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Abstract: Dams are expensive technical constructions that ensure food production, sustain farmers’
income, and cover a large percentage of urban water supply demands. However, the threat of a dam
break flood, which can be extremely dangerous for the local society, should be taken into account,
and proactive mitigation measures should be planned. Towards this direction, dam break modelling
and flood hazard assessment are essential for developing flood crisis management and evacuation
plans. In this study, a hypothetical case of failure of the Papadia dam in the Florina Regional Unit in
northern Greece is examined. Two scenarios of failure were considered: overtopping and piping. A
two-dimensional numerical model for the two failure scenarios was used to simulate the dam break
process and flood wave routing using HEC-RAS software. A sensitivity analysis of the mesh size and
breach parameters was performed to better understand their impact on the critical outputs of the
simulation model. Flood hazard maps were produced in GIS environment based on water depth and
velocity criteria. Furthermore, two classification approaches were adopted to assess the flood hazard
using the product of water depth and velocity. The results showed that the extent of the inundated
area could affect most of the study area and could cause severe damage to agricultural activities.

Keywords: dam break; 2D HEC-RAS model; overtopping; piping; flood hazard mapping; sensitivity
analysis

1. Introduction

Dams are designed to serve various purposes such as irrigation, fresh water supply,
industrial water supply, flood control and electrical power generation [1]. Earthen dams
are among the most widely constructed dams due to their lower cost and better suitability
for foundation in different geological and geomorphological conditions, compared to other
dam types. According to the Greek Committee on Large Dams [2], there are 135 dams
operating in the Greek territory (most of them are earthen), following the population
growth, increased irrigation demands, need for power generation and improvement of
the living standards of Greek society over the last decades. However, earthen dams are
more susceptible to failure, as they are less rigid [3]. There are many incidents worldwide
where natural hazards have caused damage to natural environments and human construc-
tions. Many floods have caused economic losses, infrastructure damage and loss of human
life [4]. Increased frequency of flood events [5,6] has led to a global awareness of flood
risk management. Extreme rainfall events, resulting from climate change, contribute to
flooding phenomena [7]. The risk of a dam failure due to flooding phenomena could cause
devastating disasters that affect human safety, ecological quality and the landscape [8–11].
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The created flood wave changes active sediment transport and morphology of the down-
stream area [12]. The small predictability of such events [13] along with the magnitude of
the catastrophic impacts, especially in urban and agricultural areas, classify floods created
by human construction failures as one of the top hazard risks. In particular, Greece is
vulnerable to flooding phenomena due to the varying geomorphological, physiographic
and climatic conditions. There have been 26 major floods recorded during the period
1900–2017, which caused 113 human lives lost, had an impact on the life of 23,000 people
and a total economic cost of USD 2.0 billion [14].

Most dam failures have been recorded on earthen dams following extreme rainfall
events that resulted in heavy floods [15]. The main mechanisms that cause dam failure are
overtopping and piping. Overtopping failures result from the erosive action of water on the
embankment due to the uncontrolled flow of water over, around, and adjacent to the dam.
Inappropriate design of the spillway and insufficient capacity of the reservoir for extreme
inflows can cause overtopping [16]. Spillways, downstream slopes and foundations are the
potential locations at risk for overtopping failure [17]. Piping failure occurs when seepage
through a dam is not properly filtered and soil particles continue to progress and form
sinkholes in the dam (https://damsafety.org/dam-failures, accessed on 5 December 2022),
and the entire dam section is at potential risk. An orifice pressure flow equation simulates
the water flow through the dam during a piping failure breach. The breach will start as
a tiny rectangle (or trapezoidal) hole and grow until the piping hole is large enough. A
mass caving of material will happen if the piping hole is large enough and the weight of
the material above the hole is too much to support. This will hasten the breaching process
and will cause a significant increase in the outflow via the breach. The hydraulics of the
flow also change at this point, moving from a pressure/orifice type flow to an open-air
weir type flow. The breach may continue to widen and cut down until it reaches the natural
channel bed, depending on the amount of water behind the dam.

Data derived from the International Commission on Large dams reveal that about
one-third of dam failures is caused by overtopping, the second-third is caused by piping,
and the remaining third of failures is due to other factors (settlements or liquefaction) [18].

The importance of a dam failure modelling and flood wave hydraulic simulation is
necessary for decisionmakers and authorities in building emergency response evacuation
plans, long-term land use plans and design of mitigation plans for reducing risk of human
safety and property damage [19]. Different methodologies and indices have been proposed
for hazard mapping of inundated areas regarding buildings/infrastructure damage and
people’s safety, based on the results of the hydrodynamic simulation of floods. European
Directive 2007/60/EC (assessment and management of flood risks) resulted in the creation
of hazard maps in all European Union countries. In Greece, related maps are available by
the Special Secretariat of Water on the web page of the Hellenic Ministry of Environment
and Energy. The product of velocity times flood water depth is involved in most of them
and has been used by many researchers and institutions [20–23].

