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Abstract: Recurrent green tide has been widely studied due to its severe damage to coastal ecosystem.
Jinmeng Bay, a popular resort in northeastern China, has suffered from green tide events since
2015, after the constructions of artificial islands and submerged reefs. To investigate the potential
impacts of artificial islands and reefs on the water quality in Jinmeng Bay, a MIKE 21 numerical
model was established by coupling a hydrodynamic model with a transport model of Chemical
Oxygen Demand (COD) and nitrate ion (NO3

−). The changes in the water quality in Jinmeng Bay by
the initial, first-stage and current construction conditions of artificial islands and submerged reefs
were simulated. The model results indicated that: (1) The artificial islands and reefs in Jinmeng
Bay hinder the tidal currents and weaken the tidal actions. (2) The weakened tidal actions at the
estuary lead to the accretion of COD and NO3

−. The neap tides generate a littoral zone with the high
concentration of COD and NO3

−, and the spring tides maintain the zone at the estuary. (3) NO3
−

is more sensitive than COD to the variation of hydrodynamic conditions. The NO3
− concentration

in the north of Conch artificial island is altered significantly, where the construction of the artificial
structures decrease the concentration by ~30%, while the demolition of the connection road increases
the concentration beyond its initial values by 16~21%. (4) Under the current construction conditions,
the rising concentrations of COD (up to 2%) and NO3

− (up to 40%) increase the frequency and scale
of green tides in Jinmeng Bay considerably. Therefore, continuous monitoring of water quality is
required for this region.

Keywords: water quality; artificial island; reef; hydrodynamics; transport; chemical oxygen demand;
nitrate ion

1. Introduction

Over the past decades, climate changes and anthropogenic emissions have led to the
recurrences of green tides in the Yellow Sea and the Bohai Sea, China. The green tide
incidence deters tourists and incurs excessive expense for rehabilitation [1–4]. Moreover,
the blooming algae alter the local nutrient levels and the initial community structures
further [4–7]. The regional variations of environmental factors may also increase the risk of
green tides [8–12]. Han et al. [13–15] investigated the mechanisms that trigger green tides
based on the tempo-spatial distributions of Ulva prolifera (a typical green algae in China)
and pointed out that temperature, substrates and nutrients had the dominant effects on
the physiological levels. Song [16] applied remote sensing to study hydrodynamic and
environmental factors for algae outbreaks. It was found that the nutrient emissions for
aquaculture resulted in the blooming biomass, and wind-induced currents controlled the
algae drift trajectory. During their investigations of the green tide events under normal
and storm conditions, Sun et al. [17] and Li et al. [18] also highlighted the importance of
wind and current contributions to the algae drift. Geng [19] utilized 28-isofucosterol as a
biomarker to track the deposition area of Ulva prolifera and revealed that the distribution
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of the biomarker is correlated with that of nitrogen nutrients. In fact, nitrogen nutrients
play a significant role in the growth of green algae [20–22]. Recently, Zhang et al. [23,24]
focused on the influences of nitrogen nutrients on a typical green tide event in 2018. On
the one hand, the distributions of nitrogen nutrients were mainly affected by the upstream
input and the nearshore transport. On the other hand, the rich dissolved inorganic nitrogen
(DIN), especially the nitrate ion (NO3

−), contributed to the rapid reproduction of the green
algae. Therefore, after the hydrodynamics changes, the nutrients would redistribute, and
the reproduction rate of green tides in turn would change accordingly.

