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Abstract: Groundwater evapotranspiration (ETg) is an important component of the hydrological cycle
in water-scarce regions and is important for local ecosystems and agricultural irrigation management.
However, accurate estimation of ETg is not easy due to uncertainties in climatic conditions, vegetation
parameters, and the hydrological parameters of the unsaturated zone and aquifers. The current
methods for calculating ETg mainly include the WTF method and the numerical groundwater model.
The WTF method often requires data supplementation from the numerical unsaturated model to
reduce uncertainty; in addition, it relies on point-monitoring data and cannot solve the spatial
heterogeneity of ETg. The ETg calculation module of the numerical groundwater model is set up too
simply and ignores the influence from the unsaturated zone and surface cover. Subsequent research
breakthroughs should focus on the improvement of WTF calculation theory and the setting up of
an aquifer water-table fluctuation monitoring network. The numerical groundwater model should
couple the surface remote sensing data with the unsaturated zone model to improve the accuracy of
ETg calculation.

Keywords: groundwater evapotranspiration; water-table fluctuation method; unsaturated zone;
aquifer; MODFLOW; HYDRUS

1. Introduction

Water scarcity is already the biggest challenge for global agricultural development [1],
with one third of the population in developing countries living in water-scarce areas and
fifty-four percent of agricultural land also being located in water-scarce areas [2,3]. In water-
scarce areas, groundwater evapotranspiration is an important part of the hydrological cycle;
it is one of the main sources of regional evapotranspiration and the main consumer of
groundwater in areas with a shallow water table [4,5]. Arid and semiarid regions occupy
approximately 30% of the land surface of the Earth [6], including the majority of northern
and southern Africa; the Middle East; western USA and southern South America; most
of Australia; large parts of central Asia; and parts of Europe [7]. Vegetation provides
natural protection against desertification and dust storms in these regions. Some vegeta-
tion, known as phreatophyte, is groundwater dependent [8]. Phreatophyte transpiration
consumes groundwater and causes diurnal fluctuations of groundwater levels [9]. On
the other hand, surface water is scarce, and groundwater is often the only reliable water
resource for socio-economic development in arid regions [10]. Irrigation water for crops is
usually provided by the abstraction of groundwater. The over-exploitation of groundwater
resources has caused decreasing groundwater levels and resulted in desertification in
many parts of arid regions [11]. The sustainable management of groundwater resources
must consider water use both from human activities and by nature. The starting point to
develop a sustainable groundwater use plan is the assessment of groundwater balance. In
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arid environments, an important component of the groundwater balance is groundwater
evapotranspiration (ETg) [12]. Accurate estimation of groundwater evapotranspiration
is essential for understanding hydrological cycle processes and sustainable groundwater
resource use and management [13–15], and it is useful for natural ecosystem conservation
and restoration [16]. The quantification of groundwater evapotranspiration is particularly
important in areas dependent on groundwater ecosystems [17–20] and is important for
water management of crops and the investigation of soil salinization processes [21–23].

Groundwater evapotranspiration (ETg) can result in significant loss of groundwater
storage. ETg is generated when water moves from the unsaturated zone to replenish
soil storage depleted by surface evapotranspiration and root water uptake. The shallow
water table allows groundwater to be used to directly supply crop growth [24–29], so an
accurate estimation of ETg for farmland can help to improve irrigation management. Any
efforts toward improving ETg estimation methods are worthwhile for agricultural water
management and land and water environmental protection [15].

However, accurate estimation of groundwater evapotranspiration remains a challenge
because it is often influenced by uncertainties associated with climatic variables, vegetation
parameters, geological variables, and hydrologic parameters [30,31].

Numerous studies have been conducted on evapotranspiration estimation models
worldwide, and these studies have mainly included empirical statistical models, energy
balance models, remote sensing models based on Penman’s formula, complementary
correlation models, and hydrological models. The evapotranspiration model (later called
the Food and Agricultural Organization Penman–Monteith (FAO56-PM) model) proposed
by Allen [32] is the most suitable model for estimating international evapotranspiration at
present, and this model has been widely used worldwide. Evapotranspiration (ET) includes
surface evaporation (Es), evaporation of water from below the ground surface (Ess), and
transpiration of water by plants (Tss). The latter two were together defined as subsurface
evapotranspiration (ETss) [33], which includes groundwater evapotranspiration (ETg) and
unsaturated water evapotranspiration (ETu) [34].