There are many models or software for analysing dam failure and to investigate flood
wave propagation downstream of the dam. One of the most commonly used models is the
Hydrologic Engineering Centre—River Analysis System (HEC-RAS) model developed by
the Hydrologic Engineering Centre of the United States Army Corps of Engineers in 1981
and has been improved, enriched and updated since then. It is employed for dam breach
parameters calculation, inundation mapping and hydraulic simulation of the flood wave,
which is vital in dam failure studies and for the design of precautionary or emergency
plans. The HEC-RAS model has been widely used as the simulation tool for dam break
analysis due to overtopping or piping failure [24–30].

Dam breaks and resulting floods constitute complex phenomena with many uncer-
tainties that can cause unpredicted damage to downstream areas and threaten the lives
of the local population. Therefore, a main research issue of a dam break analysis is to
develop an integrated approach for flood wave propagation and flood hazard visualization
and estimation.

https://damsafety.org/dam-failures
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The objective of this study is to investigate hypothetical scenarios of both overtopping
and piping failures for the Papadia dam in Florina Prefecture, Greece, and to assess the
flood hazard. The assumption that the hypothetical failure was caused by the probable
maximum flood (PMF) was adopted for the overtopping scenario. A 2D unsteady flow HEC-
RAS model was employed to represent the geometry of the dam, to estimate dam breach
characteristics and to perform hydraulic calculations [31]. A digital elevation model (DEM)
is used as a base for the floodplain area. The simulation procedure based on hydrological
modelling is followed by a sensitivity analysis as to provide better knowledge of the
impact of model parameters on the critical model outputs [32]. A flood hazard procedure
is implemented by the coupling of GIS and RAS-Mapper using different classification
approaches based on maximum water depth, maximum water velocity and the product
of water depth times velocity. The depth–velocity product is usually considered as a
critical variable for damage to a collapse of buildings and human instability. Detailed
flood hazard maps based on the above criteria are produced, and the affected areas are
identified. The current study provides critical information for peak discharge on the
boundary conditions and flood travel time and damaged land use categories. The timely
receipt of information produced by the proposed methodological framework could be vital
in preventing human loss.

2. Study Area—Dam Characteristics

The catchment upstream of the Papadia dam is developed within the Florina basin
boundaries, as is depicted in Figure 1. The Florina basin is located in the West Macedo-
nia region in Greece, covering 863 km2. The mean precipitation in the Florina basin is
870 mm, and the mean temperature is 11.3 ◦C. The Florina basin belongs to the Pelagonian
geotectonic zone. The basin’s mountainous area is occupied by carbonate and crystalline
rocks [33]. The lower parts consist of Neogene and Quaternary sediments. The Quaternary
sediments are alluvial deposits and consist of alternations of sands, gravels, conglomerates,
and clays, while the Neogene sediments consist of marls, sandstone, sands, and marly
limestone. The length of maximum thalweg is equal to 16.5 km. The vast majority of the
geological formations in the area are characterized as impermeable to moderately perme-
able, regarding the hydraulic conductivity [34], favouring the creation of a dense extended
hydrographic network. The Papadia basin upstream of the dam covers an area of 77 km2.
The elevation ranges from 871 to 2523 m a.s.l., and the mean elevation is 1540 m a.s.l. The
mean slope is 33.5%. According to Corine land cover (2018), the dam upstream basin is
occupied mainly by forest land. The Florina basin in general is occupied by forest and
agricultural land, as is depicted in Figure 2 and Table 1.

The Papadia dam is used for the cooling of the Meliti Thermal Power Station after
its construction in 2008 by the Public Power Corporation of Greece. It is a rock fill dam
with an impervious clay core (Figure 3) and has a volume equal to 3.5 × 106 m3. The main
technical characteristics of the Papadia dam and its spillway are shown in Table 2.

Table 1. Florina hydrological basin land cover (CORINE 2018).

Land Cover Area (km2) %

Discontinuous urban fabric 6.15 0.71
Industrial/commercial units 3.15 0.36

Mineral extraction sites 2.97 0.34
Non-irrigated arable land 307.33 35.61

Pastures 7.36 0.85
Complex cultivation patterns 21.78 2.52

Land occupied by agriculture/natural vegetation 94.38 10.94
Broad-leaved forest 241.08 27.94

Coniferous forest 5.73 0.66
Mixed forest 8.70 1.01

Natural grasslands 72.89 8.45
Sclerophyllous vegetation 15.68 1.82

Transitional woodland–shrub 75.73 8.78
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Table 2. Papadia dam technical characteristics.

Parameter Value

Crest elevation (m a.s.l.) 933
Crest length (m) 538
Crest width (m) 12

Maximum height of dam from foundation (m) 67
Volume of storage area at crest elevation (×106 m3) 14

Upstream dam face slope 2:1
Downstream dam face slope 1.8:1

Spillway maximum capacity (m3/s) 420
Spillway crest elevation (m a.s.l.) 928

Spillway width (m) 35
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Figure 3. View of the Papadia dam. (a) View of the dam from downstream. (b) View of the reservoir
from the dam crest. (c) View of the spillway from downstream.

