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Abstract: As a significant portion of the available water resources in volcanic terrains such as Jeju
Island are dependent on groundwater, reliable groundwater level forecasting is one of the important
tasks for efficient water resource management. This study aims to propose deep-learning-based
methods for groundwater level forecasting that can be utilized in actual management works and to
assess their applicability. The study suggests practical forecasting methodologies through the Gyorae
area of Jeju Island, where the groundwater level is highly volatile and unpredictable. To this end, the
groundwater level data of the JH Gyorae-1 point and a total of 12 kinds of daily hydro-meteorological
data from 2012 to 2021 were collected. Subsequently, five factors (i.e., mean wind speed, sun hours,
evaporation, minimum temperature, and daily precipitation) were selected as hydro-meteorological
data for groundwater level forecasting through cross-wavelet analysis between the collected hydro-
meteorological data and groundwater level data. The study simulated the groundwater level of
the JH Gyorae-1 point using the long short-term memory (LSTM) model, a representative deep-
learning technique, with the selected data to show that the methodology is adequately applicable. In
addition, for its better utilization in actual practice, the study suggests and analyzes (i) a derivatives-
based groundwater level learning model which is defined as derivatives-based learning to forecast
derivatives (gradients) of the groundwater level, not the target groundwater time series itself, and
(ii) an ensemble forecasting methodology in which groundwater level forecasting is performed
repetitively with short time intervals.

Keywords: groundwater level; long short-term memory; Jeju island

1. Introduction

Jeju Island is one of the wettest areas in Korea, with the precipitation in normal years
being 1142.8–1966.8 mm, with a mean annual precipitation of 1923 mm in the Seogwipo
area [1]. However, as most of its ground is covered by volcanic rocks which have high
permeability, about 81% of its total water resources depend on groundwater [2]. Against this
backdrop, groundwater has been continuously managed by setting a reference groundwater
level and taking countermeasures when it is below the threshold [3]. In addition, there
have been attempts to efficiently forecast groundwater which have faced lots of difficulties
due to Jeju Island’s hydraulic and geological characteristics.

Various methodologies and theories have been proposed for groundwater level (GWL)
forecasting, which can be largely categorized into physical-based conceptual models, exper-
imental models, and numerical models [4,5]. The models commonly used for GWL forecast-
ing include MODFLOW [6,7], ISOQUAD [8], HydroGeoSphere [9], and SIMGRO [10,11].
These traditional forecasting models have high efficiency but require lots of input data
and involve the process of constructing complex models and calibration to apply analysis
methods such as the finite difference method, finite volume method, and finite element
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method [12]. Moreover, even if a model is constructed and calibrated, due to strong nonlin-
earity and the high spatial variance of groundwater factors, forecasting the entire system
realistically is challenging [13].

As an alternative, data-driven modeling such as machine learning comes to the fore-
front. The virtue of data-driven modeling is that there is no burden in building various
spatial and geological data as it simulates GWL by learning the correlations between
GWL and several explanatory variables, and, thus, numerous GWL forecasting studies
have utilized it [14]. Around the 2000s, the majority of studies used artificial neural
networks. For example, [15] forecasted GWL through an artificial neural network with
the data of the groundwater level monitoring network of New Jersey, USA, and [16] uti-
lized an artificial neural network to forecast the groundwater level of the island areas
of Greece. Aside from these, many studies employed artificial neural networks for fore-
casting GWL [17–21]. Since 2010, techniques such as the adaptive network-based fuzzy
inference system (ANFIS) [22–25] and nonlinear autoregressive with external input system
(NARX) [26–28] have been applied and evaluated to be highly applicable to groundwater
management. In addition, since 2018, LSTM-based GWL forecasting that can reflect long-
term time series characteristics has emerged thanks to its high simulation efficiency [29–33],
while some studies have combined or compared traditional models with deep learning
techniques [34–36]. Considering precedent studies, deep learning is expected to be applica-
ble to GWL forecasting. However, despite numerous studies having been conducted, GWL
forecasting based on deep learning is hard to apply in actual practice due to its uncertainty
as a user cannot know how the necessary information is learned and produced [37,38].
Therefore, a pragmatic study for a field engineer considering the uncertainty of deep
learning and the decision-making process is needed.

In this regard, the objective of this study is to propose and assess pragmatic method-
ologies for deep-learning-based GWL forecasting by month to the particular groundwater
station in Jeju island and its field engineer. The GWL data of JH Gyorae-1 and a total
of 12 types of hydro-meteorological data were collected. Through cross-wavelet and
Granger causality analysis between collected hydro-meteorological data and GWL, data
were selected for GWL forecasting. Using the selected hydro-meteorological factors, a
GWL forecasting model was constructed and analyzed based on the LSTM technique.
Furthermore, for application in actual practice, the study suggests (i) derivatives-based
learning where GWL is simulated by learning the first derivatives of GWL and (ii) an
ensemble forecasting methodology for assisting users to make decisions through multiple
models, and it assesses their applicability.