There are many computational methods applied to different scales to calculate evapotran-
spiration, including the method based on evapotranspiration lysimeter weighing [35–38], the
method based on field water balance equations [39–42], micrometeorological methods [16],
vorticity covariance methods [43–46], the Bowen ratio method [47], and regional-scale ET
calculation models (for example, the TSEB model [48], the SEBAL model [49], the S-SEBI
model [50], the SEBS model [51], and the LandSAF model [52]), as well as mapping of
evapotranspiration using the internal scale method (METRIC) [53], the STSEB model [54],
the GLEAM model [55], the MODIS-ET model [56], and the ETwatch product [57]. How-
ever, these methods are usually used more for the measurement and calculation of earth
surface evapotranspiration and are not able to directly measure the value of groundwater
evapotranspiration, mainly because the hydraulic connection between the earth surface
and the aquifer is blocked by the unsaturated zone, and the uncertainty of the unsaturated
zone increases the difficulty of calculating groundwater evapotranspiration. Therefore, the
calculation of groundwater evapotranspiration often needs to consider the variation of
moisture content in the unsaturated zone. In addition to this, the accurate estimation of
ETg needs to consider the variation of local atmospheric conditions [58] and groundwater
table variation [59], and is also influenced by the spatial heterogeneity of land use [60].
Moreover, many factors such as lateral inflow at the recharge boundary, vertical recharge at
the surface, and complex geological structure and soil composition in the unsaturated zone
can affect ETg [61–64]. In addition, intensive anthropogenic measures, such as water diver-
sions and irrigation in water-scarce areas, also have a significant impact on groundwater
evapotranspiration. External water transfers directly change the water storage capacity of
inland lakes, and overall raise the groundwater table in the wetlands around the lakes and
diversion channels. This change in groundwater is continuous, unlike the transfer of water
for irrigation in agricultural areas. The shallower water table makes the water storage
capacity and regulation capacity of the unsaturated zone weaker, the capillary zone is closer
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to the surface, and thus groundwater evapotranspiration becomes stronger; in addition, the
shallower water table allows more channels for groundwater to rise into the air, and the
root systems of some deep-rooted plants can act directly on the unsaturated zone and even
the aquifer. The branches and roots of plants establish the hydraulic connection between air
and aquifer, and driven by the transpiration of plants, a large amount of groundwater enters
the air directly without passing through the unsaturated zone. The shallower unsaturated
zone channels and the newly added plant channels change the proportion of groundwater
evapotranspiration (ETg) in total evapotranspiration (ETa). This combination of multiple
factors makes ETg difficult to calculate.

2. Methodology
2.1. Advances in Research on Groundwater Evapotranspiration

Historical studies of groundwater evapotranspiration by researchers date back to the
1920s. The early researchers found that groundwater is constantly supplied with evapo-
transpiration through “capillary rise,” which is evident in groundwater when the water
table is less than 3 m. Remson and Fox [65] proposed a method for estimating groundwater
discharge by evapotranspiration from the water capillary rise of the water table. “Potential
capillary water loss” is defined as a measure of the ability of the soil capillary gap to raise
water from the groundwater to the earth surface, and they consider the depth of the water
table as the most important factor affecting the magnitude of groundwater evapotranspi-
ration. Gardner’s [66] analysis showed that the evapotranspiration rate depends on the
depth of the water table and the capillary flux. Subsequently, Gardner [66] and Willis [67]
proposed the calculation of ETg as a function of water table depth, and although their
assumption of the constant moisture content in the unsaturated zone is inaccurate today,
this idea has had a profound impact on subsequent studies of groundwater evapotranspi-
ration. Schoeller [68] introduced the concept of ultimate evapotranspiration depth, and he
theorized that groundwater evapotranspiration occurs only when the groundwater table
depth is smaller than the ultimate evapotranspiration depth. The magnitude of the ground-
water evapotranspiration value is determined by the groundwater table depth together
with the potential evapotranspiration value, and this method is widely used because of its
simple form. In the classic groundwater numerical model MODFLOW, the groundwater
package EVT still follows this idea in the calculation of evapotranspiration. Doorenbos
and Pruitt [69] proposed a method to calculate ETg by quantifying the variation of soil
water content in the root zone. They were the first to elaborate on the relationship between
ETg and soil moisture in the root zone of crops. This method has been used in soil water
balance models for calculating the magnitude of ETg. The calculation of soil water balance
is a specific application of the water balance equation theory, which is also a common
method for groundwater evapotranspiration calculations and is applicable to different
scales [4,70–72].

Wang et al. [15] used the water balance equation to calculate the soil water content in
the root zone under irrigation and rainfall conditions, and then proposed a new equation
that integrates multiple influencing factors to estimate ETg during the growing season based
on the methods proposed by Doorenbos and Pruitt [69] and the Averianov equation [68].
Groundwater evapotranspiration was calculated using the following equation.

ETg = Kc × ET0 ×
(

1− H
Hmax

)n
×

θ f c − θ

θ f c − θr
(1)

where Kc is crop coefficient, ET0 is reference crop evapotranspiration in mm·day−1, H is the
actual water table depth in m, Hmax is the potential maximum depth in m, beyond which
no ETg occurs; n is the soil characteristics parameter, θ is the actual averaged soil water
content in the root zone in cm3·cm−3 (usually about 60 cm below the soil surface), θfc is the
field capacity of the soil in the root zone in cm3·cm−3, θr is the soil water content close to
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permanent wilting point in cm3·cm−3 (in this paper, a constant value 0.05 is used [73]). The
method was tested and validated against the data from the lysimeter experiments.