3. Model Elaboration

HEC-RAS can perform numerical computations of steady or unsteady flow conditions
in one-dimensional (1D) or two-dimensional (2D) models. One-dimensional model com-
putations are performed using Saint Venant equations at selected cross-sections created
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along the riverbed following flow direction and are used in certain cases such as in channel
planning [35,36]. In the 2D model, a finite-element mesh is created that solves the Saint
Venant equations in an area over the river channel and the floodplain [37]. The use of a 2D
modelling approach is adopted in this study for more accurate or realistic results [38,39]
since it can simulate complex flow conditions and is able to simulate floodplain inundation
and river hydraulics.

The dam failure process and flood wave hydrodynamic simulation using a 2D HEC
RAS model (v.5.07) [37] requires the following type of data as input: (a) digital elevation
model (DEM) of the area, (b) land use maps and the Manning roughness coefficient,
(c) 2D grid (study area), (d) dam reservoir geometry, (e) dam reservoir 2D flow area
connection (dam), (f) geometry of the dam, (g) breach structure geometry and characteristics,
(h) upstream boundary conditions (flood hydrograph for the case of overtopping) and
(i) downstream boundary conditions (normal depth).

Concerning model set up, the reservoir geometry is represented by an elevation-
storage volume diagram. The reservoir is connected to the downstream area via the dam,
which is modelled as a weir/embankment structure type in the HEC-RAS environment.
After collecting and verifying data, the modelling process is conducted in two stages. First,
the dam failure mechanism (overtopping/piping) is determined, and the breach geometry
is estimated. Precipitation data were used to calculate probable maximum precipitation
(PMP), and the produced probable maximum flood (PMF) is used as an input to the model.
In the second stage, the outflow hydrograph is estimated, and hydrodynamic simulation of
flood wave over time is implemented. Finally, flood water depth and velocity maps of the
inundated areas are produced.

Concerning the overtopping failure, the following assumptions were adopted: (a) the
water surface in the dam reservoir at the beginning of the failure is at the elevation of the
dam crest, and at the same time, the inflow in the storage area is equal to the peak of the
PMF; (b) the spillway is blocked by tree trunks or other material; (c) the water from the
reservoir flows over the dam crest at the beginning of the simulation (t = 0) and erosion
channel on the dam body starts to immediately develop; and (d) the channel is eroded
and widened over time until it reaches its estimated final dimensions—the water passes
through the channel and over the dam body. Respectively, for the piping failure, it is
considered that: (a) the water surface in the dam reservoir at the beginning of the failure
is at the elevation of the dam crest; (b) at the beginning of the simulation (t = 0), a small
hole occurs at a specific elevation (Hp) of the dam body; this elevation is equal to the final
bottom elevation of the dam breach structure; (c) an average daily discharge (that is not
related to flooding conditions) is set as an inflow; and (d) breach final bottom elevation was
selected for the elevation that produces the highest peak of the outflow hydrograph.

The methodological flow diagram used in this study for the dam break and flood
hazard assessment is presented in Figure 4.

3.1. Digital Data

The digital elevation model (DEM) was obtained by the Hellenic Military Geograph-
ical Service (HMGS). The spatial resolution is 30 m after digitization of contours (20 m
intervals) of the topographic diagrams (scale 1:5000). The Geographic Coordinate System
is GCS_GGRS_1987 (Greek Grid). The digital land cover map for the area was derived from
CORINE Land Cover Inventory (latest update 2018) available on https://land.copernicus.
eu/pan-european/corine-land-cover, 26 November 2022 (Figure 2). The 2D grid flow and
storage area were digitized based on the DEM, satellite images (ArcWorld Images) and
field observations.

https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
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3.2. Breach Parameters

For dam break analysis caused by a flooding phenomenon, empirical regression
equations for the estimation of breach parameters have been proposed in the literature
and are used worldwide [18,40–43]. The breach parameters estimation is based on both
unbiased and biased data. Unbiased data are the dam height, the material used in dam
construction and the reservoir volume. Biased data include the initial water surface in
the reservoir, breach bottom elevation, side slope of the breach, flow coefficient over the
breach and Manning roughness coefficient. The values of these data are derived based on
the examined scenario conditions, the failure mechanism, data collection from previous
studies and field observations. The importance of the fieldwork to gain knowledge about
the studied area is essential in such studies. The Manning roughness coefficient for the
flow area was based on the land cover maps and field observations. The value of the
Manning coefficient equal to 0.035, corresponds to natural minor streams that are clean,
straight, without rifts or deep pools, and with stones and weeds as suggested by Chow [44].
Indicative photos from the field survey in the area are provided in Figure 5.