2. Theoretical Background
2.1. Study Material

The study subject is the groundwater level of the JH Gyorae-1 point in the hilly and
mountainous area of the Pyoseon basin on Jeju Island. Jeju Island is Korea’s representative
volcanic island, covered with volcanic rocks and sedimentary rocks originating from
igneous rocks. Due to its geological characteristics, its groundwater recharge rate is about
45% and 81% of its total water resources are dependent on groundwater despite its high
mean annual precipitation ranging between 1142.8 mm and 1966.8 mm [2]. Accordingly,
the local government constructed its groundwater observation network early and has
strictly managed groundwater through measures such as the groundwater usage permit
system [39]. As of January 2022, there were 135 groundwater level observation wells,
8 artificial recharge observation points, and 12 agricultural water monitoring wells, totaling
155 groundwater observation spots on Jeju Island [1]. Of the 155 spots, the study subject is
the GWL of JH Gyorae-1 groundwater observation network in the hilly and mountainous
area of the Pyoseon basin in southeastern Jeju Island (Figure 1). Andisols account for 98%
of the Pyoseon basin soils, and most of the rivers are dry streams due to the highwater
permeability of the soil, so the river water has a negligible impact on the groundwater
level [30,40]. The hilly and mountainous area of the Pyoseon basin has thick unsaturated
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zones, which results in non-linear groundwater properties due to dispersion and lag
time [41]. Therefore, when the hydrogeological characteristics such as permeability or
recharge rate have not changed much, hydroclimatic factors, including precipitation, are
the main factors in determining groundwater level. Moreover, the Gyorae-1 station shows
extremely high variability as it changed over 20 m in just 1 month (Figure 1). The Gyorae-1
groundwater monitoring well shows nonlinearity behavior and a high correlation with
hydroclimatic factors [30], and it has been determined to be a proper subject for assessing
the applicability and forecasting methodologies of LSTM.
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Figure 1. Study area.

The study needed various hydro-meteorological data from the Pyoseon basin in
Jeju and credible GWL observation data from the JH Gyorae-1 point. The data period
for this study was set from 2012 to 2021, when reliable data were collected. The hydro-
meteorological data used for this study was the Thiessen area weighted means of the
data collected from the Automated Synoptic Observing Systems (ASOSs) (Jeju, Seogwipo,
Seongsanpo, and Gosan) on Jeju Island. In total, 12 kinds of daily hydro-meteorological
data were collected from the Open MET Data Portal of the Korean Meteorological Admin-
istration(KMA): daily maximum temperature, daily minimum temperature, daily mean
temperature, dew temperature, relative humidity, precipitation, ground air pressure, sea-
level pressure, mean wind speed, total sun hours, insolation, and evapotranspiration [42].
The groundwater level data of Gyorae-1 were obtained from the Groundwater Information
System of Jeju Special Self-Governing Province [1]. Other materials for this study were
acquired from the Soil Groundwater Information System of the National Institute of Envi-
ronmental Research [43]. In addition, the collected materials were checked for anomalies
and erroneous data were eliminated. The obtained materials are shown in Figure 2.

2.2. Test Statistics: Cross-Wavelet and Granger Causality

As this study aims to suggest ways to forecast the groundwater level of Jeju Island
using hydro-meteorological data, selecting data that are highly relevant to the ground-
water level is a crucial task. To consider the time-sequential correlation between hydro-
meteorological data and groundwater level, cross-wavelet analysis and Granger causality
were employed. Cross-wavelet analysis is defined as the decomposition and expansion of
certain time series into time-frequency space [44]. As a result, periods are separated by time
according to the correlation, making it useful to find localized intermittent periodicities [45].
Continuous wavelet transform (CWT) can be defined as:

WX(s, t) = X(t)× ρS(t) (1)

ρS(t) = π−
1
4 × eiwit × e

t2
2 (2)

where ρS(t) is the Morlet wavelet with scale (s) [46], and wavelet power can be defined
as
∣∣Wn

X(s)
∣∣2. Thus, the cross-wavelet between the two times series X(t) and Y(t) can be
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represented as WXY(s, t) = WX(s, t)·WY
∗(s, t), where * denotes complex conjugation. The

complex argument of WXY can be interpreted as the phase difference between two times
series X(t) and Y(t) in the time-frequency space.
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and (d) daily mean ground air and sea level air pressure.

Granger causality is a statistical test method used to determine whether the prior
values of the independent variable X provide statistically significant information about the
future values of dependent variable Y [47]. When the inclusion of X reduces the error of Y
in a linear regression model, time-series X would be identified as the cause of Y. Granger
causality can be defined by a bivariate autoregressive model as:

X(t) = ∑n
i=1 A1X(t− i) + ∑n

i=1 A2Y(t− i)+ ∈1 (t) (3)

Y(t) = ∑n
i=1 B1Y(t− i) + ∑n

i=1 B2X(t− i)+ ∈2 (t) (4)

where X and Y are each time series, i denotes the time step of the time series X and
Y, and n is the maximum lag in the time series. A and B are the parameters of each
autoregressive model, and these are significantly different from zero and can be estimated
by the logarithm of the corresponding F-statistic [48]. While being similar to the correlation
coefficient, Granger causality allows for the convenient calculation of correlation between
two time series and is, therefore, widely utilized in various fields [49].

