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Abstract: Solute transport in rivers is controlled by mixing processes that occur over a wide spectrum
of spatial and temporal scales. Deviations from the classic advection–dispersion model observed
in tracer test studies are known to be generated by the temporary trapping of solutes in storage
zones where velocities and mixing rates are relatively small. In this work, the relation between
the early and late-time behavior of solute breakthrough curves (BTCs) and the key parameters of
the Transient Storage Model (TSM) is analyzed using non-asymptotic approximations of the model
equations. Two main slopes are identified corresponding to the rising and decreasing limbs of the
BTCs which are linked by specific relationships to transport and storage parameters. The validity of
the proposed approximations is demonstrated with both synthetic and experimental data. Consistent
with the TSM assumptions, the range of validity of the proposed approximations represents the
limit of separability between surface dispersion and transient storage and can be expressed as a
function of a nondimensional parameter. The results of this work can help environmental scientists
identify solute transport and transient storage parameters and support the design of enhanced field
tracer experiments.

Keywords: transient storage; tracer tests; solute transport; transient storage parameters; longitudinal
dispersion

1. Introduction

Tracer tests are a widespread technique for characterizing the fate and transport of
solutes in streams and rivers. Experiments are typically conducted by injecting a tracer
upstream and observing the evolution of the tracer concentration at one or more sections
downstream. Reach-averaged transport parameters are then estimated by fitting a one-
dimensional model to the observed breakthrough curves (BTCs).

Initial studies on solute transport in rivers were based on Taylor’s theory of longi-
tudinal dispersion, which was found to be incapable of fully representing the skewed
and long-tailed BTCs observed in tracer tests. Chatwin proposed that the longitudinal
dispersion coefficient could be estimated from the rising limb of the BTCs and argued that
the late-time behavior of the BTCs resulted from solute trapping in the viscous sublayer [1].
In rivers, the deviations from the advection–dispersion equation are exacerbated by the
temporary storage of solutes in sediment [2–4], vegetated zones [5] and lateral pockets [6–8],
characterized by small velocities and slow mixing rates compared to the transport in the
main channel.

Several transport models have been proposed in the literature to represent deviations
from Taylor’s dispersion theory, particularly to describe long-term retention phenomena
due to exchanges between the surface water and the hyporheic zone [8]. These include the
Aggregated Dead Zone model (ADZ) [9,10], general Multi-Rate Mass-Transfer (MRMT)
formulations [11], Fractional advection–dispersion models [12], the STIR model [13,14],
the Continuous Time Random Walk (CTRW) [15], data-driven models [16], and models
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representing hyporheic exchange as an exponentially attenuated diffusion process [3,17].
Further advancement in the field of tracer test and solute-transport modelling includes the
use of reactive tracers, such as the resazurin-resorufin tracers, for quantifying the exchange
with transient storage zones that are metabolically active [18–20]. These experimental
techniques require the use of more sophisticated solute transport models [21–23] and
quantification of deficiencies in the mass balance [24–27].

The Transient Storage Model (TSM) [28] has been widely used to analyze tracer test
data in field and laboratory settings. The TSM combines a classical advection–dispersion
equation with a first-order mass transfer into a storage zone of finite volume and has
been shown to provide reasonably good approximations of tracer test breakthrough
curves [28–30], although better fits can be obtained by assuming two storage components
with different detention time [31–33]. A number of works have analyzed the capability of
the TSM to consistently represent the dynamics of solute retention in streams [34–36].

Whilst these models are often capable of providing a good representation of the
observed BTCs, uncertainties can arise in the interpretation of the model parameters.
Nordin et al. [37], and more recently Gonzalez-Pinzon et al. [38], showed that the BTCs of
tracer tests in rivers exhibit a persistent skewness that is inconsistent with the predictions
of traditional 1D solute transport models. Recent studies [32,39] also observed that the
transient storage parameters obtained from calibration of a 1D solute transport model
with tracer test data can depend on the length of the study reach. Haggerty et al., found
that distinct storage mechanisms acting at different timescales can combine to generate a
power-law behavior of the tail of the concentration curves [40].