According to Figure 2, the vast majority of the study area close to the main channel
riverbed is covered by agricultural land. Pastures, discontinuous urban fabric, forests along
with sclerophyllous vegetation and woodland cover a small percentage. Most references
suggest values that range from 0.03 to 0.04 regarding cultivated land, as is depicted in
Table 3. The value suggested for pastures is similar. The values proposed for forests and
urban fabric diverge from this range, but due to the small percentage of these areas, the
overall value was set for the entire model area equal to 0.035.
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Table 3. Manning roughness coefficient values according to land cover.

Land Cover Manning Coefficient (n) Reference

Cultivated areas 0.030–0.04/0.035 [44]/[45]
Forests 0.1/0.16 [46]/[47]

Natural Minor Streams on plain 0.035 [44]
Discontinuous urban fabric 0.013 [46]

Residential area (low intensity) 0.05 [47]
Pastures 0.030–0.035/0.03 [44]/[46]

In the Papadia dam case study, the breach formation time and bottom breach width for
a trapezoidal breach structure were calculated using the Froehlich equations. The equations
presented below were derived by Froehlich using data from 74 dam failure case studies
including both overtopping and piping mechanisms [40]:

Bave = 0.27KoV0.32
w h0.04

b (1)

tf = 63.2

√
Vw

gh2
b

(2)

where: Bave = average breach width (meters), Ko = constant (1.3 for overtopping and 1.0 for
piping failures), Vw = reservoir volume at time of failure (cubic meters), hb = height of the
final breach (meters), g = gravitational acceleration, tf = breach formation time (seconds).

The breach side–slope ratio is considered equal to 1.0 for overtopping and to 0.7 for
piping failure according to Froehlich [40]. Information regarding the reservoir water-surface
elevation at which breach formation begins and the corresponding reservoir volume, was
selected based on the available official information on the dam’s technical characteristics.
The selected parameters for the estimation of breach geometry are summarized in Table 4.

Table 4. Breach parameters for the dam failure mode.

Breach Parameters and Data
Dam Failure Mode

Overtopping Piping

Manning’s n value 0.035 s m−1/3 0.035 s m−1/3

Storage area volume 13.0 × 106 m3 13.0 × 106 m3

Final bottom width 25 m 23 m
Final bottom elevation +880 m a.s.l +880 m a.s.l.

Left side slope 1 0.7
Right side slope 1 0.7

Weir coefficient for breach area 1.44 1.44
Breach formation time 0.38 h 0.38 h

Trigger failure at water surface elevation
(starting water surface) +933 m a.s.l. +933 m a.s.l.
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The breach location was assumed to be at the dam centreline. Figures 6 and 7 present
the final dam breach geometry for overtopping and piping, respectively, which seems
to be quite similar, as the breach geometry is assumed to be trapezoidal for both cases.
However, the resulting dimensions of the two failure modes are different due to different
input parameter values.
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3.3. Model Boundary Conditions

HEC-RAS simulates unsteady flow by building one-dimensional or two-dimensional
models. In the first case, cross-sections are created along the floodwater path, and in the
2D model, the study area is represented by a grid composed of orthogonal cells. The main
advantage of a 2D model is that it allows water to flow in a different direction, and the grid
creates a more dense network for the representation of the ground surface. Therefore, water
depth and velocity are simulated in a continuous way [48]. The grid cell size is selected
according to the density of the geometric information, resolution of digital terrain, the
extent of the study area so as to achieve model stability and a successful run. The Papadia
dam study area is represented by a grid composed of 25 × 25 m cells including 27.699 cells.
The grid that represents the study area is depicted in Figure 8.
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Since there no hydrographs available on the downstream model area, the assumption
of normal depth is often used in both cases, and in our study, it is applied for both piping
and overtopping scenarios. For the upstream boundary conditions in the overtopping
failure, the probable maximum flood hydrograph is applied. In the case of piping failure,
the base flow hydrograph is applied.

As the true stage for a given flow at the downstream end of the model is not known,
the normal depth is used as a boundary condition by means of the slope of the channel end
and is calculated equal to 0.05 m/m.

3.4. Probable Maximum Flood (PMF)

The probable maximum flood (PMF) hydrograph was inserted as the upstream bound-
ary condition in the reservoir. The PMF is the theoretically largest flood resulting from
the combination of the most severe meteorological and hydrological conditions that could
conceivably occur in a basin. It is used as a design criterion in hydraulic structures to avoid
failures since the construction relies on extreme conditions. The calculation of PMF is based
on integrating the probable maximum precipitation (PMP) and the characteristics of the
upstream drainage basin.

There are two types of methods for converting PMP into PMF. The first type is the
traditional unit hydrograph method. The second type is the river basin or hydrological
process models. Such models require a number of factors and a large availability of data.
Since in our case study, there are no observed runoff data in the area, which are essential
for the calibration of hydrological models, the use of a synthetic unit hydrograph (SUH)
method is preferred.
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The PMP is the theoretically largest height of precipitation that may fall on a specific
location in a given duration. The computation of PMP requires rainfall records, but it is
also estimated by many meteorological models.