2.3. LSTM Technique

LSTM [50] was developed during the process of improving recurrent neural networks
(RNNs) and is emerging as the current most popular deep learning technique (see Figure 3).
Although RNNs are highly efficient in processing time series data, they have problems
such as a vanishing gradient from the error slope of long-term data. LSTM was introduced
to solve this problem and has shown good results with continuous data such as voice
or pattern recognition and translation [51]. LSTM has been used in different areas of hy-
drology, including not only basin runoff simulation [52–54], water level forecasting [55,56],
and precipitation forecasting [57,58] but also groundwater level forecasting, where it has
produced better outcomes compared to traditional models [29,31–33].
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The LSTM model incorporates multiple cells, and each cell is constructed to contain
the information from the previous timestamp and regulate what information is delivered
through gates. The gates are largely divided into 3 types: forget, input, and output gates.
These gates determine how much information should be stored, deleted, and delivered
to the next cell through the activation function within the hidden layer and execute the
delivery of information [51]. The LSTM technique repeats the following six equations with
input time series (xt) to calculate output time series (Ot):

ft = σ
(

W f ·[ht−1, xt] + b f

)
(5)

it = σ(Wi·[ht−1, xt] + bi) (6)

ot = σ(Wo·[ht−1, xt] + bo) (7)

C̃t = tanh(WC·[ht−1, xt] + bc) (8)

Ct = ft × Ct−1 + it × C̃t (9)

ht = Ot × tanh(Ct) (10)

where σ is the non-linear activation function, W f , Wi, Wo, and WC are the weights of the
forget, input, and output gates and memory cell, respectively, and have values between
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0 and 1. For example, if WC is 0, no information is passed on, while if it is 1, complete
information is delivered to the next cell. ht−1 denotes the state of the previous cell’s output,
xt is the current input time series, and b f , bi, and bo are the bias vectors of each gate. In this
regard, the LSTM model is free of issues related to long-term time series data and shows
high simulation efficiency even with various complex time series. Thus, it is determined as
being applicable to a groundwater level that has non-linear and complicated behavior due
to thick unsaturated zones, as found in the hilly and mountainous areas in Jeju Island.

3. Application and Proposed New Method
3.1. Predictor Selection for Groundwater Level Forecasting

In forecasting, if a model includes less important variables, the uncertainty of the
model increases and the overall forecasting performance is diminished [59]. It also signifi-
cantly affects the model selection [60]. Moreover, Ref. [61] suggested that predictor selection
is even more important than machine learning model selection. Therefore, adequate predic-
tor selection is the key prerequisite for good modeling [59]. Precedent studies [62,63] found
that antecedent precipitation has the biggest impact on groundwater level. However, it has
been suggested that predictors besides precipitation, such as the thickness of unsaturated
zones and the permeability coefficient, influence the change in groundwater level [64,65].
Thus, this study selected optimal influential hydro-meteorological data regarding GWL,
based on which a forecasting model was built using deep learning techniques. Although
simple user-defined relationships such as traditional coefficients have been used for predic-
tor selection in GWL forecasting, it has been suggested that more considerate non-causal
techniques such as discrete wavelet transform (DWT), including time delay, should be con-
sidered as well [14]. Indeed, the values of Pearson’s correlation coefficient [66] of the GWL
and the hydro-meteorological factors of Gyorae-1 were between −0.05 and 0.36, implying
that it is difficult to select predictors based on direct correlation. In particular, predictor
selection for Jeju’s GWL is more challenging due to the existence of lag time between
antecedent precipitation and the groundwater level [67,68]. Therefore, according to the
findings of [14], this study applied cross-wavelet analysis [69] that enables the estimation
of temporal correlation between two variables and the Granger causality test [70], which
considers the correlation between two time series quantitatively.

Figure 4 shows the cross-wavelet analysis results where bold-lined areas are the time
series determined to have a certain degree of correlation with GWL. Overall, five factors
(average wind speed, total sunshine hours, evaporation, minimum temperature, and daily
precipitation) seemed to be correlated with GWL. Average wind speed had a high cor-
relation mainly during summer and the correlation lasted for no longer than 1 week. In
addition, total sun hours and evaporation showed a correlation mostly during summer
and the correlation was maintained for about 2 weeks. The minimum temperature had a
correlation throughout the entire period and was especially high except for summer, which
lasted for no longer than 1 week. Lastly, daily precipitation showed a high correlation
throughout the whole period, which was especially higher during summer and maintained
for up to 2 months and thus was determined to be the most influential factor for Gyorae’s
GWL. The Granger causality test provided similar results (Table 1). In total, six factors
(mean temperature, minimum temperature, precipitation, mean wind speed, total sun
hours, and evapotranspiration) showed cross-correlation and were determined to be appli-
cable as input data for deep learning techniques. The correlation between GWL and each
hydro-meteorological factor did not appear consistently across the entire period. Rather, it
remained weak during ordinary days and the temporal correlation became stronger before
and after GWL changed, but it still did not show a consistent correlation. Therefore, deep
learning techniques that can derive information desired by users from multidimensional
datasets [71] would be a good alternative.
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Figure 4. Cross-wavelet result between groundwater level and each meteorological factor: (a) average
temperature; (b) minimum temperature; (c) maximum temperature, (d) precipitation; (e) average
wind speed; (f) dew temperature; (g) relative humidity; (h) average air pressure; (i) total sunshine
hours; (j) ground temperature; (k) 5 cm underground temperature; (l) small pan evaporation. Bold-
lined area indicates that there are correlations with groundwater level.

Table 1. Granger’s causality test between groundwater level and each meteorological factor.

Content
U.W.L.→ Factor Factor→ U.W.L.

