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Abstract: In environmental hydrodynamics, a research topic that has gained popularity is the
transmission and diffusion of water pollutants. Various types of change processes in hydrological
and water quality are directly related to meteorological changes. If these changing characteristics
are classified effectively, this will be conducive to the application of deep learning theory in water
pollution simulation. When periodically monitoring water quality, data were represented with a
candlestick chart, and different classification features were displayed. The water quality data from
the research area from 2012 to 2019 generated 24 classification results in line with the physics laws.
Therefore, a deep learning water pollution prediction method was proposed to classify the changing
process of pollution to improve the prediction accuracy of water quality, based on candlestick theory,
visual geometry group, and gate recurrent unit (CT-VGG-GRU). In this method, after the periodic
changes of water quality were represented by candlestick graphically, the features were extracted by
the VGG network based on its advantages in graphic feature extraction. Then, this feature and other
scenario parameters were fused as the input of the time series network model, and the pollutant
concentration sequence at the predicted station constituted the output of the model. Finally, a hybrid
model combining graphical and time series features was formed, and this model used continuous
time series data from multiple stations on the Lijiang River watershed to train and validate the
model. Experimental results indicated that, compared with other comparison models, such as the
back propagation neural network (BPNN), support vector regression (SVR), GRU, and VGG-GRU,
the proposed model had the highest prediction accuracy, especially for the prediction of extreme
values. Additionally, the change trend of water pollution was closer to the real situation, which
indicated that the process change information of water pollution could be fully extracted by the
CT-VGG-GRU model based on candlestick theory. For the water quality indicators DO, CODMn, and
NH3-N, the mean absolute errors (MAE) were 0.284, 0.113, and 0.014, the root mean square errors
(RMSE) were 0.315, 0.122, and 0.016, and the symmetric mean absolute percentage errors (SMAPE)
were 0.022, 0.108, and 0.127, respectively. The established CT-VGG-GRU model achieved superior
computational performance. Using the proposed model, the classification information of the river
pollution process could be obtained effectively and the time series information could also be retained,
which made the application of the deep learning model to the transmission and diffusion process of
river water pollution more explanatory. The proposed model can provide a new method for water
quality prediction.

Keywords: candlestick theory; deep learning; water quality prediction

1. Introduction

The simulation and prediction of water quality are difficult, as they are affected by
various factors, such as complex transport process and climate change [1,2]. Water quality is
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obviously related to meteorological conditions in the rain-sourced rivers, and there are vari-
ous changes in the process of water pollution. The Soil and Water Assessment Tool (SWAT)
is the most widely used physical model, but with some limitations, including difficulty in
parameter calibration and complex model construction [3]. Additionally, physical models
typically require high levels of expertise to implement. The process classification of water
pollution has not been fully considered in previous artificial intelligence models, and the fo-
cus of these models was only on the statistical law of the numerical sequence between input
and output. The change process of water pollution could not be effectively classified, and
the prediction accuracy of the model was affected. Therefore, solving this problem would
be useful for the application of artificial intelligence models to water pollution simulations.

Traditional physical models, such as the SWAT model, have been used to simulate
hydrological and pollution processes and the transport of runoff, sediment, and nutrients
in the river, but problems of redundant parameters and complex structure are difficult to
ignore [4]. The MIKE SHE model had been used to simulate the main hydrological pro-
cesses in the water cycle, including flow movement, water quality, and sediment transport.
This model requires the acquisition of high-resolution data on the physical properties of
the watershed, which was time-consuming and difficult to process [5]. The water quality
analysis simulation program (WASP) model had been used to simulate the migration and
transformation of conventional pollutants in water, including dissolved oxygen, biological
oxygen consumption, nutrients, and algal pollution, but there were limitations in simu-
lating the eutrophication process [6]. These outcomes demonstrated that the traditional
models were applied primarily to the large-scale macro-analysis and had good practicabil-
ity. Meanwhile, it was necessary to collect information on hydrology, meteorology, geology,
land use, farming methods, crop types, and regional economy with a huge quantity of
data. Some areas, however, did not have sufficient basic data to support the simulation of
traditional physical models. It was difficult to calibrate the parameters, especially in the
accurate simulation and prediction of hydrology and water quality.