There are different methods used for PMP estimation, which can be categorized
as hydrometeorological and statistical [49]. Standard hydrometeorological methods in-
clude moisture maximization method [50], storm transposition method [51], generalized
method [50], storm separation method [52], and depth–area–duration method [53]. Con-
ventional statistical methods include the Hershfield method [54] and its variants and
multifractal method [55]. The Hershfield method, applied in this work, is more commonly
used and can be applied if long-term precipitation data are available [49]. It is based on
average precipitation and standard deviation of rainfall, similar to the Chow frequency
factor method, and is expressed as follows for the estimation of PMP [56]:

PMP = X + km · sm (3)

where X is the sample mean, and sm is the sample standard deviation of annual maximum
precipitation values corresponding to a given duration, and km is the frequency factor.

The frequency factor is given as follows [57]:

km = 20 − 8.6 ln
(

X
130

+ 1
)(

24
d

)0.4
(4)

where X is the sample mean of annual maximum precipitation values corresponding to a
given duration d.

In this study, the PMP is estimated using precipitation data from the Florina meteo-
rological station. It was the only station with long-term data and is representative of the
study area. The maximum precipitation duration is 24 h, and the number of annual values
is 44 (time series period: 1961–2004). Probable maximum precipitation (PMP) was found
equal to 290.79 mm.

The alternating block method (ABM) is used to distribute the PMP by the ∆t = 0.5 h
time interval [56]. The ABM is a method to make the temporal rainfall distribution (design
hyetograph) using the rainfall intensity–duration–frequency (I-D-F) curve. After dividing
the rainfall duration T (h) by the ∆t time interval, the rainfall intensities for the rainfall
durations ∆t, 2∆t, 3∆t, . . . are estimated from the rainfall I-D-F curve. By calculating the
product of the rainfall intensity and the duration (i.e., the rainfall depth) for each rainfall
duration, the cumulative rainfall distribution can be derived. The rainfall intensity data can
then be obtained as the difference between the successive cumulative rainfall depths. After
locating the rainfall peak at the centre of the distribution, the next largest rainfall intensity
is located alternately to the right and left of the rainfall peak in turn.

In the context of the implementation of Directive 2007/60/EC, the Special Secretariat
for Waters of Greece, as the competent body, assigned the preparation of studies related
to the preparation of flood risk management plans in the 14 river basin districts of Greece.
According to the relevant technical specifications, intensity–duration–frequency (I-D-F)
curve equations (parametric relationships for calculating the intensity of rainfall (i) for a
given duration (t) and return period (T)) were drawn up at the locations of the rain gauge
stations in each river basin district. In this study, the I-D-F curve is derived from Florina
station, as follows [58]:

i(t, T) =
265.5

(
T0.126 − 0.69

)
(
1 + t

0.076
)0.686 (5)

The PMF hydrograph estimation for the PMP is conducted by determining the effective
rainfall of the runoff curve number of the Soil Conservation Service (SCS) and the Synthetic
Unit Hydrograph of Sierra Nevada procedure, as described in “Design of Small Dams” [59].
The rainfall curve number for type II soil water condition, in our study area, was found
equal to 85.4, and the parameter S was found equal to 43.4 mm. According to the Sierra
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Nevada synthetic unit hydrograph (SUH) method, the lag time of the unit hydrograph for
the Papadia catchment was calculated equal to 3.32 h and the duration of unit rainfall equal
to 0.6 h. In Figure 9, the PMF of the Papadia dam catchment that was used in the HEC-RAS
model, for the overtopping scenario, is presented.
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3.5. Flood Routing

The flood propagation simulation was performed using the fully dynamic shallow wa-
ter (SW) equations which in the unidirectional form are also called Saint Venant equations.

The unsteady differential form of the mass conservation (continuity) equation is [37]:

∂H
∂t

+
∂(hu)

∂x
+

∂(hv)
∂y

+ q = 0 (6)

where H is the water surface elevation, h is the water depth, t is time, u and v are the velocity
components in the x- and y-directions, respectively, and q is a source/sink flux term.

The momentum equations are given as follows [37]:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −g
∂H
∂x

+
1
h

∂

∂x

(
vxxh

∂u
∂x

)
+

1
h

∂

∂y

(
vyyh

∂u
∂y

)
− cfu +

τs,x

ρh
(7)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −g
∂H
∂x

+
1
h

∂

∂x

(
vxxh

∂v
∂x

)
+

1
h

∂

∂y

(
vyyh

∂v
∂y

)
− cfv +

τs,x

ρh
(8)

where u and v are the velocities in the Cartesian directions, g is the gravitational acceleration,
vxx and vyy are the horizontal eddy viscosity coefficients in the x and y directions, cf is the
bottom friction coefficient, τs is the surface wind stress, and h is the water depth.