F-Value Cri. Value F-Value Cri. Value

‘Average Temperature’ 4.03 3.84 3.99 3.84

‘Minimum Temperature’ 6.70 3.00 18.06 3.84

‘Maximum Temperature’ 1.13 3.84 8.27 3.84

‘Precipitation’ 13.91 1.65 10.16 3.84

‘Average Wind Speed’ 17.83 3.00 6.22 3.00

‘Dew Temperature’ 10.37 3.00 0.50 3.84

‘Relative Humidity’ 11.54 3.00 0.64 3.84

‘Average Air Pressure’ 6.84 3.00 0.29 3.84

‘Total Sun Hours’ 28.61 3.84 11.87 3.84

‘Ground Temperature’ 3.79 3.84 16.35 3.84

‘5 cm Underground Temperature’ 2.37 3.84 18.86 3.84

‘Small Pan Evaporation’ 15.77 3.84 15.16 3.84

Furthermore, the maximum, average, and minimum temperatures; underground
temperature; dew temperature; and relative humidity showed a correlation with GWL as
well. According to Table 1, it is safe to say that five kinds of temperatures and relative
humidity had a causal relationship with GWL as all of them had values exceeding their
corresponding critical values. However, these six items are all meteorological factors
related to temperature and, thus, not independent from one another, raising concerns
regarding multicollinearity [72]. Therefore, the minimum temperature which showed a
correlation throughout the period as well as a high correlation during winter was selected
as a correlation factor, while the others were excluded. Consequently, mean wind speed,
total sunshine hours, evaporation, minimum temperature, and daily precipitation were
chosen as input factors for the LSTM technique in GWL forecasting.
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3.2. Construction of the LSTM Model and Result

The purpose of this study is to suggest a practical application method for groundwater
level forecasting in the groundwater level management field. As hydro-meteorological fac-
tors such as precipitation, which has the most dominant influence on groundwater [62,63],
are numerically forecasted for up to 6 months, forecasting groundwater using meteoro-
logical prediction data is thought to be the most reasonable field application method. To
assess its applicability, with the five hydro-meteorological factors selected in the previ-
ous section, the LSTM model for simulating the Gyorae-1 area’s GWL as a forecasting
result was constructed and reviewed. Since the number of samples of GWL data and
the hydro-meteorological data of Gyorae-1 was about 23,000, as per [73], 10 layers were
set. Hyperbolic tangent and sigmoid function were used for the activation function to
determine the state of cells and gates within layers, while the linear function was used for
the activation function of the fully-connected layer. In addition, to avoid the overfitting of
the LSTM layer with the fully-connected layer, the dropout rate was set at 10% [74]. The
Adam optimizer, which produced good results in previous time series forecasting studies,
was chosen for loss function for training the LSTM [75]. The LSTM model described above
was trained with five hydro-meteorological factors and GWL data from 2012 to 2020, and
the data for the year 2021 were used for validation (see Figure 5).

Water 2023, 15, x FOR PEER REVIEW 8 of 18 
 

 

Furthermore, the maximum, average, and minimum temperatures; underground 
temperature; dew temperature; and relative humidity showed a correlation with GWL as 
well. According to Table 1, it is safe to say that five kinds of temperatures and relative 
humidity had a causal relationship with GWL as all of them had values exceeding their 
corresponding critical values. However, these six items are all meteorological factors re-
lated to temperature and, thus, not independent from one another, raising concerns re-
garding multicollinearity [72]. Therefore, the minimum temperature which showed a cor-
relation throughout the period as well as a high correlation during winter was selected as 
a correlation factor, while the others were excluded. Consequently, mean wind speed, to-
tal sunshine hours, evaporation, minimum temperature, and daily precipitation were cho-
sen as input factors for the LSTM technique in GWL forecasting. 

3.2. Construction of the LSTM Model and Result 
The purpose of this study is to suggest a practical application method for groundwa-

ter level forecasting in the groundwater level management field. As hydro-meteorological 
factors such as precipitation, which has the most dominant influence on groundwater 
[62,63], are numerically forecasted for up to 6 months, forecasting groundwater using me-
teorological prediction data is thought to be the most reasonable field application method. 
To assess its applicability, with the five hydro-meteorological factors selected in the pre-
vious section, the LSTM model for simulating the Gyorae-1 area’s GWL as a forecasting 
result was constructed and reviewed. Since the number of samples of GWL data and the 
hydro-meteorological data of Gyorae-1 was about 23,000, as per [73], 10 layers were set. 
Hyperbolic tangent and sigmoid function were used for the activation function to deter-
mine the state of cells and gates within layers, while the linear function was used for the 
activation function of the fully-connected layer. In addition, to avoid the overfitting of the 
LSTM layer with the fully-connected layer, the dropout rate was set at 10% [74]. The Adam 
optimizer, which produced good results in previous time series forecasting studies, was 
chosen for loss function for training the LSTM [75]. The LSTM model described above was 
trained with five hydro-meteorological factors and GWL data from 2012 to 2020, and the 
data for the year 2021 were used for validation (see Figure 5). 

 
Figure 5. LSTM and ANN simulated results of GWL on Gyorae-1 at daily scale: (a) learning period 
(2012–2020) and (b) validation period (2021). 
Figure 5. LSTM and ANN simulated results of GWL on Gyorae-1 at daily scale: (a) learning period
(2012–2020) and (b) validation period (2021).

