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Abstract: Contemporary biological assemblage composition and biodiversity are often shaped by a
range of natural environmental factors, human disturbances, and their interactions. It is critical to
disentangle the effects of individual natural variables and human stressors in data analysis to support
management decision-making. Many statistical approaches have been proposed and used to estimate
the biological effects of individual predictors, which often correlated and interacted with one another.
In this article, we review nine of those approaches in terms of their strengths, limitations, and related
r packages. Among those are hierarchical partitioning, propensity score, the sum of AIC weights,
structural equation modeling, and tree-based machine learning algorithms. As no approach is perfect,
we offer two suggestions: (1) reducing the number of predictors as low as possible by carefully
screening all candidate predictors based on biological and statistical considerations; (2) selecting two
or more approaches based on the characteristics of the given dataset and specific research goals of a
study, and using them in parallel or sequence. Our review could help ecologists to navigate through
this challenging process.

Keywords: variance partitioning; variable-importance ranking; collinearity; variable interactions;
bioassessment; land use impact; climate change

1. Introduction

Natural environmental factors (e.g., climate and elevation) and human disturbances
(e.g., land use, fine sediment, and mining) are often found to jointly affect species abun-
dance and communities in survey-based studies. It is critical to identify the real effects of
individual factors or groups of factors for understanding the environmental process and
making management decisions. In a controlled experiment, the effect of different factors
and their interactions can be estimated with a randomized block design [1,2]. However,
such a design only can accommodate a small number of factors at relatively small scales of
space and time. Most ecological processes operate at broad spatial and time scales, such
as urbanization, agricultural practices, river damming, and climate changes, and are not
possible to experiment with [3]. Ecological surveys and modeling based on field data are
essential to infer or test hypothesized casual-effects relationships between environment
and biological responses.

In practice, the statistical difficulty in disentangling the effects of individual envi-
ronmental factors and human stressors mainly comes from two sources. First, different
biotic and abiotic predictors often co-vary with one another in a given study. When the
co-variation is linear, it is referred to as collinearity. When three or more predictors are
linearly correlated with one another, it is referred to as multicollinearity. Collinearity occurs
for a number of reasons, such as being different descriptors of the same ecological and
physical process. For example, mean, max, and min monthly temperatures are often highly
correlated because they all describe thermal regimes. Collinearity may also happen because
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of a causal-effect relationship. For example, both agricultural land use and natural environ-
mental factors such as soil permeability and watershed slope affect aquatic biodiversity.
They are also highly correlated as crops often grow better in watersheds of low slopes
and permeable soil. Similarly, the elevation and % of forests in the watershed are also
positively correlated because deforestation mainly occurs at low altitudes [4]. Nutrients,
fine sediments, and water temperature can all be increased by agricultural land use [5].
Finally, environmental factors and disturbances simply co-vary by chance in some regions
or over a given period. For example, climate (e.g., air temperature, precipitation), land use
in the watershed, soil property, and depth of bedrock strongly co-vary with one another
from North to South in Illinois, USA (Table 1, also see [6]), although such correlations may
not hold at a broader scale.

Table 1. Pearson correlations among key natural environment, climate, and land-use variables
for 459 stream sites at the watershed scale in the State of Illinois, USA. (modified from [6]) with
Long = longitude, Lat = latitude, Slope = average slop of the watershed (WT), Agri = percent agri-
cultural land in WT, Forest = percent forests in WT, BG100 = percent WT with bedrock deeper than
100 feet (30.48 m), BR50 = percent WT with a bedrock of <50 feet, Temp = average annual air tem-
perature in WT, Precip = average annual precipitation of WT, and Perm = average soil permeability
of WT.