Even though more sophisticated models are available, the TSM is still widely used
to investigate solute transport and exchange processes in rivers, thanks to its simplicity,
accessibility, and ability to provide useful hints for understanding solute transport [41]. In
the present work, a graphical approach is presented for estimating the parameters of the
TSM. This is done by (i) deriving specific approximations for the initial rising limb and
the final decreasing limb of the concentration curves, and (ii) identifying the conditions
which allow separate determination of transport and storage parameters from the shape of
the BTCs. The applicability of the newly derived approximations as a method to derive
the parameters of the TSM from the independent fit of the rising and decreasing limb of a
BTC is demonstrated with a numerical test and with experimental data. The method also
provides insights into the limit of separability between surface dispersion and transient
storage according to the Transient Storage Model.

2. Methods

In the TSM and ADZ models, the river channel is conceptually divided into two
mutually interacting domains: a main flow channel with cross-sectional area A, in which the
bulk flow occurs, and a storage domain of finite cross-sectional area AS adjacent to the main
channel. The cross-sectional average concentration of solute is assumed to be homogeneous
in the main channel and in the storage area and is denoted by CW and CS, respectively.
The coupled differential equations governing the evolution of the concentration along the
river are:

∂CW
∂t

+ U
∂CW
∂x
− DW

∂2CW
∂x2 = −AS

A
∂CS
∂t

(1)

∂CS
∂t

= α
A
AS

(CW − CS) (2)

where U is the advective velocity, DW is the longitudinal dispersion coefficient in the bulk
flow, and α is the exchange rate of solute at the storage zone-bulk flow interface. The
model above implies an exponential residence time distribution (RTD) in the dead zones,

ϕ(t) = (1/TD)e
− t

TD , with TD = 1
α

AS
A as the mean residence time in the storage zone and

can be shown to be equivalent to other, more general residence time formulations under
the assumption of a single storage domain with exponential RTD [13,14,40]. Following



Water 2023, 15, 979 3 of 13

Davis et al. [42], the solution to Equations (1) and (2) for an instantaneous injection of mass
M of conservative tracer at x = 0 and at t = 0 can be written as:

CW(x, t) = CT(x, t)e−αt

+e−
t

TD
∫ t

0 CT(x, τ)e−
τ

TD
√

α
TD

e−ατ
√

τ
t−τ I1

(
2
√

α
TD

√
τ(t− τ)

)
dτ

(3)

where I1 is the first-order modified Bessel function of the first kind, and

CT(x, t) =
M

2A
√

πDW t
e−

(x−Ut)2
4DW t (4)

is the solution to Equation (1) when transient storage is disregarded. In the alternative
formulation proposed by Davis et al. [10], referred to as the Aggregated Dead Zone (ADZ)
model, the longitudinal dispersion term in Equation (1) is dropped, DW = 0, and the
corresponding solution for an instantaneous mass injection at time t = 0 is:

CW(x, t) =
M

AU
δ
(

t− x
U

)
e−αt+ (5)

+
M

AU
H
(

t− x
U

)
e−

t− x
U

TD e−
αx
U

√
α

TD

( x
U

t− x
U

)
I1

(
2
√

α

TD

√
x
U

(
t− x

U

))
where δ(t) is the delta Dirac function and H(t) is the Heaviside function.

2.1. Approximation for the Rising Limb of the BTC

Equation (3) implies that CTe−αt is the portion of mass M that never entered the
storage domain. As a first approximation, this term describes the rising limb of a BTC,
observed at a section x following an instantaneous injection of mass M at x = 0:

Cδ
R(x, t) =

M
2A
√

πDW t
e−

(x−Ut)2
4DW t e−αt (6)

An approximation for this limb of the curve in case of a step injection of tracer of
duration TS at x = 0 can be derived from the convolution of CW , expressed by Equation (3),
with the concentration at the boundary. Neglecting the contribution of the second term of
Equation (3), the approximating expression for the rising limb of the BTC is found as

CH
R (x, t) =

{
QCT(x,t)

M

}
× {C0 [H(t)− H(t− TS)]} =

∫ TS
0

C0Q
M CT(x, t− τ)dτ

= C0
2 e−

αx
U3 (U

2−αDW )
[

erf
(

U3t−U2x+2αDW x
2
√

U3DW x

)
− erf

(
2αDx−U2(UTS+x−Ut)

2
√

U3DW x

)] (7)

where CH
R is the approximation of the rising limb of the BTC, and H(t) is the Heaviside

function. The error function, erf(y), can be approximated near y = 0 by its McLaurin series:

erf(y) =
2√
π

∞

∑
n=0

(−1)ny2n+1

(2n + 1)n!
(8)