The simulation result suggests that the LSTM model has extremely high efficiency and
good applicability. The coefficient of determination (R2), root mean square error (RMSE, m),
and Nash coefficient for determination of the efficiency of hydrological simulation showed
high levels at 0.96, 0.02 m, and 0.95, respectively, for the learning period (2012–2020). The
same goes for the validation period (2021) with R2, RMSE (m), and the Nash coefficient
remaining high at 0.95, 0.03 m, and 0.95, respectively. Its performance was enabled by the
fact that deep learning techniques including the LSTM model use a black-box system where
learning is conducted automatically from multidimensional datasets [71], and the simula-
tion result proves that it can be applied for solving complex problems such as forecasting
groundwater levels. In particular, considering the delay between the antecedent precipi-
tation and the groundwater level in Jeju Island [67,68], the LSTM model which considers
temporal correlation may be more suitable for groundwater level simulation. In addition,
the LSTM model does not require a separate calculation of lag time. Rather, it considers the
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correlation and causality between two time series on its own. Therefore, simulating the
groundwater level of the Gyorae area through LSTM has enough applicability.

3.3. Proposed New Method to Forecast Groundwater Levels

In the previous section, the groundwater level was simulated using the LSTM model
for the JH Gyorae-1 point, and the simulation method was confirmed to have applicability.
However, the comprehensive simulation with long-term time series that this study evalu-
ated the efficiency of is somewhat different from how the groundwater level is practically
forecasted and managed in the field. The beauty of LSTM is that it utilizes a black-box
system where learning is conducted automatically from multidimensional datasets [71].
On the other hand, it also means that a user cannot know how the necessary information is
learned and produced. Thus, there is a lack of clarity regarding processes for a particular
result in which the way the LSTM model produced a particular result based on certain
assumptions and premises is completely unknown, making it difficult for the user to exam-
ine the accuracy of the result. In this case, it is challenging for the user to make a decision
considering the uncertainty and hence the unclear accountability for the decision that was
made [37,38]. As such, [76] argued that, in the field, the hydrological simulation based on
deep learning techniques should be used (i) for research purposes or risk analysis only,
(ii) with a decision-making process for reviewing or examining the deep-learning-based
simulation results, or (iii) with an ethical review on the produced result or a prior social con-
sensus on the accountability for it. For water resources management in Jeju Island, where
81% of available water resources are dependent on groundwater, GWL forecasting in actual
practice is essential, and practical measures should be taken according to the forecasts [2].
The problem is that the managers in the field who need to forecast GWLs using deep
learning and to perform real actions cannot completely trust deep learning. Therefore, a
technique that assists the decision-making process is required for practical application. This
section includes a discussion of GWL forecasting in actual practice and suggests clues for
future improvement. The deep learning technique is basically a data-driven model, which
can be understood as a model where properties are extracted, recognized, and learned
from existing data to produce a result [77]. Some studies pointed out that it is technically
a kind of interpolation, and, therefore, it is less likely to be applicable for events that are
not included in existing data, and its faulty result may bring harmful consequences [76,78].
This section suggests and examines two ways to assist users’ decision-making regarding
the above problem: (i) derivatives-based learning and (ii) ensemble forecasting.

The first approach is derivatives-based learning. Some traditional deterministic opti-
mization methods use gradient information instead of series information. The well-known
Newton–Raphson method employs function values and derivatives and, thus, is cate-
gorized as a gradient-based algorithm. It provides good results for unimodal problems
without discontinuity as the usage of derivatives allows for the provision of simplified
information on the gradient of the target series [79]. In addition, other previous studies
on deep learning pointed out that the provision of selected potential data can reduce
learning complexity and enhance efficiency, although the selection of data properties and
training of selected data properties can be performed automatically [80]. In a broad sense,
GWL forecasting can be regarded as forecasting the gradients of GWL. In this regard, this
study assumed that learning the derivatives of groundwater level and excluding other
information for forecasting maximizes learning efficiency.

The second approach is ensemble forecasting with the attractor concept. A strange
attractor is one of the two most important concepts along with sensitivity to initial conditions
in chaos theory [81]. An attractor refers to the continuous changes to move to a state in the
natural world and is a concept that refers to the objective state [82]. Given that the GWL
changes into a hydrological equilibrium state according to hydrological conditions [83],
the equilibrium state of groundwater, where the groundwater changes remain constant
according to hydrological conditions, can be regarded as a sort of attractor. Therefore, if a
common forecast trend is observed when groundwater level forecasting is performed repet-
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itively with short time intervals, it can be deemed that the future GWL can be determined
as following the corresponding forecast, which was defined as ensemble forecasting and its
applicability to forecasting was assessed in this study (Figure 6).
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The steps were as follows: based on the derivatives-based LSTM model constructed in
this section, (i) the GWL changes for one month (D + 28) from each date were forecasted as
shown in Figure 7, (ii) the median values of the 14 time series of groundwater forecasted for
2 weeks (D + 14) were utilized as the forecasted groundwater values, and (iii) the forecasted
values were compared to the corresponding observed GWLs. In consideration of time
series correlation and aging time, the GWL simulation was started 4 weeks prior to each
base date and ended 4 weeks (D + 28) after each base date, covering 2 months in total. The
simulation period was set as 1 month from each date because the Korea Meteorological
Administration currently provides numerical forecasts for 1 month, meaning that the actual
forecast data can be acquired from the field. As a result of the simulation, for the 2 weeks
from D0, 14 forecasted series in total were produced, and their mean values were used as
the forecasted GWLs. However, some time series showing a trend significantly different
from that of other time series were regarded as erroneous forecasts and excluded.
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4. Result and Discussion