Lat long Slope Agri Forest BG100 BR50 Temp Precip

Long 0.09
Slope −0.43 −0.33
Agri 0.34 0.06 −0.73

Forest −0.61 −0.13 0.87 −0.83
BG100 0.42 0.37 −0.44 0.36 −0.43
BR50 −0.48 −0.36 0.59 −0.50 0.57 −0.83
Temp −0.99 −0.08 0.39 −0.30 0.57 −0.40 0.44
Precip −0.90 0.08 0.57 −0.52 0.74 −0.40 0.50 0.87
Perm 0.28 0.16 −0.09 0.05 −0.11 0.17 −0.20 −0.28 −0.16

Ignoring collinearity in data analysis can lead to many consequences [7]. First, the
effect of a given factor can be misinterpreted. For example, species diversity and biological
index values may be low at a site because of harsh natural environmental conditions, such
as unstable flow and low productivity. Without accounting for the compounding effects of
the natural factors, one may mistake the low values as an indication of degraded habitats
and biological communities (Type II error). In contrast, species diversity and biological
indices may be relatively high at a stream due to natural causes (e.g., larger stream size,
rocky substrates, and close to a high-quality stream), and the site may be considered
to be healthy, although it has been significantly compromised by human disturbances
(Type I error). Similarly, low species diversity under a warm and wet climate may be
interpreted as the effects of a warm and wet climate is negative without considering the
positive correlation of climate with land use and geology [6]. In aquatic bioassessment,
multiple stressors (e.g., nutrients, fine sediment, high temperature, and altered flow) often
simultaneously affect biological communities [8,9]. It is critical to separate the impacts of
stressors for management decisions. Misidentification of main anthropological stressors
can be highly costly in both the economy and the environment. In ecological modeling,
collinearity can lead to a large error in coefficient estimation, unstable performance, and
difficulty in assessing predictor importance [7].

The second source of the difficulty is the fact that the effect of one predictor on the
response variable may depend on other predictors, i.e., interactions. For example, the
toxicity of a heavy metal to aquatic species is often dependent on pH, alkalinity, and other
heavy metals [10], while the effect of dissolved oxygen varies with temperature and flow
velocity [11]. The interactions further complicate our efforts to estimate the biological effect
of a given environmental factor or human stressor. Most conventional statistical approaches
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require explicitly including interaction terms in a model, while some other methods may
automatically account for interactions. When a large number of environmental variables are
considered, the number of possible interactions is vast. It is important to identify significant
interactions and take them into account in disentangling the effects of environmental factors
and human disturbances.

Many statistical approaches have been used to separate the effects of different factors
from one another (for typological approaches, see [12,13]). One can use those approaches to
investigate a wide range of ecological responses. This review focuses on univariate response
variables of biological communities, such as species diversity and multi-metric indices
used for freshwater bioassessment [14,15]. The methods for the multivariate response,
such as biological community composition, are only briefly discussed. We made two
more restrictions to our review on this broad topic. First, reducing data redundancy is
often the first step in statistical modeling. A variety of approaches are available, including
correlation analysis, cluster analysis, variance inflation factor, and latent variables [7,16–18].
We shall not discuss those approaches (see [7] for review) but highlight the importance
of ecological consideration for variable selection at the end of the article. Second, our
review shall also exclude many commonly-used approaches to disentangling the effects of
individual predictors, including averaging regression coefficients, regression of residuals,
and stepwise regression. This is because these methods have been thoroughly reviewed
and found to be often inadequate (see [19,20]). For example, the stepwise selection can lead
to sub-optimal models, inflated R2, and the inclusion of random variables in a model [19].
In comparison, the regression of residuals tends to underestimate the effects of the targeted
predictor, as the variance explained in the first regression is attributed to the co-variables
alone [21]. Subsequently, we select nine approaches that are relatively new, promising but
less used, commonly used but controversial, or specifically designed for freshwater studies.
We review the concept, applications, potentials-limitations, and related r-packages for each
of the approaches.

