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Abstract: In accordance with the rapid proliferation of machine learning (ML) and data management,
ML applications have evolved to encompass all engineering disciplines. Owing to the importance of
the world’s water supply throughout the rest of this century, much research has been concentrated
on the application of ML strategies to integrated water resources management (WRM). Thus, a
thorough and well-organized review of that research is required. To accommodate the underlying
knowledge and interests of both artificial intelligence (AI) and the unresolved issues of ML in WRM,
this overview divides the core fundamentals, major applications, and ongoing issues into two sections.
First, the basic applications of ML are categorized into three main groups, prediction, clustering,
and reinforcement learning. Moreover, the literature is organized in each field according to new
perspectives, and research patterns are indicated so attention can be directed toward where the field
is headed. In the second part, the less investigated field of WRM is addressed to provide grounds for
future studies. The widespread applications of ML tools are projected to accelerate the formation of
sustainable WRM plans over the next decade.

Keywords: classification; climate change; clustering; machine learning (ML); prediction; reinforcement
learning; water resources management (WRM)

1. Introduction

In recent years, machine learning (ML) applications in water resources management
(WRM) have garnered significant interest [1]. The advent of big data has substantially
enhanced the ability of hydrologists to address existing challenges and encouraged novel
applications of ML. The global data sphere is expected to reach 175 zettabytes by 2025 [2].
The availability of this large amount of data is forming a new era in the field of WRM.
The next step for hydrological sciences is determining a method to integrate traditional
physical-based hydrology into new machine-aided techniques to draw information directly
from big data. An extensive range of decisions, from superficial to complicated scientific
problems, is now handled by various ML techniques. Only a machine is capable of fully
utilizing big data because of its veracity, velocity, volume, and variety. In recent decades,
ML has attracted a great deal of attention from hydrologists and has been widely applied
to a variety of fields because of its ability to manage complex environments.

In the coming decades, the issues surrounding climate change, increasing constraints
on water resources, population growth, and natural hazards will force hydrologists world-
wide to adapt and develop strategies to maintain security related to WRM. The Inter-
governmental Hydrological Programme (IHP) just started its ninth phase plans (IHP-IX,
2022-2029), which place hydrologists, scholars, and policymakers on the frontlines of ac-
tion to ensure a water-secure world despite climate change, with the goal of creating a
new and sustainable water culture [3]. Moreover, the rapid growth in the availability of
hydrologic data repositories, alongside advanced ML models, offers new opportunities for
improved assessments in the field of hydrology by simplifying the existing complexity. For
instance, it is possible to switch from traditional single-step prediction to multi-step ahead
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prediction, from short-term to long-term prediction, from deterministic models to their
probabilistic counterparts, from univariate to multivariate models, from the application of
structured data to volumetric and unstructured data, and from spatial to spatio-temporal
and the more advanced geo-spatiotemporal environment. Moreover, ML models have
contributed to optimal decision-making in WRM by efficiently modeling the nonlinear,
erratic, and stochastic behaviors of natural hydrological phenomena. Furthermore, when
solving complicated models, ML techniques can dramatically reduce the computational
cost, which allows decision-makers to switch from physical-based models to ML models for
cumbersome problems. Therefore, the new emerging hydrological crises, such as droughts
and floods, can now be efficiently investigated and mitigated with the assistance of the
advancements in ML algorithms.

Recent research has focused on the feasibility of applying ML techniques, specifically
the subset of ML known as deep learning (DL), to various subfields of hydrology. In
accordance with the research advancements in this field, various review articles have
been published. The research domains, and descriptions of the recent review articles are
summarized in Table 1. Previous reviews have effectively encouraged the development of
well-known WRM subjects, provided in-depth explorations of those subjects, and addressed
future research trends to better handle significant problems. However, a thorough review
is required for some reasons. Prior to this review, multidisciplinary reviews tended to be
objective and disregard the reader’s background knowledge. Moreover, they have rarely
considered the instructional components of the subject and provided a comprehensive
overview of an advanced problem or illuminated the mathematical structures of algorithms
rather than focusing on their applications. Additionally, some cutting-edge engineering
applications of ML, such as RL and other novel approaches to adapting ML to traditional
prediction issues, have not yet been covered.