This section analyzes and discusses that suggested in previous section: (i) derivatives-
based learning and (ii) ensemble forecasting. For the (i) derivatives-based learning, a new
LSTM model for the JH Gyorae-1 point on Jeju Island was trained and constructed through
the same process in Section 3.2, using the first derivatives of groundwater time series
instead of groundwater data itself. In this case, the gradient of the GWL, not the GWL
itself, was the subject of the simulation. To compare the simulation efficiencies, the GWL
simulation was based on closed-loop deep learning [84], where only the first observed value
of GWL was used and, subsequently, the calculated GWLs from the previous timestamps
were regarded as the initial GWL values of the following timestamps. As in the previous
section, data from 2012 to 2020 were used for learning, while data for 2021 were utilized for
validation (Figure 7).

Based on the simulation result shown in Figure 7, derivatives-based learning is deter-
mined to have applicability. R2, RMSE(m), and the Nash coefficient for the learning period
in Figure 7 were over 0.62, 8.32 m, and 0.60, respectively. Since, the learning and simulation
were performed based on derivatives (gradients) of groundwater time series, not the GWL
itself, it can be regarded as the learning and simulation based on the gradients of GWL using
hydro-meteorological factors. As the constructed model did not learn GWL in accordance
with hydro-meteorological data, it is free from the problem of overfitting to the tendency
of the GWL time series [85]. The result of the learning period in Figure 7a indicates that,
overall, the model simulated GWL change well. However, although the pattern itself was
well simulated, over time, there was a consistent gap between the simulated results and the
actual observations. This is attributable to the fact that it was simulated through closed-loop
learning after the initial observed value of GWL for the learning and validation periods. As
long as the simulation accuracy for GWL change is less than 100%, the gaps at previous time
stamps are accumulated, and, consequently, the overall gap increases over time, which can
explain the consistent gap shown in Figure 7a. Furthermore, an underestimating tendency
of the trained LSTM model can be confirmed from Figure 7a, as well as for the validation
in Figure 7b. Although the simulation performance was lower for the validation compared
to that of the learning period, the overall pattern was determined to be well simulated.
However, there was a certain degree of difference in simulation efficiency as the learning
period’s evaluation function was ≥0.9, while that of the validation period was 0.6 for R2

and the Nash coefficient. Therefore, it was determined that overfitting occurred during
learning. Nevertheless, even after considering accumulated simulation errors and a certain
degree of overfitting from the closed-loop learning, an evaluation function higher than 0.6
signifies that it has sufficient applicability. Moreover, as it can prevent overfitting caused
by learning the GWL time series itself, it can be used to validate the results produced by
other simulation methods.

Secondly, for (ii) ensemble forecasting, Figure 8 shows each forecasted series and
the ensemble median values produced by ensemble forecasting for the learning period
and validation period. Figure 8a,c show multiple forecasting results for 2 weeks (D + 14)
from each date (the gray line in Figure 8a,c). Figure 8b,d show the forecasted GWLs
(the blue line in Figure 8b,d) according to ensemble forecasting and the 95.5% probability
area of forecasted time series (±2σ, the gray boundary in Figure 8b,d). As a result of the
comparison between the forecasted values from ensemble forecasting and the observed
values, R2, RMSE(m), and the Nash coefficient of the learning period in Figure 8b were 0.92,
2.84 m, and 0.92, respectively, and those of the validation period in Figure 8d were 0.90,
3.95 m, and 0.89, respectively, thus implying that it has applicability.
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casting in the learning period (2012–2020); (b) ensemble result in the learning period; (c) multiple
forecasting in the validation period (2021); (d) ensemble result in the validation period. Green-box in
(a,c) indicates forecasted series excluded from the estimation of forecasted groundwater level.

Ensemble forecasting where the ensemble median values of accumulated time series
are used as forecasted values has two merits. Firstly, as it repeats forecasting on a daily
basis and uses the mean values of forecasts, the results can be used as basic data for
decisions made based on the GWL trend. As it assumes that the future GWL will follow the
trend if repetitive GWL forecasting suggests a common trend, its consistent and common
forecasts can be significantly helpful for managers in making a decision. Secondly, if a
forecasted series of a certain date shows a big difference from others, it can be regarded as
erroneous and thus excluded. Indeed, some forecasted series of certain base dates were
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substantially apart from other neighboring time series (the green box in Figure 8a,c) and
were therefore excluded from the estimation of forecasted groundwater level. As such, it
can help decrease uncertainty—even psychological uncertainty—when managers forecast
GWLs and make decisions. For that reason, derivatives-based learning and ensemble
forecasting are determined to be appropriate to complement groundwater forecasting in
actual practice. The result of the study could be summarized as follows: the GWL of the
single station could be forecasted using the hydro-meteorological factors, and pragmatic
application was considered. The suggested methodologies in this study are expected to be
a pragmatic method for field engineers.