Wang et al. [74] then used the following water balance equation to calculate ETg based
on ETa obtained in a subsequent study.

ETg = (P + I) + ∆SWC− ETa − Pc (2)

where P and I are precipitation and irrigation in mm, respectively, ∆SWC is the variation
in soil water storage up to 90 cm depth where most of the maize root system is concen-
trated [75], and Pc is the deep percolation to shallow groundwater. Since the daily ∆SWC
was sometimes too small to accurately determine using Hydra probe measurements, the
two-day average was used to calculate the water balance. In any event, it was assumed that
either Pc or ETg was zero. Lai et al. [76] considered quantifying the contribution of shallow
groundwater to evapotranspiration (ETg) as an important topic that has been extensively
studied [77,78]. They used lysimeters to calculate groundwater evapotranspiration values
for wheat fields in the lower Yellow River basin at different groundwater level conditions.
He concluded that reasonable groundwater level control can help increase yields while
reducing the risk of soil salinization and is important for sustainable management of the
lower Yellow River basin.

2.2. Using the WTF Method to Calculate the ETg

Among the methods for calculating groundwater evapotranspiration considering the
influence of crops or plant roots, the groundwater table fluctuation (WTF) method is one
of the most commonly used methods. In recent decades, there has been an increasing
emphasis on using the WTF method to quantify ETg. Calculating ETg based on the WTF
method is a relatively straightforward, simple and inexpensive method [9,79,80], Users can
measure water loss due to evapotranspiration directly from groundwater table changes
and therefore does not require additional measurements at the soil surface [73,81–83]. The
use of the groundwater table fluctuation method assumes that groundwater table changes
in a shallow aquifer are caused by evapotranspiration only [84], and this method has been
widely used to estimate ETg in riparian zones and wetlands [13,58,85–87].

The method of groundwater table fluctuation exploits the law of daily variation of
the water table in riparian zones or wetlands. During the daytime, plant transpiration
makes the groundwater table lower, and at night, the intensity of plant transpiration
decreases and a significant rebound of the groundwater table level occurs. Based on the
discovery of this pattern, White [81] proposed a classic method for calculating groundwater
evapotranspiration, namely the White method. This method has long been used for
groundwater evapotranspiration rates in arid and semi-arid areas [83,88–90]; it has been
continuously improved by many researchers and has been applied to wetlands [8], riparian
zones [79,91–93], prairies [94], and forests [95] in a variety of ecosystems.

2.2.1. White Method

The White method is the most classic method of the water-table fluctuation meth-
ods. White theorized that groundwater evapotranspiration is mainly composed of two
parts—the recovery, and the storage variation in 24 h—based on the regular fluctuation of
groundwater, which can be calculated by the following equation.

ETg = Sy(24r± s) (3)

where Sy is the specific yield of the shallow aquifer, r is the groundwater recharge rate from
00:00 a.m. to 04:00 a.m., and s is the 24-h shallow groundwater table variation. However,
the White method is not universally applicable, and his application is based on four
assumptions: (1) the day and night dynamics of groundwater table fluctuation are caused by
plant evapotranspiration; (2) the evapotranspiration of plants from 0:00 a.m. to 4:00 a.m. at
night is 0; (3) the groundwater recovery rate at night is a constant value; and (4) the specific
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yield is a constant value and representative. Due to the simplicity and ease of operation of
White method, this method is also the most widely used for evapotranspiration calculation
at the site scale. However, some of the elements in the assumptions are subjective and
limited, and researchers have made corresponding improvements in subsequent studies
based on the shortcomings of the assumptions of the White method. Inspired by White
method, many researchers have proposed other methods based on water-table fluctuation
information, including the Dolan method [96], the Hays method [13], the Gribovszki
method [85], the Loheide method [62], the Soylu method [86], etc. These methods are
based on the White method and classed as approaches that improve upon the White
method (Figure 1).

Figure 1. Computational schematic of the White method and its improved approaches [88].

2.2.2. Dolan Method

Dolan et al. [96] utilized continuous records of water-table elevation in the marsh soil,
and related a drop in the water table to evapotranspiration loss. The observed rise or fall in
the groundwater table at night represents the net inflow or outflow of water into or out of
the marsh due to hydraulic forces alone. The rate of change of each night’s groundwater
table rise was extrapolated to noon the next day and back to noon the day before. The
midday elevation represents the altitude of the groundwater table if no evapotranspiration
had occurred during the 24 h period. The cycle is centered on each successive night. Thus,
the difference between the elevation extrapolated from the previous night and the elevation
extrapolated from the next night represents the water loss due to evapotranspiration on
that day.