By limiting the series expansion to the first two terms and substituting into Equation (7)
under the frozen cloud approximation used by Chatwin [1], a linear approximation is found
for the rising limb at a distance x from the injection point in the case of a finite-length step
injection at x = 0:

CH
R (x, t) = m(x)t + q(x) (9)
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where

m(x) =
C0Ue−α x

U√
4πDW

x
U

(10)

and

q(x) =
C0e−α x

U

2

1− 2√
π

 x√
4DW

x
U

 (11)

Equation (9) represents the rising limb of a BTC at a section x resulting from a step
concentration C0 at x = 0 from t = 0 to the time t = TS. This approximation applies around
the point t = x/U, where CW(x, t) ' C0/2.

2.2. Approximation for the Decreasing Limb of the BTC

Equation (5) can be used to obtain an approximation for the decreasing limb Cδ
D(X, t)

of a BTC following an instantaneous injection of mass M at x = 0. In the early stages of
development, the decreasing limb is represented by Equation (5), provided that the term
describing the concentration distribution in Equation (3), given by CT(x, t)e−αt, is negligible
for t� 0. The modified Bessel function of first order and first kind can be approximated
by a linear equation I1(c) ' c/2 in the range 0 < c < 1 [43], or, more accurately, by
the series [44]:

Iν(c) ' cν

νΓ(ν)

[
1 + c2

4(ν+1) +
c4

32(ν+1)(ν+2) +
c8

6144 ∏4
n=1(ν+n)

]
(12)

which is valid for c ≤ 12 or c ≤ ν. Using a second order approximation, thus limiting
the series expansion of I1 to the second term of Equation (12), the expression of I1 in
Equation (5) can be approximated as follows:

I1

(
2
√

α

TD

√
x
U

(
t− x

U

))
'
√

α

TD

√
x
u

(
t− x

U

)
+

1
2

(
α

TD

)3/2( x
U

)3/2(
t− x

U

)3/2
(13)

Equation (13) is valid for x/U < t < x/U + TD/(2αx/U). By substituting Equation (13)
into Equation (5), the following approximating expression for the decreasing limb of the BTC
is obtained:

Cδ
D(x, t) = Mα x

U
TDQ e−α x

U e−
t− x

U
TD

[
1 + α

2TD
x
U
(
t− x

U
)]

(14)

For x/U < t < x/U + TD/(2αx/U), another approximation can be derived,[
1 +

α

2TD

x
U

(
t− x

U

)]
' e

α
2TD

x
U (t− x

U ) (15)

which leads to the final approximated expression for Equation (14):

Cδ
D(x, t) = a(x)en(x)t (16)

where:

a(x) =
Mα x

U
TDQ

e−
α

2TD
( x

U )2− αTD−1
TD

x
U (17)

and:
n(x) =

α

2TD

x
U
− 1

TD
(18)
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Equation (16) is convenient because it makes it possible to fit the observed BTC at a
distance x from the injection point by linear regression in semi-log scale.

Equation (5) describes the behavior of the decreasing limb of a BTC generated by an
instantaneous injection of tracer when the effect of the mass transfer into the dead zones is
much greater than the effect of longitudinal dispersion at late times. For a step injection of
tracer at x = 0, the expression for the decreasing limb must be suitably modified. In this
case, the concentration at the injection section can be expressed as C0[H(t)− H(t− TS)].
If a solute mass M is injected at x = 0 with a constant rate over the time TS starting
at t = 0, the approximated expression of the decreasing limb can be found from the
convolution integral,

CH
D (x, t) =

∫ TS
0

QC0
M a(x)en(x)(t−τ)dτ =

{
QCδ

D(x,t)
M

}
× {C0[H(t)− H(t− TS)]} (19)

The solution to Equation (19) is again an exponential function:

CH
D (x, t) = b(x)en(x)t (20)

where:

b(x) =
{
−e−(

α
2TD

x
U−

1
TD

)(TS+
x
U )

+ e−(
α

2TD
x
U−

1
TD

)x/U
}

2C0α

α x
U − 2

x
U

e−α x
U (21)

Given an observed BTC at a distance x, the coefficients m(x), q(x), b(x) and n(x) can
be determined by performing a linear regression of the rising limb on a linear scale and
a linear regression of the decreasing limb on a semi-log scale. Equations (10), (11), (18),
and (21) then represent a system of nonlinear equations that can be solved numerically to
obtain the unknown transport and storage parameters, U, DW , α, and TD.