Table 1. Recent review articles on machine learning applications in WRM.

Research Domain Description Ref.

Streamflow forecasting A comprehensive review of artificial intelligence models used in the review domain is
presented, with the goal of optimizing reservoir operations. [4]

Flood, precipitation estimation, water
quality, and groundwater

An in-depth review of machine-learning applications in the review domain
is presented. [5]

Groundwater level modeling An in-depth review of the ability of ML models in monitoring and predicting different
aspects of the review domain is presented. [6]

Hydropower operation A systematic review of hydropower operation optimization using ML is presented. [7]

Groundwater level prediction The state-of-the-art ML models implemented in the review domain and the
milestones achieved in this domain are presented. [8]

Drought prediction The most used architectures in the review domain during the last two decades are
evaluated. [9]

Water quality modeling The state-of-the-art applications of machine learning and deep learning in the review
domain are presented. [10]

Water quality evaluation The applications of ML in various water environments such as surface and ground
water, drinking water, seawater, and sewage are described. [11]

Groundwater level prediction Various ML and AI techniques and their corresponding methodologies in the review
domain are discussed. [12]

High-flow extremal hydrology
A comprehensive review is presented including an overview of the state-of-the-art AI
techniques and examples of their applications, followed by a SWOT analysis to
benchmark their predictive capabilities.

[13]

Hydro-climatic processes An in-depth review of the different techniques of prediction interval development in
the review domain is presented. [14]

Streamflow forecasting An in-depth review of decadal progress in the regionalization of hydrological
modeling for predictions in ungauged basins from 2000 to 2019 is presented. [15]

Suspended sediment load prediction Three popular artificial intelligence-based models are described, mainly focusing on
the research between January 2015 and November 2020 in the review domain. [16]

Water resources in arboriculture An overview of the application of new technologies in the analysis of crop water
status to improve irrigation management, with a focus on arboriculture is presented. [17]

Drought prediction Various artificial intelligence techniques used in the review domain are presented. [18]
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An organized, and comprehensive review of the state-of-the-art literature, with a
focus on research frontlines in WRM is the goal of this work. The remainder of the paper
is structured as follows. Section 2 presents the systematic literature review. Section 3
provides details of the major application of ML in water resources management, along
with subsections on prediction (Section 3.1), clustering (Section 3.2), and reinforcement
learning (Section 3.3). Section 4 discusses less studied areas in the field of WRM for ML
applications. Finally, the challenges and directions for future research, along with the
concluding remarks of this review study are discussed in Sections 5 and 6, respectively.

2. Systematic Literature Review

This study adopted a comprehensive systematic literature review to provide a deep
understanding regarding the application of ML in the field of WRM. Popular academic
databases were used, including arXiv by Cornell University, IEEE Xplore, Directory of
Open Access Journals, Science Direct, Google Scholar, Taylor & Francis Online, Web of
Science, Wiley Online Library, and Scopus. These databases were selected for the literature
search based on the thorough coverage of their articles. Figure 1 was generated using the
VOS viewer software to show the occurrences of major keywords on the implementation
of ML models in the field of WRM. Because the previous review in this field thoroughly
covered the articles published until 2020, this review only considered the articles published
between 2021 and 2022. The former was used to obtain comprehensive insights, and the
latter was used for reports using the tables in this review.
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3. Major Application of ML in WRM

ML algorithms are typically categorized into three main groups: supervised, unsuper-
vised, and RL [5]. A comparison of these is summarized in Table 2. Supervised learning
algorithms employ labeled datasets to train the algorithms to classify or predict the output,
where both the input and output values are known beforehand. Unsupervised learning
algorithms are trained using unlabeled datasets for clustering. These algorithms discover
hidden patterns or data groupings without the need for human intervention. RL is an area
of ML that concerns how intelligent an agent is to take action in an environment to obtain
the maximum reward. In both supervised and RL, inputs and outputs are mapped such that
the agent is informed of the best strategy to take in order to complete a task. In RL, positive
and negative behaviors are signaled through incentives and penalties, respectively. As a
result, in supervised learning, a machine learns the behavior and characteristics of labeled
datasets, detects patterns in unsupervised learning, and explores the environment without
any prior training in RL algorithms. Thus, an appropriate category of ML is required based
on the engineering application. The major ML learning types in WRM are summarized in
Figure 2, where the first segment covers the core contents of the research reviewed in the
following sections.