The water surface elevation H is given as follows [36]:

H = z + h (9)

where z is the bottom surface elevation, and h is the water depth.
The unsteady flow equations solver in 2D HEC-RAS models uses an implicit fi-

nite volume algorithm, allowing for more computational time steps compared to the
explicit methods. Using this algorithm, 2D flow areas are completely dry at the begin-
ning of the simulation and can handle a sudden rush of water into the area [37]. The
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computational time step in the development of an unsteady flow simulation is critical
for the stability of the model. The time step estimation is carried out according to the
Courant–Friedrichs–Lewy condition:

C =
V · ∆t

∆x
≤ 1 (10)

where C is the Courant number, V is the flood wave velocity (wave celerity) (m/s −1), ∆t is
the time step (s), and ∆x is the grid cell size (m).

In this study, the computational time step value was estimated by Eq. 10 following a
trial-and-error procedure. The final value of the computational time step was found to be
less than one due to a rapidly rising hydrograph and dry conditions in the channel before
the start of the dam break [20].

In the unsteady flow simulation, the initial values of upstream flow and water elevation
in the reservoir are required. In this work, upstream flow was considered negligible, and
water surface was set at an elevation of 933 m a.s.l. (upper crest of the dam).

3.6. Flood Mapping

The RAS-Mapper was used in the 2D HEC-RAS model to visualize HEC-RAS results
in a map-based format and to illustrate flow velocity values, water depth and flood arrival
time at every point of the terrain created within the boundaries of the grid flow, which
covers approximately 171 km2 downstream from the dam body. RAS-Mapper results
were coupled with GIS data and Google Earth images to define the inundated areas and
to evaluate possible threats that dam failure could pose on human lives and properties.
The mapping output interval was set equal to one minute. The depth–velocity product
is usually considered as a critical variable for damage from the collapse of buildings [60]
and human instability [22]. The physical interpretation of the depth–velocity product is
discussed in detail in the references [21,61,62].

The flood hazard assessment is performed using two classification approaches based
on the product of water depth and velocity criterion, and the corresponding maps were
created using RAS Mapper. The first classification approach adopts five flood severity
classes (Table 5) concerning the potential hazard zones for building damage according to the
Designing Safer Subdivisions—Guidance on Subdivision Design in Flood Prone Areas [63].
The second approach is more simplified and has been adopted as a hazard classification in
the US and Canada (https://www.cityfloodmap.com/2013/12/flood-safety-guidelines-
for-depth-and.html, accessed on 20 September 2022). It suggests that people would be at
risk if the product of the velocity and the water depth exceeds 0.8 m2/s (9 ft2/s) as derived
by the 3 × 3 empirical rule (3 ft of water depth times 3 ft/s of water velocity).

Table 5. Flood severity classes (first classification approach).

Flood Severity Category Depth*Velocity Range (m2/s)

Low <0.2
Medium 0.2–0.5

High 0.5–1.5
Very High 1.5–2.5
Extreme >2.5

4. Results and Discussion

In both scenarios of overtopping and piping, the spillway was considered blocked,
and the water surface in the reservoir was set at the dam crest height (933 m a.s.l.). At
the beginning of the overtopping failure, it is considered that the maximum value of the
probable maximum flood hydrograph (730.35 m3/s) occurs as inflow in the storage area. As
concerns the piping scenario, a constant value equal to 0.02 m3/s was considered as inflow
in the storage area. The critical simulation outputs of the study are presented in Table 6.

https://www.cityfloodmap.com/2013/12/flood-safety-guidelines-for-depth-and.html
https://www.cityfloodmap.com/2013/12/flood-safety-guidelines-for-depth-and.html
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Table 6. Critical simulation outputs of the dam failure scenarios.

Overtopping Piping

Maximum discharge on the dam breach structure 13,365 m3/s 10,800m3/s
Maximum discharge on the outlet of the 2D flow area 673.3 m3/s 266.2 m3/s
First arrival time of flood water on the outlet of the 2D

flow area (after the beginning of failure) 216 min 270 min

Arrival time of maximum discharge on the outlet of
the 2D flow area (after the beginning of failure) 279 min 319 min

Maximum flood water depth 30.75 m 29.2 m
Maximum flood water velocity 21 m/s 20.5 m/s

The overtopping failure is the more dangerous case since the maximum discharge
values at the dam and outlet are higher compared to the piping failure scenario (Table 6).
To enhance the reliability of the results, a sensitivity analysis was performed for the model
mesh size and for the breach parameters of the overtopping scenario. The selected mesh
size 25 × 25 m, the smallest that can be used according to the available DEM analysis, is
compared to two different geometries (50 × 50 and 100 × 100 m). The results presented
in Table 7 show that larger mesh sizes can produce small decreases in the value and the
arrival time of the maximum discharge on the outlet of the 2D flow area and quite a larger
one on the maximum water depth, especially for 100 × 100 grid resolution.