2.2.3. Hays Method

Hays [97] developed a new method for estimating ETg. The biggest advantage of this
method is the flexibility to determine the time of the water-table rise and fall according to
the water-table waveform, instead of fixing it at a certain definite time period. Its calculation
equation is:

ETg = [(H1 − HL) +
H2 − HL

T1
T2]× Sy (4)
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where H1 is the maximum water table depth on the morning of the calculation day in m,
H2 is the maximum water table depth on the next day in m, HL is the minimum water table
depth on the day of the calculation in m, T2 is the duration of the groundwater table decline
period, and T1 is the duration of the groundwater table rise period. The prerequisites for
the use of the Hays method are similar to those of the White method.

2.2.4. Loheide Method

The Loheide method [62] is an improved method based on the White method. The
main idea of the Loheide method is that it is first assumed that the trend of the water table
change in the recharge source is consistent with the general trend of observed water table
change, so that the measured groundwater table can be detrended. The detrending analysis
of the water table included in this method not only improves the calculation accuracy of
vegetation evapotranspiration, but also reduces the uncertainty in the calculation process.
The change in groundwater storage near the water table observation wells is expressed
as the change in water table with time (dWT/dt) and is controlled by the net inflow or
outflow of groundwater in the vicinity (r(t)(L/T)) together with the ETg.

Sy
∗ dWT

dt
= r(t)− ETg(t) (5)

When ETg is 0, Equation (3) can be simplified as

Sy
∗ dWT

dt
= r(t) (6)

It has been clarified that the daily recharge rate is a function of time, and Loheide [52]
assumes a constant head in the recharge source area and that the recharge rate can be
obtained from water table changes, so Equation (5) can be expressed as

r(WT) = Sy
∗ dWT

dt
(7)

The Loheide method considers the trend of the groundwater recharge zone water table
to be included in the water table change at the observation point, so this trend is therefore
removed from the water table change at the observation point.

WTDT(t) = WT(t)−mT × t− bT (8)

where WTDT(t) is the detrended water table, WT(t) is the observed water table, mT is the
trend line slope, and bT is the trend line intercept. dWTDT/dt and WTDT(t) using the water
table of ETg as 0 in the early morning of the current day and the next day, established the
functional relationship Γ(WTDT), and thus the recharge rate function is obtained, which
can be expressed as

r(t) = S∗y × [Γ(WTDT(t)) + mT] (9)

Finally, the available ETg is expressed as:

ETg(t) = r(t)− S∗y ×
dWT

dt
(10)

Sy* in the above equation is the complete specific yield instead of the traditional
specific yield concept. The reason for the proposed concept of complete specific yield
is because Loheide [62] theorized that the error of specific yield is an important factor
in causing the error in the calculation of groundwater evapotranspiration. Therefore, he
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proposed the concept of complete specific yield, and the equation of complete specific yield
is as follows

S∗y = Syu −
Syu

[1 + α(
zi+z f

2 )
n
]
1− 1

n
, Syu = θs − θr (11)

where θs is the saturated soil water content, θr is the residual water content, and zi and zf are
the initial and end values for the variation of groundwater table depth. The parameters α
and n are in the van Genuchten model. The average values are taken when the groundwater
table varies in the soil layer.

2.2.5. Yin Method

The Loheide method assumes that the rate of change of the detrended water table is
linearly related to the detrended water table. In response to this assumption, Yin et al. [12]
further refined the Loheide method in their study, and found that applying the exponential
equation to fit the relationship curve between the rate of change of the detrended water
table and the detrended water table, can yield more accurate calculation results. Inspired
by the Loheide method, Yin et al. [12] proposed an improved calculation of hourly-scale
evapotranspiration based on the White method, as Equation (12)

ETg = Sy × (r + (Hi−1 − Hi)) (12)

where Sy is the specific yield, r is the water level recovery rate (LT−1), i is the moment
value (T), and H is the water table value at the ith moment (T). Compared with the Loheide
method, the calculation process of this method is simpler.

2.2.6. Gribovszki Method

Gribovszki et al. [85] also concluded that the rate of water table recovery is not constant
throughout the day and proposed the use of empirical interpolation methods to calculate a
non-constant rate of water table recovery throughout the day. The main idea is to estimate
the rate by using hydraulic derivation and empirical methods. The maximum (positive)
rate of water table changes between midnight and 6 a.m. and the average of dh/dt are
chosen to obtain the maximum and minimum recharge rates, respectively. These values
were assigned to the times of maximum and minimum groundwater table rates of recovery,
respectively. Therefore, two points (sections) were defined for each day. Based on the
points for several days, a spline interpolation was performed to describe the recharge rate
r(t) (L/T) over time. Subdaily evapotranspiration was then calculated (e.g., dt = 1 h).

ET(t) = Sy

(
r(t)− dh

dt

)
(13)

However, although the empirical interpolation method obtains the variation of water
table recovery rate for each hour of the day, there may be some error in calculating the
hour-by-hour water level recovery rate because the empirical interpolation method is based
on only two pieces of daily data.

2.2.7. Soylu Method

Soylu et al. [86] proposed to use a new ‘Fourier method’ to calculate groundwater
evapotranspiration. They found that the amplitude of the fluctuations of the water table af-
ter detrending can be used to calculate evapotranspiration directly by combining the water
balance equation of the White method and the Fourier equation proposed by Czikowsky
and Fitzjarrald [98]. The equations are as follows.