2. Modeling Based on Stratified Randomized Survey

Environmental variables and human stressors are often highly correlated with one
another when sampling units are randomly selected. The best way to reduce the inter-
correlation is probably through a proper study design. Redlich et al. [22] proposed a
stratified randomization design to reduce or eliminate the collinearity among climate and
land use variables. In this design, one first delineates a study region, then chooses strata for
different spatial scales to create small spatial units, and finally randomly selects a set of spa-
tial units that minimize the correlation between the predictor of interest and its co-variables.
In Redlich et al. [22], the goal is to reduce the correlation between climate and regional
land use and between the local habitat types and the edging effectsof habitats. Two strata
are used at the regional scale, major land-use (three types, near-natural, agricultural, and
urban), and climate (five zones) to create 15 combinations. Four quadrats (5.8 × 5.8 km) are
then randomly chosen for each combination. This step keeps the correlation between land
use and climate variables (temperature and precipitation) to be generally low (|r| < 0.3).
At the landscape scale (1 km radius), the local habitat is used as the stratum (forests, grass-
land, arable land, and settlement). Each of the 60 quadrants selected is divided into grid
cells of 320 × 320 m. The habitat composition and edging effect on vertebrate communities
are calculated for a plot of a 1 km radius around the center of each 10,000 cells randomly
selected for each quadrat selected. Then a subset of plots is selected to minimize the corre-
lation between habitat and edging effects. The correlation between habitat composition
and edging effect is substantially reduced compared with simple-random design. With
much-reduced multicollinearity, a variety of statistical models can be applied, such as the
generalized linear model (GLM.) or the Generalized Additive Model (GAM), to reliably
estimate the effects of targeted predictors, i.e., the climate in this case.

The stratified random design has been successfully applied to a number of terres-
trial studies on plants and arthropods [23–25]. It may be applied to aquatic studies to
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overcome the difficulty associated with multicollinearity, as shown in Table 1. However,
how to incorporate stream networks into this design needs to be figured out because the
environmental conditions (e.g., water temperature and nutrients) at a given stream site
are strongly affected by environmental processes operating at the watershed level [26,27].
A more general challenge is that when applied to existing datasets, one may have to give
up a large proportion of information available, such as species records or field samples,
because their cells are not selected. This information loss may not be acceptable in many
cases, particularly for rare species studies.

3. Structured Equation Model (SEM)

SEM unites multiple predictors and response variables in a single causal network. Two
features distinguish it from other statistical models (e.g., GLM and GAM): (1) each path
in the network represents an assumed or hypothesized relationship between a predictor
and its response variables; (2) a response variable can be the predictor of other response
variables. These features give SEM several advantages, such as testing multiple hypotheses
simultaneously and accounting for measurement errors [28]. Thus, SEM is particularly
powerful in disentangling the direct and indirect effects of predictors as well as cascade
effects. For example, many natural environmental variables (e.g., surficial geology and
watershed topography) affect mussel species directly and indirectly through land use
and fish hosts [6,29]. In this case, land use and fish are the response variables of natural
environmental factors and the predictors of mussel species diversity (Figure 1).
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Figure 1. The paths of SEM show the standardized regression coefficient vs. marginal R2 of individual
physical predictors (x/y) for each of the three response variables across 459 stream sites in Illinois.
Mussel SR is the ultimate response variable (blue). Fish species richness (SR) and percent agricultural
land in the watershed (Agri) are response variables of other environmental factors, as well as the
predictors of mussel SR (light blue). All other variables are predictors (blanks) (Down_Order = order
of downstream reach, Ponddn_L = distance from downstream pond, see Table 1 for the abbreviations
of other predictors). The R2 for the overall model is shown in each of the blue boxes (see [6] for data
sources), and its value is symbolized by the width of the arrow (solid line = statistically significant;
dotted line = insignificant).
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In SEM, each path is typically fitted with a linear model and tested for statistical
significance. Interactions between predictors can be added as separate paths. Those
insignificant paths are then removed. The causal network can be further simplified based
on AIC. The model performance can be assessed based on a Chi-square test on the observed
and predicted covariance matrix and the importance of each path based on the standardized
regression coefficient. A number of r-packages are available to implement SEM, such as
LAVAAN and sem. The approach has been applied to many freshwater studies [30]. The
standard SEM is limited to linear regressions, and all paths have to be fit simultaneously,
which is computationally demanding. A recent development, piecewise SEM [31] has
extended the path fitting to GLM and fitting individually while the significance test of
a path and AIC-based model selection remains applicable. A r-pacage, pSEM is used
to perform this extended SEM. This extension also allows including the effect of auto-
correlation, something that often compounds the effects of predictors. Several recent
aquatic studies have successfully applied SEM or pSEM to assess the impacts of human
disturbances on aquatic ecosystems [32–34].

