Le
is the average radiance of the image; and A and B are the non-surface atmospheric and
geometric condition coefficients, respectively, which are related to the solar altitude angle,
atmospheric model, aerosol type, visibility, average elevation value, and water vapour
content related to the calculation parameters.

The radiative transfer equation for MODTRAN4+ under homogeneous Lambert Sur-
face conditions (in the form of radiative brightness) is:

L(µV) = L0(µV) + T(µV)Fd
ρD

1− SρD
(4)

where L(µV) is the radiation brightness received by the sensor, L0(µV) is the path radiation,
Fd is the total solar downlink radiation, T(µV) is the transmittance between the sensor and
target, and ρD is the target surface reflectance.

2.4. Dynamic Coupling Model

The dynamic coupling model proposed in this study is based on a BP neural network,
using remote-sensing band data, actual measured water quality parameter data, rainfall
data, and time factors to construct a water quality prediction model. Among these models,
the artificial neural network model is used to realise machine learning, which is connected
by multiple neurons and usually divided into an input layer, a hidden layer, and an
output layer. The BP neural network used in this study is based on a fully connected
neural network, which is comprised of forward propagation of the signal and backward
propagation of the error. In forward propagation, the input signal acts on the output
node through the hidden layer and undergoes nonlinear transformation to produce the
output signal. If the actual output does not match the desired output, it is transferred to
the backward propagation process of the error. Error back propagation is used to back
propagate the output error through the hidden layer to the input layer and to apportion
the error to all units in each layer, using the error signal obtained from each layer as the
basis for adjusting the weight value of each unit. After adjusting the connection strength
of the input nodes to the hidden layer nodes, as well as that of the hidden layer nodes to
the output nodes and the threshold value, the error decreased along the gradient direction,
the network parameters (weights and thresholds) corresponding to the minimum error
were determined, and the optimal solution was finally obtained. The main formula is as
follows [33]:

∆Wh = η
(

Yh−1
)T

δh (5)

δh = δh+1
(

Wh+1
)T
∗ f ′

(
Yh−1Wh

)
(6)

δh+1 =
(

T −Yh+1
)
∗ f ′

(
YhWh+1

)
(7)

where ∆Wh denotes the change value of the weight matrix W at layer h, η is the learning
rate, Yh−1 is the output of the network at layer h− 1, δh is the learning signal at layer h, δh+1

is the learning signal at the output layer, T denotes the label value of the data, Yh+1 denotes
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the predicted value of the model, f ′ denotes the derivative of the activation function, and
YhWh+1 denotes the summary of the signal at the output layer.

In this study, the band data of MODIS remote-sensing images, measured dissolved
oxygen (DO) and ammonia nitrogen (NH3-N) data, single-day cumulative rainfall data, and
interval time data of Zhongshan water quality-monitoring stations were used as training
samples to train the network. Wavelength data, single-day cumulative rainfall data, and
interval data of MODIS remote-sensing images were used as inputs, and DO and NH3-N
concentrations were used as outputs. The overall schematic of the dynamic coupled model
is shown in Figure 3.
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3. Research Results
3.1. Results of Measured Data

The data on the dissolved oxygen concentration, ammonia nitrogen concentration,
and rainfall during the transit of Typhoon Chaba, Typhoon Mulan, Typhoon Ma-on, and
Typhoon Nalgae were collected based on the measured data from the water quality-
monitoring stations in Zhongshan City. Owing to limited space, the daily cumulative
rainfall at three typical water quality-monitoring stations was considered. As shown in
Figure 4, the histogram indicates single-day cumulative rainfall. The rainfall curves of
the four typhoons at the three monitoring stations were similar, and the overall trend was
consistent. The difference in the magnitude of the rainfall values may be due to local
topography, hydrology, and other factors.