At present, in the previously low-developed areas lacking data, more monitoring
stations have been established along the key rivers, and the image data can be obtained
through remote sensing at a low cost. Therefore, some scholars tried to use machine
learning models and deep learning models to study water quality simulation and prediction.
Machine learning models, such as the backpropagation neural network (BPNN), had been
used to predict water quality parameters, including chlorophyll-a (Chl-a), dissolved oxygen,
and biochemical oxygen demand, but they were slow to converge and easy to reach extreme
minimum value [7,8]. The SVR model had been used to predict water quality indices, such
as ammonia nitrogen, dissolved oxygen, and chemical oxygen demand, but was hard
to implement on large-scale training samples [9–11]. The ANN models had been used
to predict river salinity, dissolved oxygen, and chlorophyll-a, but the model could not
learn the state characteristics between time series water quality data [12]. In general, these
machine learning models were based on statistical learning methods, which were not
integrated with the physical laws and thus could not achieve accurate feature recognition
and extraction in a large quantity of data. Therefore, it was suggested that these models
were not suitable for the study of time series information of water quality data.

In recent years, deep learning models with the characteristics of multilayer feedback
simulation have become mainstream in water quality simulation, overcoming the critical
timing limitations of machine learning models [13]. Affected by various environmental
parameters, water pollution data had included continuous nonlinear time series data with
obvious correlation among those cycles, which had been consistent with the structure of
the time series deep learning model [14]. For example, the recurrent neural network (RNN)
model had been used to predict water quality indicators, including total phosphorus, total
nitrogen, dissolved oxygen, and ammonia nitrogen, but it could not solve the problems of
long-distance dependence and gradient explosion [15,16]. The long short-term memory
(LSTM) model had been used to predict dissolved oxygen and water temperature changes
in Taihu Lake and Victoria Harbor in China, but there were disadvantages of complex
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structure and long model training period [17]. The convolutional neural network–LSTM
(CNN-LSTM) model had been used to predict dissolved oxygen and chlorophyll-a [18,19].
Among these deep learning models, CNN is more suitable for classification simulation, and
RNN and LSTM are more suitable for time series prediction [20]. For these deep learning
models, however, continuous sequential data were used directly only as the input of the
model. In the black-box model established by the connection between input and output,
the classification features of water pollutant transport and diffusion were not sufficient to
be extracted, and the corresponding relationship between the network structure and the
water pollution process had not been explained. Therefore, these studies on water quality
simulation could not reflect the physical law of water quality variable transmission, and
the prediction accuracy was not high enough.

Different classification characteristics were found in the process of water pollution
transmission and diffusion, and the change process of water pollution transmission was re-
flected. The candlestick theory was originally used for stock price changes over time [21,22].
Its graphical advantages could accurately reflect the change process of stocks in a period of
time [23,24]. Many scholars had used the candlestick chart to extract the change character-
istics of time series data for trend prediction [25,26]. For example, deep learning models
based on candlestick theory were used to analyze patterns within candlestick charts and
predict future movements of the stock market [27]. A method based on the candlestick
chart was proposed to predict the PM2.5 concentration in Guilin, China, that used the trend
in the candlestick chart to reflect the changing law of air pollutants [28]. Water quality
data are also typically time series data, so continuous sequential water quality data can be
represented in graphical form in the candlestick chart, which corresponds to different types
of classification. We studied whether the water quality data in graphical form had classi-
fication rules. The classification features could be extracted by the convolutional neural
network and used for the classification of different trends in water pollution. Then, com-
bined with the time series deep learning model, candlestick theory, visual geometry group,
and gate recurrent unit (CT-VGG-GRU), a hybrid model for classification and prediction
was constructed. Based on the proposed model, the water pollution classification process
information was extracted and completely retained, which showed that each classification
type could be predicted in a time series. Therefore, this meant that the CT-VGG-GRU
hybrid model was a suitable combination for the application of deep learning theory to the
simulation of water pollution.

The rest of this article is organized as follows. Section 2 explains the theoretical
knowledge of the candlestick theory and the theoretical basis for the candlestick theory
to be applied to the water pollution diffusion. Additionally, this section discusses the
geographical advantages of the research area. Section 3 explains the overall framework
structure of this study, including data acquisition and preprocessing, candlestick chart
generator, VGG feature extraction, and GRU time series forecasting. Section 4 provides the
experimental results, comparing this study with other models. Finally, the work of this
paper is summarized and future research directions are prospected in Section 5.

2. Problem Scenario
2.1. Candlestick Graphical Representation of Pollution Process Classification

On the basis of the concentration-period change trend, the time-sequence characteris-
tics of water pollution diffusion were extracted to classify the change trends. In the financial
field, candlestick theory had been widely used to extract time series features [29]. There-
fore, the candlestick theory could be introduced into the water pollution diffusion model.
Various classification types were reflected in graphical form, different changing types were
classified and processed, and the prediction accuracy of the model was improved.