There are a number of challenges in SEM [28]. Appropriately building of an SEM
requires a thorough understanding of the study system and the establishment of a mean-
ingful causal network. The number of possible paths rapidly increases with the number of
predictors considered and thus needs to be carefully screened. Overly-complex networks
are time-demanding to model and hard to interpret, while overly-simple networks can mis-
represent the system and lead to poor model fitting. Nevertheless, SEM is a highly valuable
tool for disentangling the effects of natural environmental factors and human disturbances.

4. Propensity Scores (PS)

In the real world, the predictor of interest (e.g., fine sediment loading) co-varies with
many other predictors (e.g., water temperature, nutrients, stream slope, and flow). The
propensity score is designed to cope with this difficulty. It is either the probability of
treatment or the value of the targeted predictor conditioned upon all co-variables. The
score is not observable, and it needs to be estimated with a model, such as logistic regression
for binary treatment, GLM, or GAM. PS is then used to divide a whole dataset into subsets
so that the co-variables are similar across sites of a subset and the effect of the targeted
predictor can be more accurately estimated than based on the whole dataset [35].

Other propensity methods are available and may be more appropriate for a given
study [36]. We here focus on the data matching method described above. After one divides
all sampling sites into a number of bins based on the propensity scores, the correlation
between the targeted predictor and other co-variables should be substantially reduced,
and so is the compounding effects of the co-varaibles. The r-package, matchit is commonly
used to implement this procedure. Other packages such as Matching, PSAgraphics, and
twang are also available. Keller and Tipton [37] summarized and compared the features of
these packages.

The propensity approach has been wildly used in social, economic, and epidemic
studies but much less so in ecological studies [36]. Yuan [38] used it to estimate the effects of
nutrients on stream macroinvertebrates with precipitation, watershed sizes, substrates, land
cover, and several other environmental variables as co-variables and used GAM to estimate
propensity scores. Similarly, Pearson et al. [39] used GLM to estimate propensity scores
for nutrients with climate and geology as co-variables. More recently, Ramsey et al. [36]
reviewed the concepts and different ways to use the propensity scores and demonstrated
the efficiencies of the approach using both simulated and real data. In addition, the
classification tree [40] and Random-forest regression [41] are also increasingly used for
propensity scores in medical studies [42,43]. Both algorithms are commonly used in ecology
and should help to boost the applications of the propensity scores in ecology.

One key assumption of propensity scores is all important co-variables are included in
the modeling. This assumption may not always hold in practice because some co-variables
may be unrecognized, unobservable, or unavailable. In the last two cases, surrogates,
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indices, or latent variables of these co-variables may be used to capture their effects to some
extent. A number of other factors also could affect the effectiveness of the approach: (1) the
size of datasets [36]; (2) the choice of modeling algorithms for propensity score estimation,
and (3) the number of data bins [38]. The best choices for the last two factors are likely to be
dataset-specific. One may need to try a number of algorithms and data-splitting schemes
to maximize the model performance.