To determine the limit of applicability of the proposed approximation, it is convenient
to introduce the non-dimensional time, defined as t∗ = tU/x. Using these non-dimensional
quantities, Equation (13) can be written as:

I1

(
2
√

α
TD

x
U

√
(t∗ − 1)

)
'
√

α
TD

x
U

√
(t∗ − 1) + 1

2

(
α

TD

)3/2( x
U
)3
(t∗ − 1)3/2

(22)

valid for 1 < t∗ < t∗LIM, where t∗LIM is a non-dimensional parameter defined as:

t∗LIM = 1 +
TDU2

2αx2 (23)

The parameter t∗LIM represents the upper time limit for which Equation (22) approxi-
mates the modified Bessel function. The comparison between the approximated and the
original Bessel function is reported in Figure 1 for four different Bessel functions, character-
ized by different values of the parameter t∗LIM. The lower limit, t∗ = 1, corresponds to the
non-dimensional advective time t∗AD = tAD/(x/U), where tAD = x/U. For the complete
list of the symbols used in the equations, refer to Table A1 in Appendix A.
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3. Application

A numerical test was performed to validate the approximations derived in the previous
Sections 2.1 and 2.2. Experimental data were used for calibrating the unknown TSM
parameters using the proposed graphical method.

3.1. Numerical Experiment

The validity of the approximations derived above is tested on an ideal case, by (i) simulating
a BTC from a TSM model using previously fixed A, AS, DW, and α, and (ii) plotting the approxi-
mation lines obtained from the Equations (10), (11), (18) and (21). The flow discharge is assumed
to be Q = 0.4 m3 s−1 with stream width b = 5.0 and depth d = 0.4 m, respectively. The disper-
sion coefficient is estimated using Fischer’s formula, DW = 0.011U2b2/(U∗d) = 0.735 m2s−1 [45],
where the shear velocity is U∗ =

√
gdj = 0.037 m s−1 and j is the energy slope under the assump-

tion of uniform flow and given a Manning coefficient n = 0.05 m−1/3s−1. The model output is
generated using a single compartment TSM with storage area AS = 0.1 m2, and exchange rate
α = 10−4 s−1 at three cross-sections located at X1 = 500 m, X2 = 1000 m and X3 = 1500 m from
the injection point. The boundary condition at x = 0 is a constant concentration C0 injection of a
solute mass M = 192 g, applied for a period TS = 480 s starting at t = 0 s.

In Figure 2, the dimensionless output concentration C∗(x, t) = CW(x, t)/Cp
(

x, tp
)
,

where Cp
(

x, tp
)

is the peak concentration at time tp, is plotted at the three sections
mentioned above in both semi-log and linear scales. The approximations for the ris-
ing and the decreasing parts of the BTC are plotted according to Equations (9) and (20)
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in linear and semi-log scale, respectively, where parameters m∗(x) = m(x)/Cp
(

x, tp
)
,

q∗(x) = q(x)/Cp
(

x, tp
)
, b∗(x) = b(x)/Cp

(
x, tp

)
and n(x) are evaluated from Equations

(10), (11), (18) and (21) using the same parameters used for the TSM. The values of A, AS,
DW , α, m∗, q∗, b∗, n and t∗LIM are reported in Table 1 for each section.
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Figure 2. BTCs generated by the TSM model at X1 = 500 m, X2 = 1000 m and X3 = 1500 m and
approximations for (a) the decreasing limb in semi-log scale and for (b) the rising limb in linear scale.

Table 1. TSM parameters A, AS, DW , and α are used for the concentration curves in Figure 2,
coefficients m∗, q∗, b∗, and n of the approximation trendlines for the decreasing and rising parts at
the three output sections Xi, and peak concentration Cp at each section used for normalizing the BTC
in Figure 2.