The candlestick theory, commonly known as the “K-line”, was developed by the
Japanese author Munehisa Homma in the 18th century to record the fluctuation of rice
prices within the cycle. In 1991, candlestick theory was used by Steve Nison to record
stock price changes over time [30]. The candlestick chart is composed of the opening
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price, the lowest price, the highest price, and the closing price, and its color represents the
relationship between the opening price and the closing price. Water quality data are also
recorded and counted by hours, days, months, and years. The periodic changes in water
quality data were represented by candlestick charts and the key value of the periodic
original data was reflected. The fluctuation relationship of the candlestick chart also
corresponded to the process of water quality change, which contained the mechanism of
hydraulics and water quality diffusion. According to the research results of Hu et al.,
103 comprehensive classification specifications were proposed, including 31 three-day
candlestick chart classification combinations [31]. Based on the water quality data of the
prediction station from 2012 to 2019, 24 corresponding candlestick chart classification
combinations were identified, which covered various classification combinations, as
shown in Table 1.

Table 1. Twenty-four categories of the three-day candlestick chart combinations for the water quality
data at the prediction station.

Species 1 2 3 4 5 6 7 8

Candlestick chart
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In the securities industry, the factors that affect stock prices are too complex and have 
not yet been supported by clear mathematical theories, so the application and classifica-
tion of candlestick theory are still in the stages of perceptual knowledge. However, the 
candlestick chart could be applied to simulate the change process of water quality, which 
had a direct and definite relationship with the hydraulic process. As shown in the candle-
stick combination category 1 in Table 1, while the pollutant concentration dropped signif-
icantly on the first day, it had no change on the second day, and it increased significantly 
on the third day. The pollutant concentration for the next day could be predicted based 
on such a change trend to simulate the diffusion process of water pollution. Therefore, 
there was a theoretical basis that the candlestick chart can be applied to the water pollu-
tion diffusion.

2.2. Correspondence between Candlestick Characteristics and the Physical Model of Water 
Quality Diffusion 

On the basis of the physical mechanism of water quality diffusion, each candlestick 
chart classification was scientifically explained, which laid the theoretical foundation for
the subsequent deep learning theory applied to water pollution simulation. The water 
quality diffusion physical models were used to describe the migration and transformation
laws of various pollutants [32]. According to the migration and transformation process of 
pollutants in water and the mass balance theory, the mathematical model of pollutant 
migration and transformation was established to predict the concentration of pollutants 
at the target station by simulating the diffusion process. The physical model of water qual-
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where c(x, y) is the concentration of pollutants at the target station; K is the degradation
coefficient; x is the distance between the target station and the monitoring station; y is
the transverse distance between the target station and the monitoring station; u is the
longitudinal average velocity of the river; C0 is the concentration of pollutants at the
monitoring station and is equivalent to the source concentration; Cp is the concentration of
wastewater discharge at the monitoring station; Qp is the amount of wastewater discharged
from the monitoring station; H is the average depth of the river; B is the average width
of the river; and My is the transverse dispersion coefficient. According to the source
concentration C0, the river longitudinal average velocity u, and the degradation coefficient
K, the physical model of water quality diffusion was analyzed. The changes for each of
the influencing factors were closely related to the graphical form of the candlestick chart,
whereas other factors were constant or had little influence.

The influencing factors of the water diffusion physical model correspond to the basic
types of candlestick charts, which laid a theoretical foundation for the candlestick charts
to be applied to water pollution simulation. The water quality data were converted
into candlestick charts based on the candlestick chart generator. According to the initial,
minimum, maximum, and end values of water quality data, nine basic forms of candlestick
charts were determined. After analysis, a corresponding relationship between the basic
form and the influencing factors was obtained, as shown in Table 2.

Table 2. Correspondence between nine basic candlestick chart forms and water quality diffusion factors.

Species 1 2 3 4 5 6 7 8 9

Candlestick chart
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The white candlestick chart indicates that the ending value was higher than the initial
value, meaning that the pollutant concentration was rising. The black candlestick chart
indicates that the end value was lower than the initial value, meaning that the pollutant
concentration was falling. The Doji candlestick chart indicates that the end value was equal
to the start value, which means that the pollutant concentration was not changed on the
same day. Y means the change and N means no change. In basic form 1, the pollutant
concentration increased significantly, C0 and u increased, and K decreased. In basic form 6,
the concentration of pollutants decreased significantly, C0 and u decreased, and K increased.
The basic form, similar to the candlestick chart, had corresponded to the changes of various
influencing factors. On the basis of the physical mechanism and mathematical theory,
the Visual Geometry Group (VGG) model, which was an improved convolutional neural
network model, was used to extract the features in the candlestick chart. Therefore, the
classification features of the water pollution process were retained.