Figure 5a shows the relationship between daily cumulative rainfall and dissolved
oxygen concentration at three water quality-monitoring stations under the influence of
the same typhoon rain, where the line is the daily cumulative rainfall, and the histogram
is the dissolved oxygen concentration. As shown in Figure 5a, the dissolved oxygen
concentration at site 1 shows a positive correlation with the daily accumulated rainfall,
the dissolved oxygen concentration at site 2 shows a negative correlation with the daily
accumulated rainfall, and the dissolved oxygen concentration at site 3 shows a nonlinear
relationship with the daily accumulated rainfall. Figure 5b shows the relationship between
the daily cumulative rainfall and the ammonia nitrogen concentration at three water quality-
monitoring stations under the influence of the same typhoon rain, where the line is the
daily cumulative rainfall, and the histogram is the ammonia nitrogen oxygen concentration.
As shown in Figure 5b, the concentration of ammonia nitrogen at sites 1 and 2 showed a
negative correlation with the daily cumulative rainfall, and the concentration of ammonia
nitrogen at site 3 had little correlation with the daily cumulative rainfall.
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Figure 5. (a) Relationship between daily cumulative rainfall and dissolved oxygen concentration at
different stations under the same typhoon rain. (b) Relationship between daily cumulative rainfall
and ammonia nitrogen concentration at different stations under the same typhoon rain.
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Figure 6a shows the relationship between the daily cumulative rainfall and dissolved
oxygen concentration at the same station under the influence of four typhoon rains, where
the line is the daily cumulative rainfall, and the histogram is the dissolved oxygen con-
centration. As shown in Figure 6a, the dissolved oxygen concentration at site 4 showed a
positive correlation with the daily cumulative rainfall under the influence of Typhoon Mu-
lan and Typhoon Ma-on and a negative correlation with the daily cumulative rainfall under
the influence of Typhoon Chaba and Typhoon Nalgae. Figure 6b shows the relationship
between the daily cumulative rainfall and ammonia concentration at the same site under
the influence of four typhoon rains, where the line is the daily cumulative rainfall, and
the histogram is the ammonia concentration. As shown in Figure 6b, under the influence
of Typhoon Chaba and Typhoon Ma-on, the concentration of ammonia nitrogen at site 4
showed a negative correlation with the daily cumulative rainfall; under the influence of
Typhoon Nalgae, it showed a positive correlation; under the influence of Typhoon Mulan,
a nonlinear relationship was observed.
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Figure 6. (a) Plot of daily cumulative rainfall versus dissolved oxygen concentration under different
typhoon rains at the same station. (b) The relationship between daily cumulative rainfall and
ammonia nitrogen concentration under different typhoon rains at the same station.
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3.2. Model Prediction Results
3.2.1. Model Establishment

To effectively predict the dissolved oxygen and ammonia nitrogen concentrations in
the urban water network under the influence of typhoons, this study used the waveband
data of MODIS remote-sensing images from Band1 to Band7, measured dissolved oxy-
gen (DO) concentration data, ammonia nitrogen (NH3-N) concentration data, single-day
cumulative rainfall data, and interval data as training samples to construct a prediction
model based on a BP artificial neural network. The training samples include the training
set, verification set, and test set, which account for 70%, 15%, and 15% of the training
samples, respectively.

The artificial neural network fitted data are shown in Figure 7.
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Figure 7. Regression analysis schematic diagram of water quality parameters. (a) Schematic of
regression analysis of dissolved oxygen dataset. (b) Schematic of regression analysis of ammonia
nitrogen dataset.

3.2.2. Model Validation

The measured data outside the training samples were selected to validate the model
(Table 1). The maximum absolute error of the dissolved oxygen concentration prediction
model was 1.2753, the minimum absolute error was 0.4514, the average absolute error was
0.7583, the maximum relative error was 0.76, the minimum relative error was 0.078, and the
average relative error was 25.24%. The maximum absolute error of the ammonia nitrogen
concentration prediction model was 0.0733, the minimum absolute error was 0.0135, the
average absolute error was 0.04875, the maximum relative error was 0.45, the minimum
relative error was 0.0226, and the average relative error was 28.88%. Thus, the model
proposed in this study has a satisfactory generalisation ability and a certain reference role
in predicting water quality under the influence of typhoon rain events.
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Table 1. Dynamic coupling model validation table.

Input

Band1 1327 1415 1137 906
Band2 3458 2789 2176 1546
Band3 1623 1627 1407 1242
Band4 1522 1516 1344 1201
Band5 3547 2947 2261 1560
Band6 2484 2389 1647 1038
Band7 1324 1485 1011 347

Cumulative Daily Rainfall 20.9 15.3 16.7 15.6
Interval Time 4 4 3 3

Output

DO Measured Value 8.11 1.67 7.51 5.74
DO Predicted Value 8.7593 2.9453 6.8528 6.1914

NH3-N Measured Value 0 2.17 0.15 0.03
NH3-N Predicted Value −0.0733 2.2191 0.2091 0.0435

3.2.3. Model Prediction

The water quality prediction model proposed in this study was used to predict the
water environment of the Zhongshan City water network during the transit of Typhoon
Ma-on, as shown in Figure 8. The data used for water body extraction were obtained from
GlobeLand30 2020, the first global geographic information publicly provided by China to
the United Nations [34].
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Figure 8. Water quality parameter concentration distribution under the influence of Typhoon Ma-
on. (a) Distribution of rainfall on the first day. (b) Distribution of rainfall on the second day.
(c) Distribution of rainfall on the third day. (d) DO concentration distribution on the first day. (e) DO
concentration distribution on the second day. (f) DO concentration distribution on the third day.
(g) NH3-N concentration distribution on the first day. (h) NH3-N concentration distribution on the
second day. (i) NH3-N concentration distribution on the third day.
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Figure 8 shows the concentration distribution of water quality parameters in the
Zhongshan City water network during the transit of typhoon Ma-on. Overall, the dis-
tribution of dissolved oxygen and ammonia nitrogen concentrations is consistent: the
concentration is highest in the central urban area, which is more urbanised than other areas,
and lowest in the area far from the urban centre.