Section Distance DW A As α t*
LIM n b* m* q* Cp

(m) (m2 s−1) (m2) (m2) (s−1) (-) (s−1) (-) (s−1) (-) (g m−3)

X1 500
0.735 2.00 1.0 × 10−1 1.0 × 10−4

1.400 −1.75 × 10−3 4.63 × 101 2.04 × 10−3 −4.32 0.502
X2 1000 1.100 −1.50 × 10−3 2.22 × 103 1.63 × 10−3 −7.27 0.347
X3 1500 1.044 −1.25 × 10−3 2.00 × 104 1.31 × 10−3 −8.96 0.274

3.2. Field Experiment

The applicability of the model for evaluating unknown TSM parameters from mea-
sured BTCs is demonstrated on experimental data obtained from a real tracer test. The
data are taken from the experimental work of Bottacin-Busolin et al. [32], conducted on the
Desturo canal, an irrigation channel located in Northern Italy. The studied reach is divided
into two sections located at X1 = 262 and X2 = 567 m, respectively, from the injection
point. The plateau injection of a mass of tracer M = 3.24 g is TS = 1470 s long and the flow
discharge is Q = 0.045 m3 s−1.

At both section X1 and X2, a linear and an exponential trendline are applied to
the leading and the decreasing limb, respectively, considering the portion of data in the
leading and decreasing limb which maximizes the coefficient of determination R2. The
fitting lines are reported in Figure 3, showing the observed concentration data, normalized
by the peak concentration, and the fitting trendlines in linear scale for the rising limb
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(panels a and b) and semi-log scale for the decreasing limb (panels c and d). The fitting
lines provide the values of m∗(x) and q∗(x) of the linear trendline for the rising part,
C∗R(x, t) = m∗(x)t + q∗(x), and the values of b∗(x) and n of the exponential trendline
for the decreasing limb of the curve, C∗D(x, t) = b∗(x)en(x)t. The unknown transport
parameters A, AS, DW and α are obtained by solving Equations (10), (11), (18), and (21)
as a system of equations. Note that, here, the flow rate Q is known and therefore the
cross-sectional velocity U can be determined from the cross-sectional area A as U = Q/A,
whereas the parameter TD in Equations (18) and (21) depends on α, A, and AS, according
to the relationship TD = 1

α
AS
A . The resulting transport parameters and t∗LIM are reported in

the first two rows of Table 2.

Water 2023, 15, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 3. Normalized observed concentration data (“Cobs”, circles), the approximating trendlines 
(solid black lines), the simulated BTCs from the approximations (“Csim”, dashed-dot blue lines) 
and the optimized simulated BTCs (“Copt”, dashed red lines), for section X1 (panels (a) and (c) and 
section X2 (panels (b) and (d)). Panel (a) and (b) refer to the approximation of the rising limb of the 
BTC. Panel (c) and (d) are in semi-log scale and refer to the approximation of the decreasing part of 
the BTC. 

4. Results and Discussion 
The results of the application presented in Figure 2 show that the goodness of the 

graphical estimation of the transient storage parameters and longitudinal dispersion 
coefficient varies at the three sections, suggesting that the method can be applied under 
certain conditions. In particular, it can be noted that the approximations are good at the 
closest section 𝑋𝑋1, while at 𝑋𝑋2, they start to deviate from the rising and decreasing part of 
the BTC. At the farthest section, 𝑋𝑋3, the decreasing part of the BTC is not well fitted by 
the trendline obtained via Equations (19) and (21). This indicates that this curve does not 
behave as the exponential function at late time of Equation (20). Similarly, the rising part 
is no longer described by Equation (9). There are two reasons for this behavior: firstly, the 
term 𝐶𝐶𝑇𝑇 = 𝐶𝐶𝑊𝑊𝑒𝑒−𝛼𝛼𝛼𝛼  in Equation (4) becomes negligible at longer times and for higher 
exchange rates 𝛼𝛼; secondly, at late times, Equation (13) is not a good approximation of the 
Bessel function. At late times and large distances from the injection point, the contribution 
of transient storage to the mixing process becomes more important than longitudinal 
dispersion, and they become two overlapping processes. This means that the rising limb 
of the curve no longer represents the pure effect of longitudinal dispersion. At the same 

Figure 3. Normalized observed concentration data (“Cobs”, circles), the approximating trendlines
(solid black lines), the simulated BTCs from the approximations (“Csim”, dashed-dot blue lines)
and the optimized simulated BTCs (“Copt”, dashed red lines), for section X1 (panels (a) and (c) and
section X2 (panels (b) and (d)). Panel (a) and (b) refer to the approximation of the rising limb of the
BTC. Panel (c) and (d) are in semi-log scale and refer to the approximation of the decreasing part of
the BTC.

To check the quality of the fitting, the obtained transport parameters are then used to
generate a BTC using the TSM. A comparison between the simulated BTCs (dashed-dot
blue line) and the observed data (circles) is reported in Figure 3 in linear (panel a and b)
and semi-log scales (panel c and d).