2.3. Research Area

The Lijiang River watershed in Guilin is a typical karst landform river watershed
belonging to the rain-sourced river and subtropical humid monsoon climate zone. In the
watershed, there was concentrated rainfall, rising in summer and drying in winter, and
a significant difference between precipitation in the wet period and the dry period. The
maximum rainfall was up to 168 mm, and the flow and velocity changed significantly
with rainfall [34]. The flow of the main river channel had obvious seasonal characteristics,
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and the pollutant data had obvious classification characteristics, corresponding to various
candlestick chart classification combinations. Therefore, the water quality diffusion equa-
tion could be fully reflected in the Lijiang River watershed, and it was suitable to verify
the model designed in this study. The water quality data of the monitoring stations in
the upstream areas were used as the research objects. Additionally, three water quality
indicators of Yangshuo Station were the prediction object, including dissolved oxygen
(DO), chemical oxygen demand (CODMn), and ammonia nitrogen (NH3-N). The locations
of monitoring stations in the Lijiang River watershed are shown in Figure 1.
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3. Methods
3.1. Framework

A water quality prediction framework based on candlestick chart classification is
shown in Figure 2. On the basis of the theoretical connection between candlestick chart
classification and water quality transmission diffusion mechanism, a CT-VGG-GRU model
was designed by using the characteristics of VGG feature extraction and GRU timing
prediction. It included data collection and preprocessing, candlestick chart generator, VGG
feature extraction, GRU time series prediction, and results analysis. First, research data were
collected from the online water quality monitoring station of the Lijiang River watershed
in Guilin, including hydrometeorological parameters and pollutant parameters. Second, a
candlestick chart generator was designed to generate three-day candlestick charts of the
target station water quality data such as DO, CODMn, and NH3-N. Third, the classification
information of the water pollution process in the candlestick chart was extracted by VGG,
and the water pollution process information was relatively completely preserved. Then,
the extracted features were fused with other scene parameters of each station as the input
of the time series deep learning model, GRU. Using the advantages of GRU in processing
the time series data, the concentration of pollutants in the river was accurately predicted.
The water quality data of the previous n − 1 days were used to predict the daily mean
value of the water quality data of the nth day. In this paper, n was 4 and the sliding step
was one day. Finally, MAE, RMSE, and SMAPE were used as evaluation parameters. The
parameters were optimized continuously throughout the experimental process, and the
effects were verified through the comparison of various models.
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3.2. Data Collection and Preprocessing

There are 47 online water quality monitoring stations in the Lijiang River watershed,
and the common data are hourly value data. In Table 3, the basic dataset includes pollutant
data and hydrometeorological data. Pollutant data include total phosphorus (TP), total
nitrogen (TN), chemical oxygen demand (CODMn), ammonia nitrogen (NH3-N), and dis-
solved oxygen (DO). Hydrometeorological data include conductivity (EC), pH, turbidity
(TB), flow rate (Q), water temperature (WT), and rainfall (PCP). The core indices of water
quality evaluation, DO, CODMn, and NH3-N, were selected as the model prediction indi-
cators, and the real situation in the water quality environment was objectively reflected.

Table 3. Pollution and hydrometeorology data parameters.

Data Category Parameter Unit

Water quality NH3-N mg/L
TP mg/L
TN mg/L

CODMn mg/L
DO mg/L

Hydrometeorology EC µs/cm
PH Dimensionless
TB NTC
Q m3/s

WT ◦C
PCP Mm

The data collected in this study were sorted based on time series. For continuous time
series water quality data, the most important feature is the temporal correlation between
the data, which contained many hidden laws and information. Because of equipment
abnormality, network breakdown, and extreme weather, the record of water quality data at
the monitoring station was abnormal. Data exception handling included three situations:
deleting the negative value of obvious errors and missing data throughout the day; filling
the local missing data with average value, and using the 3σ principle to analyze and
eliminate outliers. To eliminate the dimensional influence between different indices and
facilitate comprehensive analysis, the Z-score standardization method was selected to
normalize the original monitoring data. The formula is shown in Equation (2):

z =
x− µ

σ
(2)

where z is the normalized monitoring data, x is the original monitoring data, µ is the
mean value of the original monitoring data, and σ is the standard deviation of the original
monitoring data.