Nowadays, coastal engineering structures have been widely applied, not only for
coastal developments, but also for coastal protections and restorations. These structures
alter the local hydrodynamics until they reach a new equilibrium. For instance, Nanhaim-
ingzhu artificial island in the Haikou Bay reduces the cross-section of the flow channel
and accelerated the currents, but it attenuated the waves entering the bay [25]. In Riyue
Bay, the connection road between the land and the artificial island obstructed the flow
channel and caused excessive accretions and coastal progradation towards the artificial
island, thereby causing a tombolo formation in the long term. Meanwhile, the artificial
island suffered from seaward erosion due to the intensive currents and waves [26,27]. Apart
from large-scale coastal engineering structures, restoration measures could also change the
local hydrodynamic conditions [28,29]. Ma et al. [30] and Kuang et al. [31,32] both found
that artificial submerged sandbars and reefs could damp the incident wave energy and
maintain the littoral current direction. Although artificial reefs have limited influences on
the surrounding flow field, they can alter the seawater physicochemical properties [33,34]
and shift the ecological dynamics [35–37].

As one of the most popular coastal resorts, Jinmeng Bay experienced a rapid de-
velopment before 2015, when two artificial islands, Lotus Island and Conch Island, were
constructed. Moreover, Jinmeng Beach was restored by artificial submerged reefs simultane-
ously. Xu et al. [38] and Zhang et al. [39] simulated the hydrodynamic and morphodynamic
processes after the construction of Lotus Island. Their numerical results indicated that Lotus
Island maintained the main flow direction for its separated flow branches, but the coastal
progradation was visible in the wave shadow zones. Therefore, Lotus Island decreased
the tidal currents and waves along the coast. Different from Lotus Island, Conch Island
is a monolithic artificial island at Tanghe Estuary. It hindered the tides and waves into
the estuary and formed a wave shadow zone. In addition, it separated the flood flow
from Tanghe River into a littoral branch and an offshore branch [40]. However, the road
connecting the coast and Conch Island obstructed the littoral currents [41]. Wang [42]
investigated the interactions between Lotus Island and Conch Island. His numerical results
indicated that both artificial islands reduced the flow in the main flow direction, but the
currents between the islands were accelerated. Different from artificial islands, artificial
reefs tend to maintain the flow characteristics and attenuate the waves effectively at the
same time [43,44]. The change in wave radiation stress by the wave attenuation across a
low crest structure such as natural and artificial reef, breakwater, sand bar and vegetation
canopy may lead to a strong current jet at the top of the structure and therefore wave
induced circulation pattern around the structure [45,46]. After the rapid constructions of
artificial islands and reefs, Jinmeng Bay experienced a tourism boom, but it soon suffered
from recurrent green tides [47]. In Figure 1a, massive amounts of green algae accumulate
on Jinmeng Beach, and the coastal resort is gloomy from the green tide event on 7 July
2021. The beach is good for coastal tourism under normal clean situations on 24 March
2023 (Figure 1b).

To investigate the responses of the green tides to the coastal engineering projects in
Jinmeng Bay, we have examined the influences of the projects on the local hydrodynamic
variations, the green tides migration and the water exchange capacity. Although the
artificial islands and reefs protected Jinmeng Beach from erosion, these structures weakened
the tidal currents in nearshore areas [48,49]. It follows that the water exchange capacity was
weakened, and the green algae amplified in Jinmeng Bay [50,51]. Therefore, the weakened
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tidal actions could alter local water quality and create an appropriate habitat for prevailing
green algae. Under this circumstance, it is essential to investigate the distributions of
significant nutrients to green algae under current construction conditions. Moreover, their
high concentration zones should be marked as the potential sources of green tide events.
NO3

− is a representative component of DIN for green algae reproduction [23,24], and
COD is an integrative indicator of organic matters for green algae generation [52,53]. In
the present study, a hydrodynamic-transport coupled model is established for numerical
simulations on NO3

− and COD to indicate the change of local water quality caused by
artificial structures. Two more construction conditions are included for comparison, where
further discussion is anchored in quantitative analysis. Furthermore, we aim to provide
some suggestions for long-term management.
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2. Materials and Methods
2.1. Study Area

Jinmeng Bay is located on the west coast of the Bohai Sea. As shown in Figure 2, the
main coastal engineering projects in the bay include artificial Lotus Island, Conch Island
and three submerged reefs along Jinmeng Beach. The Tanghe Estuary and the Xinkaihe
Estuary in the research area are ~5 km apart. There are two branches of the Tanghe River,
with a total length of 28.5 km. The west branch (WB) is smaller than the east branch (EB).
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2.2. Numerical Model