One of the limitations of this study is that hydro-meteorological factors were used to
forecast GWLs. The observed hydro-meteorological data were regarded as forecasted data
and used in the simulation. However, in practice, the meteorological data forecasted by
the Korean Meteorological Administration is used, and, consequently, the uncertainty of
meteorological forecasting is reflected in GWL forecasting. Additionally, its explanation
power seems not to be proper in the long-term, such as on a seasonal or yearly scale.
Ref. [86] suggested that the probability forecast for temperature was reliable, while that for
precipitation was reliable only in a few regions. In this regard, to utilize it in actual practice,
the reliability of hydro-meteorological forecasting should be guaranteed to a certain degree.
Another limitation is that the derivatives-based learning and attractor-concept ensemble
forecasting methods suggested in this study do not theoretically complement deep learning
techniques. Still, they should be of value as practical application techniques. There has not
been an alternative developed to fundamentally solve the primary problem of deep learning
which the study discussed—whether deep-learning-based groundwater forecasting in practice
can be credible and used in decision-making. To resolve this issue, a deep learning algorithm
should be able to understand and learn about the GWL process conceptually. Therefore, a
conceptualized deep learning method needs to be developed. The last limitation is that
the study was only applied to single groundwater well. In actual practice, the spatial
distribution of groundwater is essential for proper management. Therefore, further studies
which apply the forecasting method of the study in a spatial scale are needed.

5. Conclusions

The aim of the study was to propose and assess pragmatic methodologies for deep-
learning-based GWL forecasting by month for the JH Gyorae-1 point on Jeju Island, which
traditional methods can hardly predict due to its high volatility. To achieve this, the GWL
data of JH Gyorae-1 and hydro-meteorological data were obtained to simulate the GWL
change and demonstrate that it has applicability to forecasting. Moreover, it proposed
(i) derivatives-based GWL learning and (ii) an ensemble forecasting methodology to com-
plement the deep learning results which cannot be used easily for decision-making in actual
GWL forecasting and management due to their “lack of clarity of process for a particular
result” and analyzed the results. The outcomes of this study can be summarized as follows:

1. The study analyzed the correlation between JH Gyorae-1′s GWLs and 12 kinds of
hydro-meteorological data (maximum temperature, daily minimum temperature,
daily mean temperature, dew temperature, relative humidity, precipitation, ground
air pressure, sea-level pressure, mean wind speed, total sun hours, insolation, and
evapotranspiration) through cross-wavelet and Granger causality analysis for pre-
dictor selection. As a result, five factors (mean wind speed, sun hours, evaporation,
minimum temperature, and daily precipitation) showed time sequential correlations
with GWLs and were selected as predictors.

2. An LSTM model, a representative deep learning method, was constructed using the
observed GWLs of JH Gyorae-1 from 2012 to 2020, and the model was validated
with the events of the year 2021. The simulation demonstrated a highly outstanding
performance and applicability with R2, RMSE(m), and the Nash coefficient, which
show the simulation efficiency of a model for its learning and validation periods of
≥0.97, ≤0.03 m, and ≥0.96, respectively.
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3. It proposed (i) derivatives-based learning and assessed the applicability to comple-
ment the lack of clarity of process for a particular result that deep-learning-based
forecasts have. An LSTM model was constructed through learning based on the
derivatives of GWLs and presented convincing results with R2, RMSE(m), and Nash
coefficient of 0.93, 3.92 m, and 0.93, respectively, for the long-term (learning period)
simulation, which used only the first observational GWL, and of 0.62, 8.32 m, and
0.60, respectively, for the 1-year validation period (2021). Therefore, it showed that
the method can be utilized to aid decision-making when managers review deep
learning models.

4. It also proposed and assessed (ii) ensemble forecasting. As for ensemble forecasting,
±1-month GWL simulation and forecasting were repeated on a daily basis, and the
GWLs for the following 2 weeks were forecasted using the medians of the forecasted
time series. The result demonstrated that it is sufficiently applicable as R2, RMSE(m),
and the Nash coefficient were, respectively, 0.97, 1.84 m, and 0.97 for the learning
period and 0.91, 3.75 m, and 0.90 for the validation period.

Deep learning has become an offer that cannot be refused [87] and it is time to think about
the role of deep learning in hydrological practice. In a similar vein, studies on how deep
learning can be practically utilized in forecasting or management are urgently needed, and
hydrologists should conduct in-depth research on its practical application.

Author Contributions: Conceptualization, D.K. and J.K.; methodology, D.K., J.K., and C.J.; software,
C.J. and J.C.; validation, D.K. and J.K.; formal analysis, J.C. and C.J.; investigation, D.K.; resources,
C.J.; data curation, J.K. and J.C.; writing—original draft preparation, D.K. and J.K.; writing—review
and editing, D.K., J.K., and C.J.; visualization, J.K. and J.C.; supervision, D.K. and J.K.; project
administration, D.K.; funding acquisition, D.K. All authors have read and agreed to the published
version of the manuscript.

Funding: Research for this paper was carried out under the KICT Research Program (project no.
20230155-001, Development of future-leading technologies solving water crisis against to water
disasters affected by climate change) funded by the Ministry of Science and ICT.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jeju Special Self-Governing Province. Groundwater Information System. Available online: https://water.jeju.go.kr/JWR/pStatus.

cs (accessed on 30 December 2022).
2. Korea Water Resources Corporation. Comprehensive Water Resources Management Plan in Jeju Island; Jeju Special Self-Governing

Province (JSSGP): Jeju, Republic of Korea, 2018; pp. 1–328.
3. Kim, J.W.; Koh, G.W.; Won, J.H.; Han, C. A Study on the Determination of Management Groundwater Level on Jeju Island.