3.3. Design Principle of the Candlestick Chart Generator

The candlestick chart generator was designed to reflect the data changes of water
quality during the period, and its principle is shown in Figure 3. The basic period was
set to 24 hours, and the candlestick chart was generated by the initial, lowest, highest,
and end values of the basic period. The continuous characteristics in the process of water
quality change were reflected, which was based on the convolution idea of the CNN. Only
time was convolved sequentially, and a day was set as a time unit. The water quality
data formed a candlestick graph every three days by setting the sliding window size to
three days, and the sliding step to one day. Therefore, the data of the 123, 234, 345, . . . ,
N – 1, N, and N + 1 days were used as the candlestick chart combination, corresponding to
the continuous pollution process of water quality.
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3.4. Feature Extraction of Water Pollution Process Characteristics through VGG

The VGG network model, proposed by the Oxford Visual Geometry Group, is adapted
from the CNN mode, which can be widely used to extract image features and save key
information [35]. The characteristics of the candlestick chart extracted by VGG are shown
in Figure 4. The local features of water pollution were extracted by the convolutional layer,
which corresponded to the pollution transfer process. The pollution on the first day would
affect the pollution on the second and third days, and such features were extracted by
the convolutional layer. The extracted feature was further strengthened by the pooling
layer, where only strong features were retained and weak features were discarded, which
improved the accuracy of the pollution process classification. The global classification
information of water pollution was integrated by the fully connected layer, which was
equivalent to the pollution process classifier [36].
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Figure 4. VGG extracted the candlestick chart features for classification.

As shown in Figure 4, the candlestick chart of water quality data generated by the
candlestick chart generator for three consecutive days was used as the input of the VGG
network. Corresponding to category 2 in Table 1, concentrations increased significantly
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on the first day, decreased slightly on the second day, and decreased significantly on the
third day. The variation in concentration on each day was extracted by shallow convolu-
tional layers. The features extracted by the shallow convolutional layer, however, were
integrated with the deep convolutional layer to obtain the characteristics of the overall
water pollution process—that is, the change of the overall concentration in three days was
equivalent to the characteristics of the water pollution transmission process being extracted.
The information of the deep convolutional layer was integrated by the fully connected
layer to obtain the classification result. Similar pollution processes were reflected in the
candlestick chart. The VGG network structure had a unique fine-grained feature extraction
method for images, which was able to classify pollution processes efficiently and retain the
characteristics of pollution processes [37].

3.5. Time Series Prediction of Water Quality Data through GRU

The characteristic information of the water pollution process was extracted by VGG,
combined with other scenario parameters of each station for time series prediction. The
GRU network, which is a time series model improved and optimized based on LSTM,
was adopted as the time series part of the model. Its structure is shown in Figure 5.
Compared with LSTM, GRU has two gate structures: a reset gate and an update gate. The
reset gate was used to control the degree of ignoring the water quality information at the
previous moment—that is, the influence degree to which the water quality information at
the previous moment on the current moment reflected the transmission process of water
pollution. The update gate was used to control the degree to which the water quality
information for the previous time was retained to the current state. The information for the
previous time step and the current time step would affect the future water quality, which
fully reflected the advantages of GRU in processing water quality time series data [38]. A
special feature of these two gating mechanisms was that the water quality information
in the long-term sequence could be saved and, thus, it would not be cleared over time or
removed, making it irrelevant to the prediction [39].
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In the GRU architecture of Figure 5, xt was the combination of the classification
information of the target station at the current moment and the water quality information
of the relevant station; ht−1 was the water quality information retained at the previous
moment; rt was the output of the reset gate at the current moment, indicating the degree
to which the water quality information at the previous moment will be retained—that is,
the degree of influence on the water quality information at the current moment; zt was the
output of the update gate at the current moment, indicating the extent to which the water
quality information at the previous moment was retained to the current moment—that
is, the influence degree of the water quality information at the previous moment and
the current moment on the next moment; and ht was the overall output of the GRU at
the current moment, which was retained as the water quality information at the current
moment and continued to affect the water quality information at the next moment. This
architecture explained why GRU could process continuous time series data. The specific
calculation process is shown in Equations (3)–(9):

rt = σ(Wr·[ht−1, xt]) (3)

zt = σ(Wz·[ht−1, xt]) (4)

h̃ = tan h
(
Wh̃·[rt ∗ ht−1, xt]

)
(5)

h̃ = tan h
(
Wh̃·[rt ∗ ht−1, xt]

)
(6)

yt = σ(Wo·ht) (7)

sigmoid(x) =
1

1 + e−x (8)

tanh(x) =
ex − e−x

ex + e−x (9)

where [] denotes the connection of two vectors, ∗ denotes a matrix product, and σ denotes
activation function.