The observed BTCs are then numerically fitted with the TSM by using differential
evolution as an optimization algorithm. The computed parameters A, AS, DW , and α



Water 2023, 15, 979 9 of 13

for the optimized fitted BTC are reported in Table 2 for comparison with the parameters
obtained using the proposed approximations. The best fitting BTCs are reported in Figure 3
(dashed red line).

Table 2. Coefficients m∗ , q∗, b∗, n of the approximation trendlines in Figure 3; TSM parameters A, AS,
DW , α obtained from the trendline approximations (“Approx.”) and from a numerical optimized fit
(“Optim.”) of the BTCs; estimation of t∗LIM for each section and type of fitting, and peak concentration
Cp at each section used for normalizing the BTC in Figure 3.

Section Distance Fit n b* m* q* DW A As α t*
LIM Cp

(m) (s−1) (-) (s−1) (-) (m2 s−1) (m2) (m2) (s−1) (-) (mg m−3)

X1 262
Approx. −2.11 × 10−3 98.5 2.21 × 10−3 −2.278 0.279 0.202 2.93 × 10−2 4.00 × 10−4 1.33 48.12
Optim. - - - - 0.243 0.200 3.72 × 10−2 5.65 × 10−4 1.21

X2 567
Approx. −1.80 × 10−3 4252.9 8.86 × 10−4 −2.582 0.090 0.244 1.86 × 10−2 4.55 × 10−4 1.02 42.8
Optim. - - - - 0.535 0.270 1.86 × 10−2 1.37 × 10−4 1.16

4. Results and Discussion

The results of the application presented in Figure 2 show that the goodness of the
graphical estimation of the transient storage parameters and longitudinal dispersion co-
efficient varies at the three sections, suggesting that the method can be applied under
certain conditions. In particular, it can be noted that the approximations are good at the
closest section X1, while at X2, they start to deviate from the rising and decreasing part
of the BTC. At the farthest section, X3, the decreasing part of the BTC is not well fitted
by the trendline obtained via Equations (19) and (21). This indicates that this curve does
not behave as the exponential function at late time of Equation (20). Similarly, the rising
part is no longer described by Equation (9). There are two reasons for this behavior: firstly,
the term CT = CWe−αt in Equation (4) becomes negligible at longer times and for higher
exchange rates α; secondly, at late times, Equation (13) is not a good approximation of the
Bessel function. At late times and large distances from the injection point, the contribution
of transient storage to the mixing process becomes more important than longitudinal dis-
persion, and they become two overlapping processes. This means that the rising limb of
the curve no longer represents the pure effect of longitudinal dispersion. At the same time,
the decreasing limb of the curve does not behave as an exponential function (Equation (13))
anymore. The dimensionless upper time limit of validity for Equation (22), t∗LIM, can repre-
sent a numerical index for identifying the conditions of applicability of the approximation
method proposed in this work. For sections X1 = 500 m, X2 = 1000 m, and X3 = 1500 m,
the values of t∗LIM are 1.40, 1.10, and 1.04, respectively. These values suggest that transient
storage does not produce an exponential signature on the decreasing limb when the upper
time limit of validity of Equation (22), t∗LIM, is close to 1. Although there is no definite
value for t∗LIM, the results suggest that, in general, the exponential signature is not easily
distinguishable from the longitudinal dispersion effect when t∗LIM < 1.1.

The application of this approach to the experimental data confirmed its validity for
t∗LIM > 1.1. The results show that when the approximations for the leading and decreasing
limbs of the observed BTCs are applied, the BTC generated by the TSM with the graphically
estimated parameters for section X1 = 262 m (dashed-dotted lines in Figure 3a,c) optimally
fits the observed data. At this section, the upper nondimensional time limit of validity for
Equation (22) is t∗LIM = 1.33 > 1.10. The set of parameters obtained with the proposed
graphical method can provide a good first approximation of the parameters obtained by
the numerically calibrated parameters. Their relative percentage errors are: +15% for DW ,
+1% for A, −21% for AS, and −29% for α. For the mean residence time in the storage
zone, TD, evaluated according to Equation (3), the relative error between the graphical
parameter estimation and the numerically calibrated model is +10%. In contrast, at section
X2 = 567 m, where t∗LIM = 1.02, the graphical approximation does not lead to a well-fitted
BTC (dashed-dotted lines in Figure 3a,b): the time of the peak concentration is poorly
caught and both the leading and decreasing limbs are not well approximated. At this
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section, the model calibration based on a global optimization algorithm yields a very
different set of parameters, as shown in Table 2. The relative errors between the graphically
obtained and the numerically optimized parameters are −89% for DW , −9.5% for A, −0%
for AS, −230% for α and −67% for TD.