5. Hierarchical Partitioning (HP)

Hierarchical partitioning is a protocol to estimate the unique and joint effects of a
predictor on the response variable based on GLM [44]. It was introduced into ecological
studies by Mac Nally [19] The protocol starts with generating all possible models for n
predictors. The goodness of fit can be measured with a number of measures, such as R2 for
linear regression or χ2 for logistic regression. The unique effect is measured as the average
increase in model fit across all models that contain the predictor of interest compared with
the models without it. If the predictor has a high independent effect, the increase should be
substantial, and vice versa. The averaging should alleviate the compounding effects [19].
Three steps are needed to estimate the joint effect. First, one calculates the goodness-of-fit
for the model based on a predictor j alone as Rj, based on a subset of other predictors,
e.g., l and k as Rlk, and based on all the predictors (j, l, k) as Rjlk. Second, the joint effect
of predictor j with the given subset of predictors is calculated as (Rj + Rlk − Rjlk). Third,
the joint effects for predictor j and all possible subsets of other predictors are averaged
as the final estimate of predictor j. If a predictor is highly correlated with the response
variable as well as with other predictors, the joint effect will be high; however, the unique
effect will be low. As a result, the result may not be too informative. Thus, it is critical to
reduce multicollinearity by selecting meaningful and relatively independent predictors at
the first palce.

R-package, hier.part has been widely used to estimate the effects of different environ-
mental variables in aquatic habitats (e.g., [45]). The package also offers a randomization
test on the unique and joint effects and calculates the ratio between the unique and joint
effects, which can be useful to assess the importance of a given predictor in ecosystem
management [19,46]. Hierarchical partitioning is currently applicable to linear effects of
up to 12 predictors (hier.part v1.06). However, a recent package, rdacca.hp, removes this
limitation [47]. Lai et al. [48] further extended the approach to Generalized Linear Mixed
Model (GLMM), which fits both fixed and random effects, with an R-package glmm.hp.
However, this variance partitioning approach cannot handle non-linear responses and
interactions among predictors, which are common in ecological studies. Olea et al. [49]
also reported the order of predictors in the dataset could affect the relative importance of
predictors when more than nine predictors are used and suggested multiple runs to assess
the stability of the outcome. Smith et al. [20] found that hierarchical partitioning tended to
underestimate the effect of predictors correlated with other variables but overestimated
the effects of unrelated predictors. Warton [50] further criticized averaging R2 as its value
is not comparable among different models. Users should be aware of these criticisms or
weaknesses. Nevertheless, when used approperaitely, this approach is a valuable tool
for ecologists.

6. Commonality Analysis (CA)

The commonality analysis approach was proposed in the late 1960s [51] and has been
commonly used in social and psychological studies [52]. It was introduced to ecology much
late but its application is increasing [46]. The basic idea is simple. One can estimate the R2

of a GLM based on n predictors and n − 1 predictors (predictor i is removed). The unique
effect of predictor i will be the difference in R2 between the two models. The common effect
will be estimated as R2 of the full model minus the unique effect of each predictor. Similarly,
one can estimate the unique and common effects of any 2, 3, 4 . . . n − 1 predictors. An
r-package, yhat [53] can be used to implement this analysis.
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When the number of predictors is controlled, this approach can provide valuable
insights into the effects of different predictors. Ray-Mukherjee et al. [54] showed that a
predictor might be correlated with other predictors but not the response variables; however,
the predictor can help other predictors to estimate the response better. Such a predictor
is likely dropped by some other approaches (e.g., correlation analysis). The use of this
approach in ecology, particularly aquatic studies, is limited so far. However, a number of
studies showed its usefulness. For example, Prunier et al. [55] used commonality analysis
to estimate the effects of river network structure, stocking, and human stressors on the
genetic diversity of two fish species, and they found that the first two factors played a much
bigger role. Alahuhta et al. [56] used commonality analysis to compare the effects of local
environments, climate, and geographic locations on lake macrophyte meta-communities
and concluded that local environments drive the variation within meta-communities, but
climate and geographic locations are influential for the variation across meta-communities.

This approach is similar to hierarchical partitioning, including their weakness. When
n is large, the decomposition becomes complex and hard to interpret [57]. The inclusion of
predictor interactions only increases the difficulty of calculation and interpretation. It is
subject to other limitations of the hierarchical partitioning mentioned earlier.