The LSTM model contained three gate structures that could retain water quality
information at the previous moment. If the data sequence was too long, it could avoid
losing some water quality information during the training process. However, GRU had
fewer gate structures and parameters, and it was not easy to overfit. This not only solved
the problem of water quality information loss but also saved time and memory, so it was
more efficient.

3.6. The CT-VGG-GRU Model for Water Quality Prediction

The chronological change law of the water quality data at the target station was
reflected by the candlestick theory. The classification features in the candlestick chart could
be fully and efficiently extracted by VGG. Because of the long-term learning dependency
of GRU, the long-term correlation of water quality data was able to be captured, and the
periodic pattern of water quality data over a long period could be accessed. Therefore,
based on the candlestick theory, VGG, and GRU, the CT-VGG-GRU hybrid model was
used to simulate the continuous transmission process of water pollution. Its structure
is shown in Figure 6. First, the VGG model was used to filter the classification features
of the candlestick chart in advance, reflecting the water pollution transmission process.
Then, the extracted features were combined with the scenario parameters of each station,
which together served as the input of the GRU model. Finally, the GRU model was used
to reflect the continuous water pollution process and achieve accurate predictions of the
water quality data.
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4. Experiment Results and Analysis
4.1. Evaluation Criteria

The prediction performance of the proposed CT-VGG-GRU model was evaluated.
First, the hyperparameters of the model were determined. Second, the performance of
the CT-VGG-GRU model and the ordinary deep learning model VGG-GRU that did not
consider the classification of the water pollution process were compared. Finally, compared
with other models under the same conditions, three reference models were established:
BPNN, support vector regression (SVR), and GRU.

An evaluation was conducted using indicators of mean absolute error (MAE), root
mean square error (RMSE), and symmetric mean absolute percent error (SMAPE) to evalu-
ate the degree of change and accuracy of the data and to measure the predictive effect of
the model. These three indicators represented the deviation of the model prediction for the
real value fitting, and the smaller the result was, the more accurate it was. The calculation
formula is shown in Equations (10)–(12):

MAE(y′ ,y) =
1
n

n

∑
i=1

∣∣∣y′i − yi

∣∣∣ (10)

RMSE(y′ ,y) =

√
1
n

n

∑
i=1

(
y′i − yi

)2
(11)

SMAPE(y′ ,y) =
100%

n

n

∑
i=1

∣∣∣y′i − yi

∣∣∣(
y′i + yi

)
/2

(12)

where n is the total number of samples, yi is the monitored value, and y
′
i is the predicted value.

4.2. Network Parameters

The training of CT-VGG-GRU adopted small-batch training; the batch size was
50 and the number of iterations was 100. The dropout probability between each layer



Water 2023, 15, 845 13 of 20

was set to 0.1 to avoid overfitting. Then, the CT-VGG-GRU model was evaluated on
the test set and calculated MAE, RMSE, and SMAPE. The hyperparameters were set for
optimal predictive performance, including the time step and the number of neurons.
The time step represents the size of the sliding window (i.e., how many time steps of
data are used to predict the next data point). The number of neurons refers to how
many neuron nodes need to be set to achieve the best prediction effect. As shown in
Table 4, the number of neurons were selected from the candidate set {16, 32, 64, 128, 256}.
As the number of neurons increased, the predictive performance first increased and
then decreased. When the number of neurons was 64, RMSE and MAE were the lowest.
Therefore, this value was used in the experiment. The number of neurons remained
constant, and the time step changed. The time step was selected from the candidate
set {1, 2, 3, 4, 5}. The experimental results showed that the prediction effect of the best
model had a time step of 3. The candlestick chart contained three days of data and the
convolution step of the candlestick chart generator was 1.

Table 4. Optimal parameters of the CT-VGG-GRU model. The best hyperparameters and experimen-
tal results are highlighted in bold.