The graphical method presented in this work thus provides a simple preliminary
way to evaluate transient storage parameters in field experiments. The empirical rule
t∗LIM > 1.1 can be also expressed in terms of the advective time tAD according to the
following relations:

t∗LIM = 1 +
TDU2

2αX2 = 1 +
As

2α2 A
1

t2
AD

> 1.1 (24)

tAD <

√
1

0.1
As

2Aα2 (25)

which are more likely satisfied when the BTC is observed at relatively short distances from
the injection.

5. Conclusions

Approximations were derived for the early and late time behavior of tracer test
breakthrough curves for both slug and plateau injections. The approximations assumed
that the transport of a solute in a river can be described by an advection-dispersion first-
order mass transfer equation. Consistent with the model, the tracer BTCs measured at
a section downstream of the injection point exhibited two main slopes, associated with
the initial rising part of the concentration curve and the final decreasing part after the
concentration peak. The parameters of the model could be inferred directly from these two
slopes using the analytical relations presented in this work. The results showed that the
graphical estimation of transient storage parameters and longitudinal dispersion coefficient
could be made if two conditions were satisfied: first, when the two mechanisms did not
produce an overlapping effect on the rising limb of the BTC and, secondly, when the
condition of approximation of the decreasing limb as an exponential function was satisfied.
However, a specific condition applies to the distance from the injection point for the validity
of these approximations, which represents a limit of separability between longitudinal
dispersion and first-order mass transfer in immobile domains. As a general empirical rule,
this limit can be expressed by the condition t∗LIM < 1.1, where t∗LIM is a nondimensional
time given by Equation (23). When this condition is not satisfied, longitudinal dispersion
and transient storage become two undistinguishable mixing processes that cannot be
uniquely separated by fitting the model to a tracer BTC. The condition above also provides
a lower limit for the timescales of solute retention that can be inversely modelled from a
tracer experiment. This limit should therefore be considered in the design of tracer tests
and subsequent analyses to provide sensitive parameter estimates and identify sources of
uncertainty. The results of this work provide a twofold contribution to current modelling
and experimental approaches for field tracer studies: (1) by providing a simple method for
estimating the surface and subsurface storage parameters; and (2) by identifying a temporal
limit for the separation of surface and transient storage processes which can be used for the
design of improved field tracer studies.
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Appendix A

Table A1. Notation list of all the symbols used in the manuscript.

Symbol Unit Description

a (kg m−3) coefficient of the trendline for Cδ
D

A (m2) mean flow area
AS (m2) transient storage area
b, b∗ (kg m−3), (-) coefficient and normalized coefficient of the trendline for CH

D
C0 (kg m−3) concentration at the injection section
CH

R (kg m−3) approximation for the rising limb of the BTC
C∗R (-) dimensionless linear approximation of the rising limb
CH

D , Cδ
D (kg m−3) approximation for the decreasing limb of the BTC

C∗D (-) dimensionless exponential approximation of the decreasing limb
CS (kg m−3) concentration in the storage area
CT (kg m−3) elementary solution of the advection–dispersion equation
CW (kg m−3) concentration in the main flow channel
DW (m2 s−1) longitudinal dispersion coefficient
H (-) Heaviside function
I1 (-) modified Bessel function of the first order and first kind
m, m∗ (kg m−3 s−1), (s−1) slope and normalized slope of the trendline for CH

R and C∗R
n (s−1) exponent of the trendline for CH

D and C∗D
q, q∗ (kg m−3), (-) intercept and normalized intercept of the trendline for CH

R and for C∗R
Q (m3 s−1) discharge
t (s) time
tAD (s) advective time
TD (s) mean residence time in the storage area
TS (s) time duration of a plateau injection
t∗LIM (-) dimensionless time limit
U (m s−1) flow velocity
x (m) longitudinal distance from injection point
α (s−1) exchange rate
δ (s−1) Dirac delta function
τ (s−1) dummy variable for time
ϕ (s−1) exponential RTD in the dead zones
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