7. Sums of AIC Weight (SW)

SW is a conventional approach to ranking predictors for importance. When multiple
models are created based on all subsets of predictors, AIC weight is the probability of
a model approximating the best model ([58], but see [59]). Sums of AIC weight is the
summation of AIC weight across all models where a given predictor is included. SW also
can be estimated based on the best subset of models, i.e., ∆AIC < 2 ([60]), instead of all
possible models. A number of r packages are available to calculate SW, including qPCR
and MuMin.

SW has been widely used as the standard approach to evaluating the relative im-
portance of predictors. However, it has been criticized recently ([20,61,62]) for its poor
performance in ranking predictors of varying influences because the SW of any given
predictor can vary substantially among different realizations of simulation and sample
size; and the SW of irrelevant predictor can be quite high. Giam and Olden [63] challenged
the criticisms using their own simulations. However, in a rebuttal, Galipaud et al. [59]
confirmed the weakness of SW and recommended averaging standardized regression coef-
ficients as an alternative, which is also subject to criticism, as mentioned earlier. While SW
may remain a useful tool, it appears clear that ecologists need to be cautious in interpreting
the resultant ranking of predictors and better to use it together with other approaches.

Li and Kou [64] recently developed a new method, namely WiBB, which combines
SW, the standard regression coefficient, and bootstrapping. The basic idea is to (1) use the
ratio between the coefficients of a predictor and the sum of the coefficients of all predictors
in a model as a weight in calculating the SW of a predictor (i.e., weighted SW) instead
of giving the AIC weight of a model to all its predictors, (2) bootstrap the whole dataset
to generate multiple sub-datasets for weighted SW estimation; (3) average the weighted
SW across all sub-datasets. In a simulation, the authors showed WiBB outperformed SW
and the weighted SW. Giam and Olden [63] also proposed two new criteria for predictor
importance, which combine the AIC weight of models or the best approximating model
and the unique R2 of a predictor derived from the commonality analysis described earlier.
The effectiveness of these three new approaches appears promising but needs to be further
tested with both simulation and empirical data.

8. Tree-Based Approaches: Random Forest (RF) and Boosted Regression Tree (BRT)

Both RF and BRT are tree-based approaches but differ greatly in how to apply the tree
model [40]. In a tree model, a group of sites is split into two sub-groups based on a selected
predictor and its value to minimize the average variance. Each subgroup can be further split
based on a value of the same or a different predictor. This recursive process continues until
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a specified criterion, such as prediction error, is met through across-validation. A tree model
can take different types of variables (continuous, binary, or categorical variables), make no
assumption on the response curve, and automatically accounts for predictor interactions.

RF is an ensemble modeling approach. The whole set of predictors is bootstrapped
to create a large number of subsets, each of which is used to build a tree model [41]. The
average of predictions from all tree models is taken as the final estimate of the response, and
the model accuracy is assessed based on a set of sites set aside before the RF model is built
(out-of-bag sample). The size of predictor subsets used for splitting (mtry in randomForest)
can be chosen based on the pseudo-R2. The optimal mtry may vary with datasets but is
rarely greater than ten and often less than five. The number of trees can be specified by a
user, and the default is 500. A higher number (e.g., 2000) may be needed to achieve a stable
prediction if the sample size and/or the number of predictors are large.

The relative importance of a given predictor can be estimated with different metrics,
including a percent increase in mean standard Error (% Incre MSE.) after the original values
of the predictor are randomized (i.e., permutation accuracy), and the Gini Index [41]. If a
predictor is important, the metrics will be high, and vice versa. One can rank all predictors
accordingly. The permutation accuracy is more intuitive and more commonly used in
ecological studies; however, the Gini Index was reported to capture the effects of predictor
interactions better [65]. The estimation of predictor importance in the package randomForest
has been found to be biased, and a fix was proposed with required r-codes [66]. The ranking
of predictors can also be affected by the number of trees and mtry. A larger number of trees
is needed to reach a stable predictor ranking than a stable prediction, while the effects of
mtry appear to depend on which importance metric is used [67].