Table 2. Comparison of supervised, unsupervised, and reinforcement learning algorithms.

Learning Types Type of Data Training Used for Algorithms

Supervised
Learning Labeled data

Trained using
labeled data (extra

supervision)

Regression for
nowcasting and

forecasting

Classification in
binary and

multiple classes

Linear regression,
logistic regression,

RF, SVM, KNN,
RNN, DNN, etc.

Unsupervised
Learning Unlabeled data

Trained using
unlabeled data

without any
guidance (no
supervision)

Clustering

K—Means,
C—Means,

Agglomerative
Hierarchical
Clustering,

DBSCAN, Gaussian
Mixture Models,

OPTICS, etc.

Reinforcement
Learning

Without
predefined data

Works based on
the interaction

between agent and
environment (no

supervision)

Decision making

Q—Learning,
SARSA, DQN,
double DQN,

dueling DQN, etc.
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3.1. Prediction

The term “prediction” refers to any technique that uses data processing to get an
estimation of an outcome. This is the outcome of an algorithm that was trained on a
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prior dataset and is now being applied to new data to assess the likelihood of a certain
result in order to generate an output model. Forecasting is the probabilistic version of
predicting an event in the future. In this review paper, the terms prediction and forecasting
are used interchangeably. ML model predictions can be used to create very accurate
estimations of the potential outcomes of a situation based on past data, and they can be
about anything. For each record in the new data, the algorithm will generate probability
values for an unknown variable, allowing the model builder to determine the most likely
value. Prediction models can have either a parametric or non-parametric form; however,
most WRM models are parametric. The development steps consist of four phases: data
processing, feature selection, hyperparameter tuning, and training. Raw historical operation
data are translated to a normalized scale in the data transformation step to increase the
accuracy of the prediction model. The feature extraction stage extracts the essential variables
that influence the output. These retrieved features are then used to train the model. The
model’s hyperparameters are optimized to acquire the best model structure. Finally, the
model’s weights are automatically modified to produce the final forecast model, which is
of paramount importance for optimal control, performance evaluation, and other purposes.

3.1.1. Essential Data Processing in ML

For prediction purposes, ML algorithms can be applied to a wide variety of data
types and formats, including time series, big data, univariate, and multivariate datasets.
Time series are observations of a particular variable collected at regular intervals and in
chronological order across time. A feature dataset is a collection of feature classes that
utilize the same coordinate system and are connected. Its major purpose is to collect similar
feature classes into a single dataset, which can be used to generate a network dataset. Many
real-world datasets are becoming increasingly multi-featured because the ability to acquire
information from a variety of sources is continuously expanding. Big data was first defined
in 2005 as a large volume of data that cannot be processed by typical database systems or
applications because of its size and complexity. Big data are extremely massive, complex,
and challenging to process with the current infrastructure. Big data can be classified as
structured, unstructured, or semi-structured. Structured data are the most well-known
among hydrologist researchers because of their easy accessibility; they are usually stored
in spreadsheets. Unstructured data such as images, video, and audio cannot be directly
analyzed with a machine, whereas semi-structured data such as user-defined XML files
can be read by a machine. Big data have five distinguishing characteristics (namely, the
five Vs): volume, variety, velocity, veracity, and value. Recent developments in graphics
processing units (GPUs) have paved the way for ML and its subset to get the advantage
of big data and learn the complex and high dimensional environment. The establishment
of a prediction model begins with the assimilation of data. It includes the phases of data
collection, cleansing, and processing.