H(t) = A× t + D + B sin
(

2π
(t + E)

24

)
(14)

ETg = Sy× k(2B) (15)
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where H is the water table depth (L), A is the water table depth change trend for multiple
days (LT−1), t is the time (T); D is the average deviation of water table depth change
(L), B is the diurnal fluctuation amplitude (L), E is the day and night fluctuation phase
(T), and k is the empirical correction factor for correcting the water table recovery and
evapotranspiration components included in A × t.

2.2.8. Wang Method

Wang et al. [13] used the statistical method of day and night fluctuations of the
water table to analyze the characteristics of de-trended groundwater table fluctuations,
and then calculated the evapotranspiration at different time scales based on the relevant
parameters. This method can effectively deal with continuously changing groundwater
table fluctuation data.

ETg = Sy× σ

λ
(16)

where σ is the variance (L) of the variation of the de-trended water table, and λ is the
evapotranspiration cycle correlation coefficient. It can be seen that the subsequent improve-
ments in the water table fluctuation methods—both the Fourier method and the water table
statistics method—are mostly improvements in the fluctuation characteristics about the
detrended water table, and this series of improvement ideas is derived from the detrending
theory proposed by Loheide.

2.2.9. Other Improvements and Applications

Wang et al. [99] concluded that one of the limitations of the White method is the large
uncertainty in quantifying the daily groundwater recovery rate (r). Since ETg is highly
dependent on the shape and duration of the diurnal clear-sky solar radiation curve, using
the groundwater recovery rate at short nighttime intervals to represent daily r may lead to
large uncertainties in the ETg estimates. They analyzed the dependence of the estimated
daily r on sunset and sunrise times. and found that the estimated r is highly sensitive to the
duration between sunset and sunrise and varies with the season. Instead of using fixed time
spans (TSs), they suggest using a more universal method for determining TSs for estimating
daily r. They tested this dynamic T of S method at a Tamarix ramosissima-dominated riparian
site in northwestern China. The results proved that their improved method was better
and less subjective than the traditional White method. Subsequently, many researchers
have used these representative methods mentioned above in different study areas for
comparison to see their applicability. Three water table fluctuation methods [13,69,74] were
used by Su et al. [100] in 2017 to calculate daily ETg in a riparian forest area in northwestern
China. The purpose of comparing these three methods was to evaluate and compare
their performance under various groundwater table conditions in the wild. The results
indicated that the White method is applicable to the period of declining groundwater table.
In addition, the selected time period may affect the estimation of ETg. The Soylu and
Hays methods performed well under various groundwater table conditions. Therefore, it
appears that the Hays and Soylu methods are more suitable for long-term ETg estimation
in the wild. In addition, it was found that the percentage of water transpired by plants
from groundwater varies during the growing season, and that riparian plants mainly use
soil water in early growth and tend to use groundwater in late growth. Yin et al. [12]
also compared three frequently used water table fluctuation methods: the White, Hayes,
and Loheide methods. These three methods use the water table generated by the model
to calculate the ETg. The comparison of actual and estimated ETg reveals the accuracy
of each method and determines the applicability of the methods. When the recovery
branch of the groundwater table process line is nonlinear, these methods underestimate
daily ETg. The Loheide method is relatively good, and all three methods can accurately
estimate daily ETg. The modified White method can provide hourly ETg estimates and is
recommended for general use. It was found that in practical applications, analysis of the
shape of the groundwater table recovery branch and the difference in groundwater head
between the upper and lower gradients can determine the appropriate estimation method
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of ETg. Fahle and Dietrich [101] compared the existing water table fluctuation method with
their field measurements of evapotranspiration. They used 85 days of rain-free data from a
weighable groundwater solution meter located in the wetland meadows of the Spreewald
in northeastern Germany. It can be shown that some researchers have used multiple water
table fluctuation methods in different study areas around the world and have continuously
made targeted improvements. These case studies continue to promote the development
and improvement of water table fluctuation methods.

However, there are still some uncertainties regarding the White method and its im-
provements [102]. These uncertainties are mainly in the quantification of specific yield (Sy),
the choice of recharge time, the high heterogeneity of surface vegetation, and the effect of
rainfall or irrigation on the water table. The largest uncertainty of White method mainly lies
in the estimation of the Sy. The Sy was defined as the volume of water released by gravity
from a unit area of rock column extending from the water table to the ground surface as the
water table decreases by one unit depth (head) [103]. Errors in the Sy estimates translate
directly into ETg estimates [62,69,70,104]; both variables are involved in the ETg calculation
in the White method, since storage variability and groundwater recharge variability need
to be multiplied by the Sy. However, there are many difficulties in estimating Sy, as this
parameter is not constant over time. The specific yield is highly variable in shallow aquifers,
and its magnitude depends on factors such as soil texture, water table depth, and the state
of drainage or recharge [42,62,70,85,103,105–107]. Sy is usually used only for groundwater
drainage, but for rising water table conditions, the presence of air within the pore space is
likely to reduce the value of Sy, i.e., the equivalent change in water table corresponds to a
different change in water volume for the recharge and drainage states [42].