A triple-level scheme of meshes was utilized, including the Bohai Model (Figure 3a),
the Qinhuangdao Model (Figure 3b) and the Jinmeng Bay Model (Figure 3c), respec-
tively [51]. The Qinhuangdao Model covered part of the west coast in the Bohai Model,
and the Jinmeng Bay Model refined the meshes in the north-west of the Qinhuangdao
Model. The models were discretized by triangular unstructured meshes and based on the
Gauss–Kruger projection coordinates of the Beijing 54 Coordinate System, with a central
meridian of 117E. Table 1 shows details of the models. As the first-level model, the Bohai
Model was driven by hourly tidal levels at Dalian and Yantai from the tidal table of the Na-
tional Marine Data and Information Service of China. The boundaries of the Qinhuangdao
Model (the second-level) and the Jinmeng Bay Model (the third-level) were driven by the
Flather conditions, where water level, current speed and direction were extracted from the
numerical results of the higher-level model with coarser meshes.
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Table 1. Details of the triple-level scheme of meshes.

Model Level Number of Elements Maximum Resolution

Bohai Model first 6403 1200 m
Qinhuangdao Model second 34,071 10 m
Jinmeng Bay Model third 25,503 4 m

The water quality in Jinmeng Bay is simulated based on the current construction
conditions, then the impacts on the water quality of the construction conditions in different
periods can be further discussed. Figure 4 shows details of the different stage of construction
conditions. The initial construction conditions represented the situations in April 2013
when Jinmeng Bay was an open coast without artificial islands and reefs until 2015. The
first-stage construction conditions represent the completed constructions of Lotus Island
and Conch Island, and the connection road between the islands and the coast and artificial
reefs in October 2015. After 2018, the connection road of Conch Island was dismantled,
leading to the current construction conditions as of December 2020.
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Figure 4. The bathymetries of (a) the initial construction conditions, (b) the first-stage construction
conditions, (c) the current construction conditions.

The MIKE 21 Flow Model (developed by Danish Hydraulic Institute, DHI) was uti-
lized to investigate the hydrodynamics at different stage of the aforementioned coastal
engineering project. The governing equations and the validations of the present hydro-
dynamic model can be found in our previous papers [51]. The transport model of water
quality properties was based on advection–dispersion equation as follows:

∂hC
∂t

+
∂huC

∂x
+

∂hvC
∂y

= hFC − hkpC + hCSS (1)

where h is the total water depth, u and v are the depth-averaged velocity components in the
x and y direction, C is the depth average concentration, FC is the horizontal diffusion term,
kp is the linear decay rate, CS is the concentration at the source and S is the magnitude of
the source. The horizontal diffusion term (FC), also known as eddy dispersion or turbulent
diffusion, is related to Equation (2).

FC =
∂

∂x

(
Dh

∂C
∂x

)
+

∂

∂y

(
Dh

∂C
∂y

)
(2)

where Dh is the horizontal dispersion coefficient, which depends on the horizontal eddy
viscosity, A.

Dh =
A
σT

(3)

where σT is Prandlt number. Dispersion coefficient formulation was selected for the
following simulations, where Dh was set as a constant, 0.02 m2/s.

2.3. Model Set-Up

The wind data at 10-metre height above mean sea level was collected from the
ERA5 database by the European Centre for Medium-Range Weather Forecasts (https:
//cds.climate.copernicus.eu/cdsapp#!/home (accessed on 27 February 2023)). For the
hydrodynamic model, the flooding and drying fronts were used for model solution, where
dry depth, flood depth and wet depth were set as 0.005 m, 0.05 m and 0.1 m, respectively.
The Smagorinsky coefficient for horizontal eddy viscosity was 0.28. The Manning number
was set as 74 m1/3/s. The Coriolis force was included in the governing equation. The
river boundaries were driven by mean monthly discharge collected in 2013, where the
discharge data of WB, EB and the Xinkaihe River were updated by observations in 2020.
Figure 5 shows the daily discharge data of the discharges, and the influx of COD and NO3

−

from WB, EB and Xinkaihe River. The initial concentrations of COD and NO3
− were set as

1.2 mg/L and 0.05 mg/L, respectively.

https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
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(EB) of the Tanghe River and Xinkaihe River.