After adequate components have been gathered, any dataset needs to be structured.
Predefined programs allow for the application of a variety of data manipulation, imputation,
and cleaning procedures to achieve this goal. Anomalies and missing data are common in
datasets and require special attention throughout the preprocessing phase. Depending on
the goals of the prediction and the techniques selected, the clean data will require further
processing. Depending on the type of prediction model being used, a dataset may employ a
single labeled category or multiple categories. In ML, there are four types of data: numerical,
categorical, time series, and text. The selected data category affects the techniques available
for feature engineering and modeling, as well as the research questions that can be posed.
Depending on how many variables need to be predicted, a prediction model will either be
univariate, bivariate, or multivariate. In the processing phase, the raw data are remodeled,
combined, reorganized, and reconstructed to meet the needs of the model.
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3.1.2. Algorithms and Metrics for Evaluation

Because the outcomes of various ML approaches are not always the same, their
performances are assessed by considering the outcomes acquired. Numerous statistical
assessment measures have been proposed to measure the efficacy of the ML prediction
technique. Table 3 summarizes some commonly used ML evaluation metrics, classifying
them as either magnitude, absolute, or squared error metrics. The mean normalized bias
and mean percentage error, which measures the discrepancies between predicted and
observed values, fall under the first group. When only the amount by which the data
deviate from the norm is of interest, an absolute function can be used to report an absolute
error as a positive value, where Y, Ŷ, Y , and Ŷ denote the observed, predicted, the mean of
the observed, and the mean of the predicted value, respectively.

Table 3. Performance criteria for prediction model evaluation [19,20].

Metric Equation Description

Mean normalized bias error MBE = 1
n

n
∑

i=1

Yi−Ŷi
Yi

Estimation of the average bias of the
prediction approach used to decide on
measures for correcting the approach bias

Mean percentage error MPE = 1
n

n
∑

i=1

Yi−Ŷi
Yi
× 100

The computed average of the percentage
errors between a model’s forecasts and the
actual values of the quantity being forecast

Mean absolute error MAE = 1
n

n
∑

i=1

∣∣Ŷi −Yi
∣∣ A statistic to assess the average magnitude

of errors in a set of forecasts without
considering the direction of the errors

Mean absolute percentage error MAPE = 1
n

n
∑

i=1

∣∣∣Yi−Ŷi
Yi

∣∣∣× 100

An accuracy rating metric that measures
accuracy as a percentage of the average
absolute percentage error minus the real
amounts divided by the real amounts

Relative absolute error RAE =
∑n

i=1|Yi−Ŷi|
∑n

i=1|Yi−Y|
A relative metric for evaluating a
prediction model’s performance

Weighted mean absolute percentage error WMAPE =
∑n

i=1|Yi−Ŷi|
∑n

i=1|Yi |

A measure of a forecasting method’s
prediction accuracy that is a weighted
version of the MAPE

Normalized mean absolute error NMAE = MAE
1
n ∑n

i=1|Yi |

Intended to make it easier to compare
datasets with different scales in terms
of MAE

Mean squared error MSE = 1
n ∑n

i=1
(
Yi − Ŷi

)2
Measures the variation between the mean
squares of the real amount and
forecast values

Root mean square error RMSE =
√

1
n ∑n

i=1
(
Yi − Ŷi

)2
An estimation of the mean amount of error

Coefficient of variation
CV =

√
∑n

i=1(Yi−Ŷi)
2

n

Y

Known as the relative standard deviation,
it is a standardized measurement of the
dispersion of a probability distribution

Normalized root mean square error NRMSE = RMSE
Yi max−Yi min

A normalized RMSE to facilitate
comparisons between datasets and
models with different scales

Coefficient of determination R2 = 1− ∑n
i=1(Ŷ−Y)

2

∑n
i=1(Yi−Y)

2

Measurement of the variance ratio of a
dependent variable using an
independent variable
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Table 3. Cont.

Metric Equation Description

Willmott’s index agreement WI = 1−
[

∑n
i=1 (Yi−Yi)

2

∑n
i=1 (|Yi−Yi|+

∣∣∣Ŷi−Ŷi

∣∣∣)2

]
Measurement of the ratio of the mean
square error and the potential error

Legates–McCabe’s LM = 1−
[

∑n
i=1|Yi−Ŷi|

∑n
i=1|Yi−Yi|

] A useful alternative goodness-of-fit or
relative error that overcomes many of the
limitations of correlation-based metrics

Kling–Gupta efficiency
KGE =

√
[r− 1]2+[α− 1]2 + [β− 1]2

r = cov(Ŷ,Y)
σ(Ŷ).σ(Y)

, α =
σ(Ŷ)
σ(Y) , β = Ŷ

Y

Measures the model efficiency with
accuracy, precision, and consistency
components. Here, r, α, and β represent
the correlation coefficient, the bias (ratio
between the standard deviations of the
predicted and observed values), and the
ratio of variances, respectively. σ denotes
the standard deviation.