Parameter Set of Feasible Values Optimal Value MAE RMSE

Neuron number {16, 32, 64, 128, 256} 16 0.724 1.124
32 0.512 0.874
64 0.347 0.547

128 0.478 0.812
256 0.724 1.451

Time step {1, 2, 3, 4, 5} 1 0.674 0.912
2 0.475 0.624
3 0.241 0.425
4 0.382 0.824
5 0.531 1.025

4.3. Prediction Performance

The indicators of water quality—DO, CODMn, and NH3-N—were selected as the
performance evaluation indicators of the established CT-VGG-GRU model in this part.
The online monitoring data from January 2012 to December 2019 were used to train the
model, and the daily mean values of DO, CODMn, and NH3-N concentration from January
2020 to March 2020 were predicted. Among them, the hourly values of DO, CODMn, and
NH3-N concentration from January 2012 to December 2019 at the Yangshuo station were
used as the benchmark training dataset of the VGG. After training and convergence, the
optimal model weight of CT-VGG-GRU was obtained. To verify the predictive accuracy of
the optimal model, the test dataset was used for model evaluation. As shown in Figure 7,
the predicted values of DO, CODMn, and NH3-N from January 2020 to March 2020 were
compared with the real values. Compared with the VGG-GRU model, the proposed
model showed accurate prediction performance in the whole prediction range, even when
the pollutant concentration was mutated, indicating that the model could well process
nonlinear characteristics and mutation of time series.

The traditional artificial intelligence model was only simple numerical fitting, and
there was no reasonable explanation for the “black box” network model. However, the
water pollution process was reasonably classified according to the candlestick theory, which
made the prediction model more interpretable and accurate. The prediction performances
of VGG-GRU and CT-VGG-GRU are shown in Figure 7. When the process information of
water pollution was not effectively classified, VGG-GRU had a greater error. According
to the classification law of water quality diffusion, the predicted trend of CT-VGG-GRU
was more consistent with the true trend. On the basis of the candlestick theory, the
water pollution process information was effectively classified, the water pollution change
process was reflected, and the water pollution process information was also retained. VGG-



Water 2023, 15, 845 14 of 20

GRU, however, only randomly classified water pollution processes without a reasonable
scientific explanation. Therefore, CT-VGG-GRU was more adaptable and better explained
the information of the water pollution process, which made the predicted trend more
consistent with the actual trend.
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4.4. Comparison of the Proposed Model with Other Methods

The quantitative results of MAE, RMSE, and SMAPE are listed in Table 5. Under the
same conditions, BPNN, SVR, GRU, VGG-GRU, and CT-VGG-GRU were compared and
analyzed. As shown in Table 5, CT-VGG-GRU obtained the best results compared with the
other models. The prediction performance of BPNN and SVR was worse, and the errors
were larger than other methods because the nonlinear relationship between continuous time
series data on water quality could not be captured. With the same parameters, the MAE,
RMSE, and SMAPE of GRU, VGG-GRU, and CT-VGG-GRU were significantly better than
BPNN and SVR, which indicated that the long-term historical process of water pollution
was fully reflected and the nonlinear relationship of continuous time series was better
captured. The CT-VGG-GRU model that coupled the candlestick chart and deep learning
had higher water quality prediction accuracy than GRU and VGG-GRU. Compared with
all baselines, CT-VGG-GRU had the best performance because the future trend of water
quality indicators was well predicted. At the same time, the results reflected a good effect
on the prediction of extreme values, and better adaptability.

Table 5. Comparison of model performance. The best experimental results of the CT-VGG-GRU
model are highlighted in bold.

Indicator Method MAE RMSE SMAPE (%)

DO BPNN 1.121 1.195 0.093
SVR 0.810 0.902 0.066
GRU 0.464 0.520 0.037

VGG-GRU 0.324 0.375 0.029
CT-VGG-GRU 0.284 0.315 0.022

CODMn BPNN 0.494 0.511 0.586
SVR 0.347 0.364 0.380
GRU 0.203 0.219 0.209

VGG-GRU 0.141 0.157 0.137
CT-VGG-GRU 0.113 0.122 0.108

NH3-N BPNN 0.057 0.061 0.606
SVR 0.041 0.046 0.417
GRU 0.027 0.029 0.241

VGG-GRU 0.018 0.021 0.178
CT-VGG-GRU 0.014 0.016 0.127

Under the same conditions, the DO, CODMn, and NH3-N concentrations predicted by
different models including BPNN, SVR, GRU, and CT-VGG-GRU are shown in Figure 8.
The online monitoring data from January 2012 to March 2020 were used to train the model,
and the daily mean values of DO, CODMn, and NH3-N concentration from April 2020 to
June 2020 were predicted. Among them, the hourly value of DO, CODMn, and NH3-N
concentration from January 2012 to March 2020 at the Yangshuo station was used as
the benchmark training dataset of VGG. Through comparative analysis, the proposed
method was superior to the mainstream methods such as SVR and GRU. The higher
prediction accuracy than that of other methods might be due to two reasons. First, the
strong robustness, memory ability, self-learning ability, and nonlinear mapping ability of
the neural network were helpful to better predict water quality indicators. Second, the deep
learning model based on the candlestick theory was sensitive to local change information,
which improves the accuracy of extreme value prediction.