J. KoSSGE 2005, 10, 12–19. (In Korean)
4. Izady, A.; Davary, K.; Alizadeh, A.; Ziaei, A.N.; Alipoor, A.; Joodavi, A.; Brusseau, M.L. A framework toward developing a

groundwater conceptual model. Arab. J. Geosci. 2013, 7, 3611–3631. [CrossRef]
5. Xue, J.; Huo, Z.; Wang, F.; Kang, S.; Huang, G. Untangling the effects of shallow groundwater and deficit irrigation on irrigation

water productivity in arid region: New conceptual model. Sci. Total Environ. 2018, 619, 1170–1182. [CrossRef]
6. Dehghani, A. Numerical simulation of groundwater level using MODFLOW software (a case study: Narmab watershed, Golestan

province). Int. J. Adv. Biol. Biomed. Res. 2013, 1, 858–873.
7. Chakraborty, S.; Maity, P.K.; Das, S. Investigation, simulation, identification and prediction of groundwater levels in coastal areas

of Purba Midnapur, India, using MODFLOW. Environ. Dev. Sustain. 2019, 22, 3805–3837. [CrossRef]
8. Yang, C.-C.; Chang, L.-C.; Chen, C.-S.; Yeh, M.-S. Multi-objective Planning for Conjunctive Use of Surface and Subsurface Water

Using Genetic Algorithm and Dynamics Programming. Water Resour. Manag. 2008, 23, 417–437. [CrossRef]
9. Brunner, P.A.; Simmons, C.T. HydroGeoSphere: A Fully Integrated, Physically Based Hydrological Model. Ground Water

2011, 50, 170–176. [CrossRef]

https://water.jeju.go.kr/JWR/pStatus.cs
https://water.jeju.go.kr/JWR/pStatus.cs
http://doi.org/10.1007/s12517-013-0971-9
http://doi.org/10.1016/j.scitotenv.2017.11.145
http://doi.org/10.1007/s10668-019-00344-1
http://doi.org/10.1007/s11269-008-9281-5
http://doi.org/10.1111/j.1745-6584.2011.00882.x


Water 2023, 15, 972 15 of 17

10. Van Walsum, P.; Veldhuizen, A. Integration Of Models Using Shared State Variables: Implementation In The Regional Hydrologic
Modelling System SIMGRO. J. Hydrol. 2011, 409, 363–370. [CrossRef]

11. Kurniawan, B.; Tapriziah, E.R.; Aryantie, M.H.; Rahmani, R.; Purnomo, A.D. Application of groundwater modeling to predict the
effectiveness of various peat dome restoration methods in Pulang Pisau District, Central Kalimantan Province. In Proceedings of
the IOP Conference Series: Earth and Environmental Science, Proceedings of 2021 The 6th International Conference of Indonesia
Forestry Researchers—Stream 1 Emerging Environmental Quality for Better Living, Tangerang, Indonesia, 8 September 2021; IOP
Publishing: Bristol, UK, 2021; Volume 909, p. 012004.

12. Tao, H.; Hameed, M.M.; Marhoon, H.A.; Zounemat-Kermani, M.; Heddam, S.; Kim, S.; Sulaiman, S.O.; Tan, M.L.; Sa’Adi, Z.;
Mehr, A.D.; et al. Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing
2022, 489, 271–308. [CrossRef]

13. Sahoo, S.; Russo, T.A.; Elliott, J.; Foster, I. Machine learning algorithms for modeling groundwater level changes in agricultural
regions of the U.S. Water Resour. Res. 2017, 53, 3878–3895. [CrossRef]

14. Rajaee, T.; Ebrahimi, H.; Nourani, V. A review of the artificial intelligence methods in groundwater level modeling. J. Hydrol.
2019, 572, 336–351. [CrossRef]

15. Coppola, E.A., Jr.; Rana, A.J.; Poulton, M.M.; Szidarovszky, F.; Uhl, V.W. A neural network model for predicting aquifer water
level elevations. Ground Water 2005, 43, 231–241. [CrossRef] [PubMed]

16. Daliakopoulos, I.N.; Coulibaly, P.; Tsanis, I.K. Groundwater level forecasting using artificial neural networks. J. Hydrol. 2005, 309, 229–240.
[CrossRef]

17. Krishna, B.; Rao, Y.R.S.; Vijaya, T. Modelling groundwater levels in an urban coastal aquifer using artificial neural networks.
Hydrol. Process 2007, 22, 1180–1188. [CrossRef]

18. Rakhshandehroo, G.R.; Vaghefi, M.; Aghbolaghi, M.A. Forecasting Groundwater Level in Shiraz Plain Using Artificial Neural
Networks. Arab. J. Sci. Eng. 2012, 37, 1871–1883. [CrossRef]

19. Taormina, R.; Chau, K.-W.; Sethi, R. Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system
of the Venice lagoon. Eng. Appl. Artif. Intell. 2012, 25, 1670–1676. [CrossRef]

20. Jha, M.K.; Sahoo, S. Efficacy of neural network and genetic algorithm techniques in simulating spatio-temporal fluctuations of
groundwater. Hydrol. Process 2014, 29, 671–691. [CrossRef]

21. Chitsazan, M.; Rahmani, G.; Neyamadpour, A. Forecasting groundwater level by artificial neural networks as an alternative
approach to groundwater modeling. J. Geol. Soc. India 2015, 85, 98–106. [CrossRef]
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