Akaike information criterion AIC = −2log(L
(

ˆθML|Y
)
) + 2i

A measure of a model performance that
accounts for model complexity. ˆθML

represents the vector of maximum
likelihood estimates of the model
parameters, and i denotes the number of
the observed values.

Probabilistic Metric

Continuous ranked probability score CRPS =
∫ +∞
−∞

[
P
(
Ŷi
)
− H

(
Ŷi −Yi

)]2dŶi

A quadratic measure of the difference
between forecast and empirical
cumulative distribution functions (CDF),
P
(
Ŷi
)

is the prediction CDF, and H is the
Heaviside step function, which is equal to
0 if Ŷi < Yi and 1 otherwise.

Average width of the prediction intervals AWPI = 1
n

n
∑

i=1

(
Ŷi

u − Ŷi
l
)

An estimate of an interval in which a
future observation will fall, with a certain
confidence level, based on previous
observations. u and l denote the upper
and lower bounds of the 95 % prediction
interval, respectively.

Prediction interval coverage

PICP = 1
n

n
∑

i=1
ci, ci =1, i f Yi ∈

[
Ŷi

l , Ŷi
u
]

0, i f Yi /∈
[
Ŷi

l , Ŷi
u
]

The percentage of the time the prediction
interval covers the actual value in a
holdout set

Prediction interval normalized
average width PINAW = 1

n

n
∑

i=1

Ŷi
u−Ŷi

l

R

Measures the wide degree of the
prediction interval. R denotes the range
of variation of the observed value.

3.1.3. Applications and Challenges

The metrics used to evaluate the performance of ML models based on the accuracy
of the predicted values are presented in Table 3. Choosing the correct metric to evaluate a
model is crucial, as some models may only produce favorable results when evaluated using
a specific metric. Researchers’ assessments of the significance of various characteristics
in the outcomes are influenced by the metrics they use to evaluate and compare the
performances of ML algorithms. Each year, a considerable number of papers are published
to share the successes and achievements in the vast area of WRM. In the field of hydrology,
some studies employ recorded data such as streamflow, precipitation, and temperature
data, whereas others employ processed data such as large-scale atmospheric data, which
are generated using gauge and satellite data. When it comes to predictions in the field of
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WRM, data-driven models perform better than statistical models owing to their higher
capability in a complex environment. Table 4 provides a brief overview of some of the
recent applications of ML for WRM prediction, with the relevant abbreviations defined in
the glossary.

Table 4. Recent applications of ML for prediction in WRM.

Research Field Algorithm Goal Ref.

Streamflow LSTM, BNN, LSTM-MC,
BLSTM

Developing a probabilistic forecasting model
that addresses the relevant subproblem of
univariate time series models for multistep
ahead daily streamflow forecasting in order to
quantify both epistemic and aleatory uncertainty.

[19]

Streamflow SVR, TSVR, ELM, Huber loss
function-based ELM

Adopting new data preprocessing techniques to
capture the data noise and enhance
prediction accuracy.

[21]

Streamflow Bi-directional LSTM, Stacking
of RF and MLP Introducing a novel streamflow forecasting model. [22]

Soil Moisture MLP, RF, SVR
Applying machine learning with novel
structures for the estimation of daily volumetric
soil water content.

[23]

Water quality in an urban
drainage network EMD-LSTM

Combining a data preprocessing mechanism based
on empirical mode decomposition (EMD) with an
LSTM neural network prediction module.

[24]

Contamination in water
distribution systems

ANN, SVM with linear
kernels, SVM with radial basis
function kernels (RBF), linear
regressor, decision tree, extra
trees, gradient boosting
regressor, RF, KNN, and
uniform weighted KNN

Introducing a new stacking ensemble model for
contamination detection based on several water
quality metrics.

[25]

Urban water quality RF, SVM

Creating an integrated
decomposition-reclassification-prediction technique
for water quality by combining the CEEMDN and
RF methods with the genetic algorithm-support
vector machine model (GA-SVM).

[26]

Leakage detection LSTM
Constructing a model using multi-layer
perceptron (MLP) and LSTM to predict MNF
(minimal night flow).