BRT starts with a single tree model. The residuals from the model prediction are fit
with a second tree, and the prediction is then updated. A third tree is built to fit the residuals
from the 2nd tree, and so on. In this way, a new model is always focused on the variance
not explained by previous trees [68]. The final model is a chain of trees (often hundreds
or thousands), with each tree but the first one fitting the residuals from all previous trees.
The BTR optimization is quite a bit more complicated than RF. Three parameters are used
to control the sequential fitting process: the learning rate (lr), tree complexity (tc), and
the number of trees (nt). The parameter lr determines the contribution of each tree to the
growing model (shrinkage factor), and tc controls the complexity of each tree or the number
of splitting and interactions. These two parameters decide nt in the whole model. These
parameters are dataset-specific and need to be jointly selected based on cross-validation.
R-package, gbm, can implement the BRT as described above.

In BRT, the relative importance of a predictor is estimated in three steps: (1) calculating
the number of times for splitting by a given predictor; (2) averaging the squared improve-
ments of model fitting by each splitting across all trees; and (3) weighting the times with the
average. BRT also can be used to identify important predictor interactions. The application
of BRT to disentangling the effects of environmental factors and human disturbances is
rapidly increasing. For example, Paumier et al. [69] used BRT to differentiate the effects
of discharge, temperature, and day length on fish spawning in streams. Waite [70] used
BRT to identify the key stressors from agriculture to benthic macroinvertebrates and algal
assemblages in streams.

Similar to RF, BRT is not very effective in modeling smooth response curves, including
simple linear relationships [68]. It is also sensitive to the training dataset used because it
uses a single tree at each stage. In comparison, RF uses a large number of separate trees, and
it is thus insensitive to how a dataset is split into the training and validation subsets. Both
BRT and RF are machine learning algorisms, and their estimations of predictor importance
are difficult to interpret precisely.

9. Assessing the Observation against the Expectation (O/E)

In this approach, one uses a set of reference sites to establish the biological or physical
conditions expected with no or little human disturbances. Minimally disturbed ecosys-
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tems (e.g., streams, lakes, and wetlands) are often used as references, although historical
sampling data are also used for the purpose [71]. In the original study [14], E (expected)
is estimated in four steps: (1) samples collected from reference sites are first classified
into N groups based on species composition with cluster analysis; (2) the probability of a
site belonging to each of the N groups is estimated with discriminant analysis (P1) with
predictors as natural environmental factors (e.g., watershed size, topography, and climate);
(3) the relative occurrence frequency of each species in a group is calculated (P2); and (4) the
probability of a species expected at a site is the sum of P1 × P2 across all groups, and the
number of species expected (E) is the sum of species probability over all species [72]. The
number of species observed at a site and also included in E estimation is referred to as O
(observed). The ratio O/E thus measures the effect of human disturbances, conditioned
upon the natural environmental settings [14,73]. This approach has been widely used to
assess the biological conditions of freshwaters and, to a lesser extent, to other habitats, such
as grasslands and marine systems.

The original approach has been subject to a number of changes, including (1) using
random-forest classification to predict the membership probability (P1) [73]; (2) estimating
O/E for species composition [74]; and (3) estimating E based on species distribution model
through species stacking [75]. The idea of estimating E based on reference sites has also
expanded to individual biotic metrics (e.g., the number of sensitive invertebrate species
and % of scrappers) [4,76,77], stream flow [78], habitat quality [79], and water chemistry to
some extent [77,80]. The estimation of E for these response variables is simpler than for
species richness—a regression of a metric against a set of natural environmental predictors
based on reference sites.