2.4. Validation

The predicted concentrations of COD and NO3
− were validated by observations in

2020. Figure 6 shows the field observation sites G1~G6 for COD and N1~N4 for NO3
−. The

observation sites of NO3
− were around Lotus Island, while the sites of COD were in the

offshore zones. As shown in Figure 7, the simulated results are consistent with the trends of
the observations. The observations were collected once a day, while the simulated results
were averaged values in a day, which causes part of the model-data discrepancy. According
to Table 2, the relative errors at G4 were up to 33.5%. G4 was close to the coast, where
the hydrodynamic conditions were more variable, so the averaged value of the simulated
result was lower than that on the other sites. Apart from G4, the relative model errors at the
other observation sites were below 20%, where the transport model is expected to predict
the distribution characteristics of COD and NO3

− reasonably well.
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Table 2. Relative errors between the observed data and the simulated results.

Site Component Date Relative Error

G1 COD 28 June 2020 14.3%
G2 COD 28 June 2020 8.2%
G3 COD 28 June 2020 18.7%
G4 COD 28 June 2020 33.5%
G5 COD 28 June 2020 8.5%
G6 COD 28 June 2020 9.6%

N1 NO3
− 16 May 2020 12.1%

N1 NO3
− 27 May 2020 12.9%

N1 NO3
− 14 June 2020 19.7%

N2 NO3
− 16 May 2020 3.5%

N3 NO3
− 27 May 2020 14.5%

N4 NO3
− 28 June 2020 11.4%

3. Results
3.1. Hydrodynamic Characteristics

A two-month hydrodynamic process was simulated by the triple-level scheme models
under the current construction conditions in 2020. The flow fields at the peak flood and the
peak ebb during a typical spring and neap tidal period are shown in Figure 8. The neap
tidal period was from 14:00 18 May to 15:00 19 May, and the spring tidal period was from
07:00, 8 June to 08:00, 9 June.
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As shown in Figure 8, the flow velocity at the Tanghe Estuary was relatively low due
to the limited discharges from east and west branches of the Tanghe River. In addition,
Conch Island hindered the tidal currents, so that the tidal action was also weak at the
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estuary. At the peak flood (Figure 8a,c), Conch Island separated the littoral currents into
two branches. A branch went along the north shore of Conch Island and through the
flow channel between the coast and the island. The other branch kept the littoral trend
along the south shore of Conch Island. Once this branch reached Lotus Island, a subbranch
was generated, which headed towards Jinmeng Beach through the channel between the
artificial islands. The branches were then confluent along Jinmeng Beach. The artificial
reefs along the beach slowed down the currents (below 0.02 m/s) of these branches but
maintained the littoral trend. At the peak ebb (Figure 8b,d), Lotus Island had little effect on
the tidal currents because of its separated structure, while Conch Island caused a higher
flow velocity at its north and south corners due to the decreased cross-sections of flow
channels. During the spring tidal period, the peak velocity at the south corner of Conch
Island was over 0.24 m/s at the peak ebb (Figure 8d).

3.2. Water Quality

The coupled hydrodynamic-transport model was used to investigate the variations of
COD and NO3

− under the current construction conditions. The distributions of COD and
NO3

− at the peak flood and ebb tide are shown in Figures 9 and 10, corresponding to the
flow fields in Figure 8.
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period and (c) the peak flood, (d) the peak ebb during a typical spring tidal period, under the current
construction conditions.