[27]

Failure rate ANN

Identifying the most effective serial triple
diagram model (STDM) methodologies for
predicting the daily failure rates of a water
distribution system.

[28]

Water demand Graph convolutional recurrent
neural network (GCRNN)

Building a graph-based model capable of
capturing the dependence among the different
water demand time series in both spatial and
temporal terms.

[29]

Water consumption ARIMA, LSTM
Developing a water consumption prediction
model for individual customers using a deep
learning-based LSTM approach.

[30]

Hydropower SVR, LSTM
Developing a theory-guided ML framework and
validating the model’s performance for a
reservoir located in Southwest China.

[31]
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Table 4. Cont.

Research Field Algorithm Goal Ref.

Hydropower DNN

Exploring if it is desirable to use the known
energy production of previous days as a
predictor or to predict the day ahead inflows and
then simulate the consequent energy production.

[32]

Hydropower ANN, ARIMA, SVM
Investigating the capabilities of different ML
algorithms in predicting the power production of a
reservoir in China using data from 1979 to 2016.

[33]

Water levels LSTM, GRU
Developing an efficient and precise data model
for predicting water levels with extreme
temporal variations.

[34]

Streamflow CNN-BAT
Demonstrating the prediction accuracy of a
convolutional neural network (CNN) using BAT
metaheuristic algorithm.

[35]

Groundwater
ARIMA, a back-propagation
artificial neural network
(BP-ANN), LSTM

Investigating the accuracy of the model in
forecasting the GWL at the monthly and daily
scales by using three widely used data-driven
models: an autoregressive integrated moving
average (ARIMA), a back-propagation artificial
neural network (BP-ANN), and an LSTM network.

[36]

Groundwater Ensemble learning (FFNN,
ANFIS, GMDH), LASTM

Forecasting multi-step ahead GWL of each
cluster’s piezometer centroid. [37]

Streamflow LSTM
Integrating meteorological forecasts, land
surface hydrological model simulations, and ML
to forecast hourly streamflow.

[38]

Precipitation LSTM

Proposing a combination of the weather research
and forecasting hydrological modeling system
(WRF-Hydro) and LSTM network to improve
streamflow prediction.

[39]

Streamflow ANN, CNN, LSTM

Evaluating the possibilities of singular spectral
analysis (SSA), seasonal-trend decomposition
utilizing loess (STL), and attribute selection
preprocessing approaches with neural network
techniques for predicting monthly streamflow.

[40]

Streamflow
ConvLSTM, LSTNet,
3D-CNN, TD-CNN,
transformer

Enhancing the multi-step ahead prediction
capability by using mesoscale hydroclimate data
as booster predictors and employing
attention-based DNNs.

[20]

Water quality Deep transfer learning based
on transformer (TLT)

Introducing a transfer learning approach to
water quality prediction in order to improve
prediction performance in data constrained
environments.

[41]

Streamflow ANN, ELM, SVM, EMD,
EEMD

Developing a hydrological forecasting model
based on parallel cooperation search algorithm
(PCSA) and extreme learning machine (ELM).

[42]

Streamflow BART

Developing a novel hybrid model, GA-BART,
that combines a genetic algorithm (GA) and the
Bayesian additive regression tree (BART) model
for hourly streamflow forecasting.

[43]

Streamflow DGDNN Introducing a DL model and directed graph
DNN for multi-step streamflow prediction. [44]
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Table 4. Cont.

Research Field Algorithm Goal Ref.

Streamflow ANFIS-GBO Improving the accuracy of prediction in a
mountainous river basin. [45]

Streamflow ELM-PSOGWO
Introducing a hybrid model based on heuristic
optimization and extreme learning machine
algorithms for monthly runoff prediction.