In addition, the White method for calculating the recharge rate (the underlying as-
sumption for r) uses the average rate of groundwater table rise between 0:00 a.m. and
04:00 a.m. for a total of 4 h to equal the average groundwater recharge rate for the entire day
(Table 1); therefore, this method is not applicable to variable groundwater fluctuations. The
recharge rate is typically a function of the head difference between the observation well and
the recharge source [62]. The transient recharge rate will vary with time. Replacing the aver-
age daily recharge rate with the average daily recharge rate determined over a range of time
can cause errors in the estimation of ETg [106]. Therefore, many researchers usually modify
the White method according to the time period used for recharge estimation [62,94,108].
Some other methods even avoid using varying recharge rates [13,86].

Table 1. The time periods selected for water table recovery rate calculation in different studies.

Method Experimental Period

White [81] 0:00~4:00
Dolan et al. [96] 0:00~4:00

Hays [97] 0:00~4:00
Loheide [62] 0:00~6:00
Yin et al. [12] the previous day 21:00~5:00
Rushton [108] the previous day 18:00~6:00

Miller et al. [94] the previous day 22:00~7:00

In addition to the degree of water availability and the timing of recharge, the magni-
tude of ETg is also influenced by surface vegetation cover and the growth state of vegeta-
tion [109–111]. Of course, vegetation effects are not limited to groundwater evapotranspira-
tion ETg; for total surface evapotranspiration ET, the contribution of plant transpiration (T)
to evapotranspiration (T/ET) is estimated to range from 38 to 77% at the global scale, with
an average of 64 ± 13% [112–114]. Thus, terrestrial vegetation is an important force in the
global water cycle [115]. In arid areas or areas with a low leaf area index (LAI), the average
contribution of T to ET can reach 70% to 95% [113,116,117]. In arid or semi-arid zones,
plants can only extract water from deeper soils or directly from the shallow water table
for transpiration during the growing season due to the low water content of the topsoil.
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Multiple indications suggest a strong correlation between the distribution of plant species
and the depth of the groundwater table [118,119]. Vegetation has a strong adaptive capacity,
especially in water-scarce ecosystems, to make full use of water in the unsaturated zone and
aquifers through root growth [120,121]. Nepstad et al. [122] suggest that the semi-enclosed
forests of the Brazilian Amazon rely on deep root systems to maintain a green canopy
during the dry season. Evergreen forests can meet evapotranspiration requirements during
droughts of up to 5 months by absorbing water from the soil at depths greater than 8 m.
Maraux and Lafolie [123] found, in a maize-sorghum field in Nicaragua, that upward
infiltration of water fluxes into the root zone reached 2 mm per day during drought, while
actual evapotranspiration ranged from 2 to 4 mm per day. Kleidon and Heimann [124]
similarly found that water uptake from deep soil or groundwater plays an important role
in dry season transpiration in Amazonia. More recently, Saleska et al. [125] used Moderate
Resolution Imaging Spectroradiometer (MODIS) satellite data to find that the greenness
of Amazonian forests increased even during the 2005 drought, and concluded that trees
were able to use deep roots to access groundwater to survive extreme drought periods.
Considering the influence of crop growth processes on ETg, Liu and Luo [126] combined
two different methods, proposed by Doorenbos and Pruitt [59] and Schmid et al. [127],
to calculate the values of groundwater evapotranspiration in areas with burial depths of
less than 1.5 m for rainy periods (presence of rainfall or irrigation) and non-rainy periods,
respectively. This method used a negative linear relationship between the water content
of the unsaturated zone (root zone) and ETg. However, when the groundwater depth is
greater than 1.5 m, the variation in ETg and the effect of irrigation can cause the relationship
to deviate from the linear relationship. Under field conditions, the calculation of ETg is
influenced by multiple factors. Even during non-rainy periods (when there is no rainfall
or irrigation) ETg is still affected by multiple factors such as soil properties, crop water
requirements, available soil water content, and groundwater table depth [128]. During
rainy periods, a mixed upward and downward water potential gradient is formed in the
soil profile [126], and downward fluxes caused by rainfall or irrigation may lead to a
gradual development of local downward water potential gradients toward the bottom of
the root zone. Some researchers, such as Yuan et al. [129], observed a significant positive
correlation between evapotranspiration ETg and potential evapotranspiration (PET). In
addition, the results of Carlson Mazur [58] recognized a significant positive correlation
between the two. Some studies have also reported that ETg and potential PET have a weak
positive correlation. According to some previous calculations, the R2 range of ETg and PET
was 0.02–0.43 [130]. Lautz [79] also reported a similar correlation between groundwater
evapotranspiration (ETg) and potential evapotranspiration (PET) in semi-arid riverfront
areas. Zhang et al. [131] reported that the strength of the correlation between ETg and
PET was significantly different in different research regions or conditions. The above
complexity of the relationship between PET and ETg is mainly due to their different con-
trolling factors. Compared with PET, which is affected by climate conditions, there are
many influencing factors for groundwater evapotranspiration. including plant species in
the study area, root depth, local meteorological conditions, groundwater level variation
patterns, lateral recharge and discharge of groundwater, and so on. Under the combined
effect of these factors, groundwater evapotranspiration exhibits a large spatial and temporal
heterogeneity.