Table 7. Mesh size sensitivity analysis results.

Simulation Outputs for Mesh Size Sensitivity
Mesh Size

25 × 25 50 × 50 100 × 100

Maximum discharge on the outlet of the 2D
flow area (m3/s) 673.3 617.48

(−8.3%)
614.77

(−8.7%)
Arrival time of maximum discharge on the

outlet of the 2D flow area (min) 279 272
(−2.5%)

258
(−7.5%)

Maximum flood water depth (m) 30.75 29.3
(−4.7%)

22.9
(−25.5%)

As concerns the breach parameters, the final breach bottom width, the side slope
and the breach formation time obtained from the Froehlich equations [40] are used for
the sensitivity analysis. A step change of ±25% is performed for each one of the above
parameters, while the remaining ones are kept constant to examine their effect on maximum
discharge, the occurrence time on the dam breach structure, and the maximum water depth.
The results of the sensitivity analysis are presented in Figures 10–12. Figure 10 indicates
that maximum discharge on the dam breach structure increases with an increase in breach
bottom width and side slope and decreases as the breach formation time is reduced.
According to percentage change, maximum discharge on the dam breach structure is very
sensitive to breach formation time.

In Figure 11, the values of time of occurrence of the maximum discharge on the dam
breach structure are presented according to the variation of breach parameters. A decrease
in the peak flow occurrence time is observed with an increase in the final breach bottom
width and side slope. The breach formation time appears to be the most critical parameter
in this case, as an increase (or decrease) in its value produces a significant increase (or
decrease), respectively, of the peak flow occurrence time on the dam structure.

The maximum water depth, as shown in Figure 12, slightly increases with an increase
in breach bottom width and side slope and has a declining trend related to breach formation
time. In this case, the breach formation time is also found to be the parameter that has a
greater impact on the maximum water depth.

The results of the simulation model showed that the arrival times are shorter for
the overtopping scenario, and the time difference between flood water occurrence and
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maximum discharge at the outlet is 63 and 49 min for the overtopping and piping sce-
narios, respectively (Table 6). The extent of the flooded area and the spatial distribution
of flood water depth are depicted in Figures 13 and 14 for the overtopping and piping
scenarios, respectively, while in Table 8, the percentages of flooded area per severity class
are given [16,64].
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Table 8. Flood severity classes for maximum water depth and the inundated area per class.

Flood
Severity Category

Max Depth
(m)

Overtopping Piping

Area (km2)
Area
(%) Area (km2)

Area
(%)

Low/Medium 0–3 17.73 70.89 16.95 73.17
High/Very High 3–6 5.44 21.76 4.75 20.51

Extreme >6 1.83 7.35 1.46 6.32
Total Area: 25.01 100 23.16 100

In the mountainous zone, overtopping failure results in a higher flood maximum
water depth than piping (Figures 13 and 14). In the plain area, which is located at a greater
distance from the dam, the maximum water depth of both scenarios has small fluctuations,
while the boundaries of the inundated area are quite similar (Figures 13 and 14). The
total inundated area for both scenarios is almost equal (25.01 and 23.16 km2) with the
overtopping scenario having a slightly larger inundated area (Table 8). The maximum
water depth for both scenarios is more than three meters for 21.76% and 20.51% of the total
area. Furthermore, it exceeds six meters for 7.35% and 6.32% of the inundated area, which
can be characterized as an extreme level of flood hazard [64,65]. The higher values of water
depth occur mainly at locations near the dam (approximately at the first 7 km).

The maximum water velocity in the downstream area is presented for both cases in
Figures 15 and 16, while in Table 9, the percentages of flooded area per severity class are
given [65].

As expected, the maximum water velocity value is much higher in the mountainous
area compared to the plain area, and its higher value is depicted along the centre axis of
the flood flow in the riverbed. The maximum velocities produced by overtopping and
piping failures have similar values and spatial distribution (Figures 15 and 16). According
to Table 9, the maximum velocity is found to be more than 2 m/s for 45.32% and 43% of the
inundated area for both scenarios, which can be characterized as an extreme danger [65].
The highest values of maximum velocity mainly occur in the first 15 km and specifically at
locations of the mountainous area near the dam with steep slope.
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To have better insight into the flood hazard, the combination of water depth and veloc-
ity is also considered based on the two classification approaches as described above. The
potential hazard zones for building damage according to the Designing Safer Subdivisions—
Guidance on Subdivision Design in Flood Prone Areas (first classification approach) are
presented in Figures 17 and 18, and the percentages of area per severity class for the first
classification approach are given in Table 10.
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Table 9. Flood severity classes for maximum water velocity and the inundated area per class.

Flood
Severity Category

Max
Velocity (m/s)

Overtopping Piping

Area (km2)
Area
(%) Area (km2)

Area
(%)

Low/High 0–2 13.68 54.69 13.20 57.00
Very High/Extreme >2 11.33 45.32 9.96 43.00

Total Area: 25.01 100 23.16 100
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Table 10. Flood severity classes for the product of water depth and velocity and the inundated area
per class (first classification approach).