To show the prediction performances of DO, CODMn, and NH3-N intuitively, the
observed and predicted scatter plots of different models including BPNN, SVR, GRU, and
CT-VGG-GRU are shown in Figure 9. The predicted results of the proposed model were
consistent with the trend of the observed values. The scatter plot identifies the trend that
the model underestimates high concentration and overestimates low concentration [40].
The observed values of BPNN and the shallow machine learning model (SVR) could
be seen to differ more from the predicted values than the deep learning models, which
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indicated that they failed to consider the impact of time series water quality data on
prediction results (the impact of the previous time on the next time). In contrast, the GRU
and CT-VGG-GRU models obviously achieved better prediction performance in water
quality prediction. Therefore, that time series neural network models had higher prediction
accuracy in the application of water pollution prediction. Compared with all of the noted
models, the CT-VGG-GRU model was closer to the real trend of water quality change
and more sensitive to local sharp changes in water quality pollutants, mainly because the
VGG model based on the candlestick chart was able to obtain richer change information.
The established CT-VGG-GRU model in the paper could provide a new method for water
quality prediction.
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5. Discussion

Improving the prediction accuracy of water quality parameters is an important and
arduous task for water pollution management decision makers. At present, there are
many water quality prediction models, but understanding how to improve the effec-
tiveness and accuracy of the prediction models remains difficult. In the prediction and
simulation methods of water pollution, common traditional physical models had prob-
lems, such as difficulty in parameter calibration, lack of basic data support, and complex
model construction. On the basis of massive time series data, machine learning and deep
learning models simply fitted the numerical curve with the network structure, which
was not fully connected with the transmission process of water pollution. Therefore,
the interpretability was not sufficient, and the prediction accuracy was not satisfactory.
In the water environment, the water pollution process was affected by various factors,
such as complex transport process and climate change. The changing trend of pollutant
concentration was obvious, and the classification types of different pollution processes
were presented. Therefore, a water pollution prediction model based on candlestick the-
ory and deep learning was proposed. The experimental training data were constructed
from a group of time series data, including pollutant data and hydrometeorological
data. On this dataset, the CT-VGG-GRU model was trained to describe the classification
characteristics of the water pollution process. First, based on the candlestick theory, the
water pollution process was classified by graphics. Then, the classification characteristics
of the water pollution process were extracted according to VGG. Finally, combined with
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the other scenario parameters of each station, the water pollution was predicted by the
time series deep learning model, GRU.

In the experimental validation part, the performance of the model was evaluated
and compared with the BPNN, SVR, and GRU models. Water quality indicators—DO,
CODMn, and NH3-N—were selected as the performance evaluation indicators. The mean
absolute errors (MAE) were 0.284, 0.113, and 0.014; the root mean square errors (RMSE)
were 0.315, 0.122, and 0.016; and the symmetric mean absolute percentage errors (SMAPE)
were 0.022, 0.108, and 0.127, respectively, which were superior to the machine learning
model and the simple deep learning model. These results indicated that the concentration
of water pollutants could be effectively predicted by the proposed model. Compared with
the VGG-GRU model, the changing law of continuous time series data could be reflected,
and the periodic characteristics and time series characteristics of water quality data could
be fully extracted. Based on the graphical form of the candlestick chart, the water pollution
process was effectively classified. From the physical equation of diffusion, the pollution
process in different periods was reflected, and the different trends of water pollution could
be effectively classified. Therefore, the proposed model based on the candlestick chart was
more explanatory for the water pollution process, and the prediction accuracy was higher.
Additionally, the proposed model could not only predict the daily mean value of water
pollutant concentration, but also the daily maximum and minimum values, etc., and could
be used to predict the atmospheric pollutant concentration.

According to these results, this study provided a new method for the prediction of
water pollution and a strong basis for water quality prediction, thereby helping to save
time and labor and improve human health. However, in the study of the CT-VGG-GRU
hybrid model, a gap exists between the predicted value and the actual value of pollutant
concentration. Because water pollution transmission is an extremely complex environ-
mental science phenomenon, it is affected by various factors such as the chemical process
and the geographical environment. If the chemical change process and geographical
factors can be analyzed during the diffusion of water pollution, the errors will be lim-
ited to within a small range, and the prediction results will be closer to the real value.
At present, there are actually many deep learning models for similar problems in the
environmental domain. While considering various influencing factors such as chemical
process and geographical environment, other deep learning models not considered in
this paper can also be tried, and there may be a model that is more suitable for this
research. All these are future research directions.
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