[46]

Streamflow ANN-EMPA Introducing a hybrid model based on extended
marine predators algorithm (EMPA)-based ANN [47]

Today, most countries are putting more pressure on their water resources than ever
before. The world’s population is growing quickly, and if things stay the same, there will
be a 40% gap between how much water is needed and how much is available by 2030. In
addition, extreme weather events like floods and droughts are seen as some of the biggest
threats to global prosperity and stability. People are becoming more aware of how water
shortages and droughts make fragile situations and conflicts worse. Changes in hydro-
logical cycles due to climate change will exacerbate the problem by making water more
volatile and increasing the frequency and severity of floods and droughts. Approximately
1 billion people call monsoonal basins home, while another 500 million call deltas home. In
this situation, the lives of millions of people are relying on a sustainable integrated WRM
plan, which is an essential issue being handled by engineers and hydrologists. To increase
water security in the face of increasing demand, water scarcity, growing uncertainty, and
severe natural hazards such as floods and droughts, politicians, governments, and all
shareholders will be required to invest in institutional strengthening, data management,
and hazard control infrastructure facilities. Institutional instruments such as regulatory
frameworks, water prices, and incentives are needed for better allocation, governance,
and conservation of water resources. Having open access to information is essential for
water resources monitoring, decision-making under uncertainty, hydro-meteorological
prediction, and early warning. Ensuring the quick spread and appropriate adaptation or
use of these breakthroughs is critical for increasing global water resilience and security.
However, the absence of appropriate data sets restricts the accuracy of prediction models,
especially in complex real-world applications. Moreover, advanced multi-dimensional
prediction models are scarce in hydrology and WRM studies. ML algorithms should be able
to self-learn and make accurate predictions based on the provided data. It is anticipated that
models that integrate various efficient algorithms into elaborate ML architectures will form
the groundwork for future research lines. Some of the difficulties currently encountered in
hydrological prediction may be overcome by employing newly emerging networks such
as graph neural networks. The lack of widespread adaption of cutting-edge algorithms
in the water-resource field, such as those used in image and natural language processing,
hampers the creation of cutting-edge multidisciplinary models for integrated WRM. Table 4
shows no signs of the implementation of attention-based models, CNNs, or even more
compatible models with long sequence time-series forecasting (LSTF), such as informer
and conformer. Finding an appropriate prediction model and prediction strategy is the
primary difficulty in prediction research. The five initial steps for ML prediction models
are shown in Figure 3. If even one of these steps is conducted poorly, it will affect the rest,
and as a result, the entire prediction strategy will fail.
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3.2. Clustering

The importance of clustering in hydrology cannot be overstated. The clustering of
hydrological data provides rich insights into diverse concepts and relations that underline
the inherent heterogeneity and complexity of hydrological systems. Clustering is a form of
unsupervised ML that can identify hidden patterns in data and classify them into sets of
items that share the most similarities. Similarities and differences among cluster members
are revealed by the clustering procedure. The intra-cluster similarity is just as important as
inter-cluster dissimilarity in cluster analysis. Different clustering algorithms vary in how
they detect different types of data patterns and distances. Classification is distinct from
clustering. In other words, a machine uses a supervised procedure called classification to
learn the pattern, structure, and behavior of the data that it is fed. In supervised learning,
the machine is fed with labeled historical data in order to learn the relationships between
inputs and outputs, whereas in unsupervised learning, the machine is fed only input data
and then asked to discover the hidden patterns. In this method, data is clustered to make
models more manageable, decrease their dimensionality, or improve the efficiency of the
learning process. Each of these applications, along with the pertinent literature, is discussed
in this section.

3.2.1. Algorithms and Metrics for Evaluation

There are numerous discussions of clustering algorithms in the literature. Some studies
classify clustering algorithms as monothetic or polythetic. Members of a cluster share a
common set of characteristics in monothetic approaches, whereas polythetic approaches are
based on a broader measure of similarity [48]. Depending on the algorithm’s parameters, a
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clustering algorithm may produce either hard or soft clusters. Hard clustering requires that
an element is either a member of a cluster or not. Soft clustering allows for the possibility
of cluster overlap. The structure of the resulting clusters may be flat or hierarchical. While
some strategies for clustering produce collections of groups, others benefit from a systematic
approach. Algorithms for hierarchical clustering may be agglomerative or divisive [49]. A
dataset’s points are clustered by combining them with their neighbors using agglomerative
approaches. The desired number of clusters is attained by repeatedly dividing the original
unit in divisive approaches.