4. Discussion

Improving the understanding of the water quality changes in the urban water network
under the influence of typhoon rain events helps to reveal the trends of urban water
environment changes under the influence of these events, which helps decisionmakers and
planners to improve water environment control strategies during these events.

The literature has used satellite remote-sensing images and artificial neural networks
in water quality prediction research. All these studies have linked the interrelationship
between remote-sensing image band data and water quality parameters or between water
quality parameters and meteorological factors and then constructed water quality predic-
tion models. In this study, a new idea for constructing a model is proposed by linking
remote-sensing image band data, water quality parameters, meteorological factors, and
temporal factors to construct a water quality prediction model for urban water networks
under the influence of typhoon rain events suitable for this study area. We used a training
sample outside of the actual measurement data to validate the model. The model had
a good predictive performance, and the water quality prediction under the influence of
typhoon rain events has a certain reference role. In general, rainfall with a high dissolved
oxygen concentration can effectively increase the dissolved oxygen concentration in rivers,
whereas a large amount of rainwater inflow leads to an increase in river flow rate, and thus
an increase in dissolved oxygen concentration in rivers [35]. However, rainfall can also
cause a large amount of oxygen-depleting compounds and organic matter to enter the river,
which can rapidly decrease dissolved oxygen content in the river under the effect of sink
production [36].

Based on the water quality prediction model proposed in this study, a water quality
prediction study of the urban water network in Zhongshan City under the influence of
typhoon rain events was conducted, and the change in concentration distribution during
the typhoon ephemeris was compared and analysed. Figure 9 shows the distribution of
dissolved oxygen and ammonia nitrogen concentrations in the urban water network of
Zhongshan City during the transit of typhoon Ma-on compared with that of the previous
day. Overall, the concentration of dissolved oxygen in the urban water network of Zhong-
shan City first decreased and then increased with an increase in the intensity of typhoon
rain. The concentration of ammonia nitrogen initially increased and then decreased. This
finding is consistent with those in the literature. In the early stage of typhoon rain, a large
amount of pollutants are washed away and eroded to form surface runoff into rivers, and
impervious urban pavement significantly increases surface runoff and accelerates the sink
process [37], leading to a decrease in the dissolved oxygen concentration and an increase
in the ammonia nitrogen concentration in the urban water network. In the late stage of
typhoon rain, the pollutant sources are significantly reduced, and a large amount of dis-
solved oxygen-rich rainwater still enters the water bodies of the urban river network under
the effect of sink production, leading to an increase in the dissolved oxygen concentration
and a decrease in the ammonia nitrogen concentration in the urban water network. Thus,
the examined typhoon rain events have a certain degree of a purification effect on the
water bodies in the urban water network. The results of this study can be analysed using
multi-criteria decision analysis [38,39] to produce visualisation results that are critical for
urban environmental decision making and may help urban decisionmakers to increase the
cost effectiveness of water environment control strategies during typhoon transit.
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5. Conclusions

Understanding the trend of the concentration of water quality parameters in urban
water networks under the influence of typhoon rain events is important for the protection
and control of the water environment during typhoon transit. However, the change in the
concentration of water quality parameters depends on many factors, and its mechanism
and process remain unclear. In this study, we proposed a new idea for constructing a water
quality prediction model, that is, using training samples of remote-sensing image band data,
water quality parameters, meteorological factors, and the role of time factors. The model
achieved good prediction results in data outside of the training sample and predicted
the water quality of Zhongshan City’s water network under the influence of Typhoon
Ma-on. The distribution of dissolved oxygen and ammonia nitrogen concentrations in the
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urban water network of Zhongshan City after a typhoon was consistent: the concentration
was highest in the central urban area, which is more urbanised than other areas, and
it was lowest in the area far from the urban centre. Additionally, the dissolved oxygen
concentration in the urban water network decreased and then increased over time, and
the ammonia nitrogen concentration increased and then decreased over time under the
influence of typhoon rain events. This study effectively predicted the water quality of
the urban water network in the Pearl River Delta under the influence of typhoon rain
events and conducted adaptive water management to reduce unnecessary government
expenditures [40,41]. The results of this study can be combined with environmental input-
output models [42] to help policymakers and planners increase the efficiency of water
environment control strategies during typhoon transit periods to achieve sustainable
economic and ecological development.
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