The concentration of COD declined from the estuary to the open sea. The low dis-
charges and weak tidal actions contributed to the accretion of COD at the estuary. During
the neap tide period (Figure 9a,b), the flood tide dominated the influx of COD from the
estuary to Jinmeng Beach. The ebb tide then maintained a zone with relatively high con-
centration of COD (over 1.3 mg/L) along the beach, and contributed to the output of COD
through the east channel of Conch Island. In the spring tidal period (Figure 9c,d), the
increased tidal prism diluted the concentration of COD at the estuary. Thus, both flood tide
and ebb tide could hardly generate a zone with relatively high COD concentration.

The distribution of NO3
− was more sensitive to the hydrodynamic conditions. In

the neap tidal period (Figure 10a,b), the zone with high concentrations of NO3
− (over

0.07 mg/L) occurred along Jinmeng Beach. The neap tide, with weak tidal actions, could
hardly restrain the littoral transport of NO3

− from the Tanghe Estuary. At the peak ebb,
the zone of high NO3

− concentration was extended farther. However, during the spring
tidal period (Figure 10c,d), a zone with high concentrations of NO3

− (over 0.07 mg/L)
was generated around Conch Island. The intensive ebb tidal currents restrained the trend
of littoral transport and maintained the zone with the high concentration of NO3

− at
the estuary. In addition, the intensive tidal actions connected the zones with high NO3

−

concentration from the Tanghe Estuary and the Xinkaihe Estuary.
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4. Discussion
4.1. Impacts of Construction Conditions on Flow Field

To investigate the responses of the water quality to the presence of artificial islands
and reefs, the initial and the first-stage construction conditions are investigated. Figure 11
shows the flow fields at peak flood and peak ebb during a typical spring tidal period
(from 07:00, 8 June 2020 to 08:00, 9 June 2020). Under the initial construction conditions
(Figure 11a,b), the flow velocity decreased towards the shoreline and the tidal actions
were weak at the estuary. The high flow velocity occurred at the east coast of the estuary
due to the sudden change of the coastline. Under the first-stage construction conditions
(Figure 11c,d), the connection road between Conch Island and the mainland blocked the
currents north of the island. On the one hand, the road turned the east channel of Conch
Island into an extended part of the estuary, and then more areas were under low tidal
conditions. On the other hand, the road hindered the littoral currents and slowed down the
flow velocity along Jinmeng Beach. The high velocity occurred at the south corner of Conch
Island, which was the separation point for the flood tidal currents and the confluence point
for the ebb tidal currents. Furthermore, the artificial reefs slowed down the local currents,
but the impacts were relatively small for weak currents.
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4.2. Impacts of Construction Conditions on Water Quality

The average concentration of COD and NO3
− during the spring tidal period under

different construction conditions are compared in Figure 12. As shown in Figure 12a,b,
although Conch Island and the connection road caused significant accretions of COD in the
estuary, the COD concentrations along Jinmeng Beach is maintained at ~0.2 mg/L under
all construction conditions. As shown in Figure 12c,d, NO3

− accumulated in the estuary
the same as COD but had different offshore distributions from COD. Under the initial
construction conditions, the zone with high concentrations of NO3

− extended along the
coast and diffused homogeneously. Under the first-stage construction conditions, the zone
with high NO3

− concentrations extended further offshore and covered mainly Lotus Island
and Conch Island. The NO3

− concentration along Jinmeng Beach was maintained at a low
level due to weakened littoral currents by the connection road. In other words, NO3

− was
more sensitive to the coastal engineering structures than COD.
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4.3. Quantitative Analysis of the Impacts on Water Quality of Different Construction Conditions

Six representative sites were selected for more quantitative analysis (Figure 13). The
average flow velocity and the average concentrations of COD and NO3