The water table fluctuation (WTF) method, as a typical point-scale ETg calculation
method, is not a good choice in solving problems in terms of spatial heterogeneity. Due
to some restrictive nature of its own application conditions and influenced by the uncer-
tainty of the envelope, many researchers use numerical models as an auxiliary method
to the water table fluctuation method to solve the problems of envelope uncertainty and
spatial heterogeneity. Using an arid desert environment in northwestern China as his study
area, Wang et al. [13] found that groundwater evapotranspiration is an important factor
controlling hydrological processes in arid riparian zones, while the accuracy of estimating
groundwater evapotranspiration values is influenced by the groundwater flow rate in the
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aquifer, the redistribution of water within the riparian aquifer during river flow [132], and
the specific yield [84]. He also used HYDRUS as a complement to understand the different
seasonal variations in groundwater evapotranspiration values, but the point-scale HY-
DRUS+WTF approach still cannot address the uncertainties associated with time-varying
lateral flow velocities, spatial variations in groundwater dynamic patterns, and specific
yields in the riparian corridor, and he argued that monitoring networks rather than indi-
vidual monitoring of point settings is necessary. Jia et al. [133] also used HYDRUS as a
complement to the WTF method and found that in areas with shallow groundwater depths
(<1 m), the groundwater replenishment of ET-induced depleted soils during nighttime is
significant, and the use of the traditional White method would seriously underestimate
groundwater evapotranspiration values because this factor is neglected; he therefore used
HYDRUS to correct the omission of White method and used an improved method to esti-
mate ETg. Diouf et al. [134] also used HYDRUS and they found that in urban or shallow
depth groundwater areas with agricultural irrigation, groundwater table fluctuation meth-
ods may be influenced by urban water use or agricultural irrigation, so in order to analyze
the applicability of the WTF method to this area, he found that the WTF method achieved
better accuracy in the evapotranspiration values calculated in the dry season using the
water table simulated by HYDUS; however, the accuracy was not guaranteed for different
surfaces. The accuracy could be guaranteed only under the vegetation type. Therefore, the
feasibility of using the simulation results of the numerical model as the source data for
the WTF method to calculate the evapotranspiration needs to be further demonstrated. By
studying historical data on water content and pressure level fluctuations on soil profiles.
Zhao et al. [135] found that in a study area in northwest China, direct groundwater recharge
does not occur from mid-June to mid-September when evapotranspiration is high, and soil
water content changes in the upper unsaturated zone are mainly controlled by atmospheric
conditions; however, in deeper parts, they are controlled by pressure surface fluctuations.
Accordingly, a one-dimensional model (HYDRUS-1D) with variable head for the lower
boundary condition (BC) was developed to explain the response of groundwater flow to
changes in atmospheric and groundwater conditions, and the lower BC model with variable
head reproduced the observed variation in soil moisture content, with a much smaller total
evapotranspiration value obtained for the variable head below BC compared with the fixed
head corresponding to the mean water table depth, which is similar to Zhu et al.’s model
results [136].

2.3. Using the Numerical Model to Calculate the Groundwater Evapotranspiration

Unlike HYDRUS, another commonly used groundwater flow numerical model, MOD-
FLOW [137], is often used without the need to incorporate the WTF method because it
has a well-established ETg calculation package. The calculation of ETg is based on the
fact that potential evapotranspiration shows a linear variation depending on the depth
of the water table, with ETg reaching a maximum when the water table is near the sur-
face [138]. When the water table is below a fixed depth (ultimate evapotranspiration depth),
ETg is zero. In addition, MODFLOW includes the segmented linear evapotranspiration
(ETS) package, which considers the segmented linear relationship between the depth of
groundwater burial and the ETg rate [138], and the ETS package more accurately represents
the numerical variation of ETg at different burial depth stages [139]. In the ETS package,
the relation of ET rate to head is conceptualized as a segmented line (a piecewise linear
function) in the variable interval. The segments that determine the shape of the function in
the variable interval are defined by intermediate points where adjacent segments join. The
ends of the segments at the top and bottom of the variable interval are defined by the ET
surface and the extinction depth. For the simplest case, where a single ET segment is used
(equivalent to the EVT package in MODFLOW2005), the ET rate is calculated as:

RETnb = EVTRnb, hn > SURFnb (17)
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RETnb = EVTRnb
hn − (SURFnb − EXDPnb)

EXDPnb
, (SURFnb − EXDPnb) ≤ hn ≤ SURFnb (18)

RETnb= 0, hn < (SURFnb − EXDPnb) (19)

where RETnb is the rate of loss per unit surface area of water table due to ET, in units
of volume of water per unit area per unit time (LT −1); hn is the head, or water-table
elevation in cell n from which the ET occurs (L); EVTRnb is the maximum possible value
of RET (LT−1); SURFnb is the ET surface elevation, or the water table elevation at which
this maximum value of ET loss occurs (L); and EXDPnb is the cutoff or extinction depth (L),
such that when the distance between hn and SURFnb exceeds EXDPnb, ET ceases.