Flood
Severity Category

Depth*Velocity
Range (m2/s)

Overtopping Piping

Area (km2)
Area
(%) Area (km2)

Area
(%)

Low <0.2 4.33 17.31 4.76 20.55
Medium 0.2–0.5 2.45 9.80 3.03 13.08

High 0.5–1.5 5.14 20.55 3.83 16.54
Very High 1.5–2.5 1.98 7.92 1.86 8.03
Extreme >2.5 11.11 44.42 9.68 41.80

Total Area: 25.01 100 23.16 100

Within the boundaries of the inundated area, for both scenarios, the hazard is mainly char-
acterized as high to extremely high for buildings, vehicles and infrastructure (Figures 17 and 18).
For the first classification method, 23 km downstream of the dam, following the water
path, the flood severity is reduced to medium or even low mainly at the plain part of the
study area. It was also revealed that the width of the dangerous zone in many locations
exceeds by far the value of 1 km, and thus, flood water will possibly affect the nearby
agricultural areas. The inundated area with extreme hazard is about 44.5% and 42% of the
total inundated area for overtopping and piping failure scenarios, respectively (Table 10).

The potential human risk following the “3 × 3 rule” (second classification approach)
is illustrated in Figures 19 and 20, and the percentages of area per severity class are given
in Table 11.
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Table 11. Flood severity classes for the product of water depth and velocity and the inundated area
per class (second classification approach).

Flood
Severity Category

Depth*Velocity
Range (m2/s)

Overtopping Piping

Area (km2)
Area
(%) Area (km2)

Area
(%)

Low 0–0.8 8.88 35.51 9.71 41.93
High >0.8 16.13 64.49 13.45 58.07

Total Area: 25.01 100 23.16 100

According to the threshold values set by the “3 × 3 rule” classification method, the
high level of flood hazard is also confirmed, as 64.49% and 58.07% of the inundated area
belong to this class for overtopping and piping scenarios, respectively (Table 11). For both
scenarios, the class of high danger is dominant in the study area.

Since the inundated area for the two scenarios is quite similar, the distribution of
the inundated area per land cover type only for the overtopping scenario (worst case) is
presented (Table 12). Approximately 25 km2 will be inundated, and 93.84% of this area
concerns agricultural activities.

Table 12. Inundated area per land cover for the overtopping scenario.

Land Cover Area (km2) Area (%)

Discontinuous urban fabric 0.68 2.72
Non-irrigated arable land 15.64 62.52

Complex cultivation patterns 5.30 21.19
Land occupied by agriculture or natural vegetation 2.53 10.11

Broad-leaved forest 0.004 0.02
Mixed forest 0.41 1.64

Pastures 0.04 0.16
Sclerophyllous vegetation 0.15 0.60

Transitional woodland/shrub 0.26 1.04
Total Area: 25.01 100
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5. Conclusions

A dam failure can have serious environmental, social and economic impacts. Hence,
there is a need for flood risk assessment and the development of regional management
plans. However, the exact mechanisms that can cause dam failure and the flooding phe-
nomena procedures are usually less predictable, and the simulation procedure of such
phenomena requires the knowledge of data and parameter values that are not always easily
available. Despite these limitations, the simulation outcomes provide sufficient and reliable
information for decisionmakers, managers, and authorities to create plans to manage a
crisis and to avoid the disastrous impacts in case of a dam failure. In this study, a potential
failure of the Papadia dam in northern Greece is investigated due to overtopping and
piping conditions, and flood hazard maps are generated. To further enhance the reliability
of model outputs and to investigate the impact of model parameters on them, a sensitivity
analysis for the mesh size and breach parameters was performed. The breach formation
time was found to be the most critical parameter, and the application of the densest mesh
sizing corresponding to the available DEM data resolution was recommended. According
to the dam failure modelling outputs, the maximum water depth and velocity values
decreased from upstream to downstream in the inundated area. However, the very high
values produced from these parameters may cause severe damage to most of the study area.
The flood hazard was also assessed by means of the product of water depth and velocity
using two classification approaches, and the resulting maps showed that the high-severity
class is the dominant one in the study area. The analysis showed that both failure scenarios
affect, to a similar extent, the downstream area, with the overtopping case producing higher
values of depth, velocity and discharge, and consequently, it can be characterized as the
most dangerous scenario. Agricultural and economical activities in the study area will
be affected, as the cultivated land will be inundated. Evacuation time is crucial for the
people and authorities to react, as the time interval between the first arrival of flood water
and the maximum discharge through the outlet of the area is very short (about 1 h for
overtopping scenario). The modelling outcomes could help authorities to start the planning
and implementation of precautionary measures and monitoring systems. Furthermore,
the produced maps can support the creation of management plans to handle a flood crisis,
including warning systems and evacuation plans.
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