− during a typical
spring or neap tidal period at the six sites were calculated for quantitative analysis. In
Figure 14, the first-stage coastal engineering structures led to a ~90% decrease in the flow
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velocity at A1, and the flow velocity increases by ~30% compared to the initial value after
the demolition of the connection road. The connection road dominated the restraint on the
hydrodynamic conditions north of Conch Island. At sites A2~A4, the impacts of first-stage
coastal engineering structures on the flow of artificial islands and reefs were below 30%. At
site A5, the flow velocity increased by 6~8% under the first-stage construction conditions
and further increased by 16~27% under the current construction conditions. The current
in the channel between the artificial islands was accelerated, especially when the north of
Conch Island was blocked. After the demolition of the connection road, the flow velocity at
site A6 was weakened further to ~80% of the initial value. According to the comparison
between the flow velocities at sites A1 and A6 under the current conditions, the Conch
Island enhanced the littoral currents north of the island and hindered the tidal currents east
of the island.
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The average concentration of COD showed a different trend to the average flow
velocity. The ~90% decrease in flow velocity under the first-stage construction conditions
resulted in a minor decrease (below 8%) in the concentration of COD at site A1. Under
the current construction conditions, the concentrations of COD recovered to the initial
values. In addition, the variations of COD concentration at sites A2~A6 were below 2%
under different construction conditions. Thus, the main impacts on the concentrations of
COD came from the connection road. However, the regional increase in COD concentration
(below 2%) under the current construction conditions could still raise the potential risks of
green tides [52,53].

Different from COD, the averaged concentration of NO3
− at A1 declined by ~30% for

the decrease (~90%) of flow velocity under the first-stage construction conditions. During
the neap tidal period, the variations of NO3

− concentration at sites A2~A6 were below 7%,
while the spring tide saw more variations (below 13%). Under the current construction
conditions, the average concentration during a tidal period could reach 17%~40% higher
than the initial values. As a significant nutrient for green algae [54,55], the rising concentra-
tion of NO3

− under the current construction conditions should be continuously monitored
for sustainable managements of green tides. Furthermore, restorations are necessary to
improve the regional hydrodynamic and environment conditions.
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5. Conclusions

Since 2015, recurrent green tides have deteriorated the regional environment in Jin-
meng Bay and hindered local economic development. Massive constructions, including
Conch Island, Lotus Island and artificial submerged reefs, may have had a significant
contribution to the recurrence of green tides. In this paper, the responses of the water
quality to the artificial islands and reefs in Jinmeng Bay were investigated with special
attention on COD and NO3

−. A coupled hydrodynamic-transport model was established
for this study based on MIKE 21. The water quality change by the initial, first-stage and
current construction conditions of the artificial islands and submerged reefs were simulated.
The conclusions are as follows.

a. The artificial islands and reefs in Jinmeng Bay hinder the tidal currents. In addition, the
connection road between Conch Island and the mainland not only blocks the littoral
currents, but also extends the estuary in length and weakens the local tidal actions.

b. The weakened tidal actions at the estuary lead to the accretion of COD and NO3
−.

The neap tides generate a littoral zone with a high concentration of COD and NO3
−
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along Jinmeng Beach, while the spring tides maintain the high concentration zone in
the estuary.

c. The impacts of the coastal engineering structures on COD concentration are less than
those on NO3

−. Even though the flow velocity north of Conch Island decreased by
90% after the construction of the connection road, the COD concentration declined
by 8% only. With the demolition of the connection road, the COD concentrations rose
to their initial values.

d. NO3
− is more sensitive to the variation of hydrodynamic conditions. Under the

first-stage construction conditions, the decrease in NO3
− concentration was up to

30%. With the demolition of the connection road, the NO3
− concentrations increased

by 17~40% above the initial values.
e. Under the current construction conditions, the predicted and measured increase in

the concentrations of COD and NO3
− implies the potential risks of green tides in

Jinmeng Bay. Thus, the continuous monitoring of water quality is essential for the
long-term management.

In this paper, two key water quality parameters were considered. In the near future,
we will concentrate more on the interactions between the biomass of green algae and
the water quality properties and establish an improved water quality forecast model for
warning and mitigation of green tides.
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