Although the ETS package is an improvement in computational accuracy over the
traditional EVT package, the calculations of the ETS package ignore other influences on
ETg, such as plant canopy cover, leaf area, community composition, and water content in
the air pocket.

Pozdniakov et al. [140] argues that groundwater vapor emission has an important
influence on the water balance in river valley zones, and he uses MODFLOW with the
RIV and EVT packages to calculate ETg. Based on the MODFLOW evapotranspiration
package (EVT), Baird and Maddock [141] developed the Riparian Evapotranspiration for
MODFLOW (RIP-ET) package to simulate riparian and wetland ETg using a nonlinear
ETg curve that accounts for reduced ETg rates due to hypoxic conditions. The spatial and
temporal variability of riparian ETg is controlled by climate, vegetation structure, water
content of the unsaturated zone, and groundwater table depth (DTWT). To address the
spatial heterogeneity of riparian zone vegetation ETg, Ajami et al. [142] implemented a GIS
tool in conjunction with RIPGIS-NET, which creates data input files in the MODFLOW-2000
or RIP-ET packages and visualizes MODFLOW results. Combining RIP-ET in MODFLOW
with the GIS functionality of RIPGIS-NET can be used to calculate ETg at different scales.
This relationship was later modified in the evapotranspiration (ETS1) package to a seg-
mented linear relationship, to include the nonlinearity between DTWT and ETg rates.
El-Zehairy et al. [143] calculated groundwater evapotranspiration ETg and unsaturated
zone evapotranspiration ETuz for reservoir areas with large stage fluctuations in the water
table by using MODFLOW with the addition of the packages SFR7, UZF1, and LAK7.
Sergey et al. [144] analyzed the role of groundwater evapotranspiration in the water bal-
ance by using the MODFLOW-2005 hydrogeological model with the STR package; the
annual variation of recharge was obtained with the codes from Surfbal and HYDRUS. The
program code SurfBal is a surface water balance model, which was developed to simulate
the processes of precipitation and heat energy transformations on the land surface in order
to generate the upper boundary meteorological conditions for HYDRUS. Hou et al. [145]
used the remote sensing evapotranspiration data ETwatch with the UZF1 package and
MODFLOW to calculate the region-scale ETg of the shallow depth groundwater zone in
the eastern North China Plain.

Some other numerical models have also become common in recent years to calculate
groundwater evaporation ETg. Researchers conducting climate simulations have also
started to calculate groundwater evapotranspiration [146–157]. Other researchers have
combined numerical simulations with experiments to estimate groundwater evapotran-
spiration from agricultural fields [69,158]. Blin et al. [159] used evapotranspiration (ET)
from the Earth Engine Evapotranspiration Flux (EEFlux) tool as calibration data, then used
Parameter Estimation Software (PEST) as a tool to calibrate ETg from MODFLOW for an
undeveloped basin located in the arid Chilean highlands. Liu et al. [160] proposed an
alternative approach to estimate ET through the lower boundary of the root zone (<1.0 m
depth). Askri et al. [161] developed the hydrological model OASIS-MOD to study the
effects of irrigation management on groundwater table fluctuations and soil salinity. The
model involves evapotranspiration processes in the unsaturated zone, crop transpiration,
and groundwater evapotranspiration processes.
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3. Conclusions

Based on the above discussion, it is evident that accurate estimation of groundwater
evapotranspiration is still a challenging task at present. The progress and breakthroughs in
the technical methods related to this problem are mainly focused on two directions; the
first is based on the theory of the WTF method, for which further improvement of the
key parameters is required (such as specific yield Sy and groundwater recovery rate, etc.)
There are various methods for improving the accuracy of the parameters, such as using
numerical models or measuring in sample fields with the help of various instruments.
It should be noted that the improvement of accuracy should not be limited only to the
methods of obtaining parameters, and the discovery of new computational theories should
not be ignored. The second type of method to calculate ETg mainly relies on the numerical
groundwater model. The distributed groundwater model can better solve the problem of
spatial heterogeneity, and remote sensing technology can provide more accurate hydrologi-
cal and meteorological parameters for the model, but the uncertainty of the unsaturated
zone blocks the combination of remote sensing technology and the groundwater model, so
the coupled model of surface remote sensing data and the unsaturated zone model and
groundwater model, should subsequently be constructed for calculating the groundwater
evapotranspiration at a regional scale.
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