As with any other approaches, the reference-condition approach is subject to a number
of limitations: (1) reference sites are not always available in developed regions and/or
not representative of diverse ecosystems (e.g., large rivers and low-land streams); (2) it
is costly to sample a large number of reference sites required to predict E; (3) choice of
modeling methods could affect the prediction [77]. Species distribution modeling based
on museum species records can overcome some of these challenges for estimating E of
species richness [75]. However, species distribution modeling is subject to a different set of
limitations. For example, species records are often presence-only and are hard to model
and validate [81,82]. Stacking the predictions of species models to estimate species richness
is also subject to much criticism [83].

10. Ordination-Based Variance Partitioning for Multivariate Responses

When the response variable is multivariate, such as the taxonomic composition of bio-
logical communities, constrained ordination techniques are often used to assess the effects
of natural environmental variables and human stressors. The approaches include Redun-
dancy Analysis (RDA) or distance-based RDA (dbRDA) and Canonical Correspondence
Analysis (CCA) ([84,85]). The variance explained can be partitioned among the groups
of predictors (e.g., water quality, habitat quality, and spatial component) as the unique
and shared effects (e.g., [29,86]). When the shared proportions are high, the interpretation
of the result is difficult. Alternatively, one can assess how one group of variables (often
human disturbances) affects community composition after the effects of other variables
(often natural environmental variables) are portioned out using partial-RDA or partial-CCA
([87,88]). However, neither approach is designed to estimate the unique and joint effects of
individual predictors (e.g., nutrients vs. fine sediment) on community composition. They
are also subject to the shortcomings of residual regressions mentioned earlier and the rule
of no more predictors than the number of samples, just as in GLM.

Recently, Lai et al. [47] expanded the hierarchical partitioning to RDA and CCA to
overcome the above-mentioned difficulty. In this approach, one can estimate the total effect
of each predictor by adding its unique effects on community composition and the average
contribution to the regression where the predictor is used. R-package, rdacca.hp is used
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to implement the approach. This new approach appears promising, but its effectiveness
remains to be tested.

11. Summary and Remarks

Many approaches are available to disentangle the effects of individual environmental
factors in ecological surveys. However, it appears clear that no approach is perfect or
universally best, as each has its advantages, limitations, and challenges. The designed-
based approach resembles the randomized block design and should be preferred whenever
applicable. LM- or GLM-based approaches, such as HP, CA, and SW are appropriate if
the number of predictors is relatively small, few interactions are likely, and the assumed
biological responses are linear. If many predictors are used, and their biological implications
may be complex, one may choose RF or BRT for ranking predictor importance. In any case,
efforts should be made to reduce the number of predictors as much as possible based on the
best understanding of their study systems and the biological significance of the predictors.
For example, thermal and flow regimes can be described in many ways. Annual mean, Max,
Min, and Growth-Degree-Day are often highly correlated. The distributions of cold-water
species likely are limited by max temperature in the spawning season, and this predictor
may be preferred. Similarly, drought severity is often a much greater threat to aquatic
species and communities than high flow. One may thus focus on the low-flow predictors
over others. A carefully structured conceptual model is often very valuable in identifying
a range of potential predictors and their interactions. Machine learning algorithms can
handle a large number of predictors and are helpful or critical to screening all predictors
available before modeling.

It also should be beneficial to use two or three approaches that are selected based on
research needs and dataset characteristics to assess the effects of different predictors. When
different approaches yield similar results, one would be able to assess the significance
of predictors more reliably than otherwise. Alternatively, one may use machine learning
techniques, such as RF or BRT, to select potentially most important predictors and then
use HP, CA, or SEM to quantify their effects. The Least Absolute Shrinkage and Selection
Operator (Lasso) also is useful for selecting predictors [89]. It is a challenge to include
predictor interactions in a model when many predictors are used and the number of
possible interactions is large. One may use a simple tree model or BRT to identify the most
important interactions and use GLM-based approaches to quantify their effects. Finally, we
like to emphasize that this is a rapidly-developing research area with new approaches being
proposed from time to time, particularly in artificial intelligence and machine learning.
We encourage ecologists to follow the progress and empirically and rigorously test new
approaches before applying those to their studies.
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