The well-known clustering algorithms in WRM are shown in Figure 4. Many clustering
algorithms fall into the individual branches of the figure. Some of the famous partitional
methods are K-means, K-medians, and K-modes. These algorithms are centroid-based
methods that form clusters around known data centroids. Fuzzy sets and fuzzy C-means
are soft clustering techniques applied extensively in control systems and reliability studies.
The density-based spatial clustering of applications with noise (DBSCAN) and its updated
version, distributed density-based clustering for multi-target regression, deals with proba-
bilities while clustering. Divisive clustering analysis (DIANA) and agglomerative nesting
(AGNES) are two hierarchical methods and functions that readily visualize the clustering
procedure. The performances of these algorithms significantly depend on the distance
functions chosen. Distribution-based clustering of large spatial databases (DBCLASD)
and Gaussian mixed models are some of the popular distribution-based functions built
upon mature experiments. The statistics of support vectors are used by the support vector
clustering algorithms to develop data clusters with some margins. Table 5 lists some of the
error functions commonly used to assess the performance of clustering algorithms. These
metrics can be used to answer both the question of which clustering method performs better
and the question of how many clusters should be used in a given dataset. These issues
may be addressed in a variety of ways, such as through the use of graphical inspection and
the implementation of an optimization algorithm. Nonetheless, this relies on the clustered
dataset, and no comprehensive approaches have yet been proposed.
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Table 5. Common error functions in clustering.

Metric Equation Description Ref.

Calinski-Harabasz CH = n−k
k−1

∑k
i=1|Ci |d(vi ,x)

∑k
i=1 ∑xj∈Ci

d(vi ,x)

The numerator measures the distance
between the cluster centroids and the global
centroid, whereas the denominator measures
the distances between centroids within each
cluster. Clearly, a valid optimal partition is
indicated by the largest CH.

[50]

Chou-Su-Lai CS =
∑k

i=1

{
1
|Ci | ∑xj∈Ci

maxxl∈Ci
d(vi ,x)

}
∑k

i=1{minj:j 6=id(vi ,x)}

The numerator is the sum of the average
maximum distances between points within
each cluster, and the denominator is the sum
of the minimum distances between clusters.
The partition with the smallest CS is valid
and optimal.

[51]

Dunn’s index
DI =

min
i 6=j∈[k]

{
min{(d(xu ,xv)|xu∈Ci ,xv∈Ci)}

maxl∈[k]max{(d(xu ,xv)|xu ,xv∈Cl)}

} The numerator represents the minimum
between-cluster distance, whereas the
denominator represents the maximum
within-cluster distance. The largest DI
indicates an optimally valid partitioning.

[52]

Davies-Bouldin’s index DB = 1
k

k
∑

i=1
max

j∈[k]\{i}

{
Si,q+Sj,q

(∑
p
s=1|vi,s−vj,s|t)

1
t

}
The partition with the smallest DB is the
optimal partition. [53]

Davies-Bouldin’s Index* DB∗ = 1
k

k
∑

i=1

max
j∈[k]\{i}

{Si,q+Sj,q}

min
j∈[k]\{i}

{
(∑

p
s=1|vi,s−vj,s|t)

1
t

} The smallest DB* denotes a valid optimal
partition, similar to the original DB. [54]

Silhouette Coefficient

SC =

1
N ∑n

i=1
si, si =

{
bi−ai

max{bi ,ai}
0 i f |Cl | = 1

i f |Cl | > 1 ,


ai =

1
|Cl |−1 ∑

j:xj∈Cl

d
(

xi, xj

)
bi = min

s 6=l
1
|Cs | ∑

j:xj∈Cs

d
(

xi, xj

)
The largest SC denotes an optimal partition
which is valid.

[55]

Hybrid validity index SCD = SC
(0.5CS+0.5DB)

SCD is a collection of three robust measures
of cluster validity (SC, CS, and DB). [37]

3.2.2. Clustering in the Field of WRM

Clustering techniques are extensively applied in different WRM fields. It is up to
the discretion of the decision maker (DM) to choose the best strategy for the growth and
use of water resources. When the DM has access to relevant data, better decisions should
follow. However, as more data become available, the DM will have a harder time compiling
relevant summaries and settling on a single decision option. Clustering analysis has proven
to be a useful method of condensing large amounts of data into manageable chunks for
easier analysis and management in a decision-making environment [56].

Some of the applications of clustering algorithms in hydrology include time series
modeling [57], interpolation and data mining [58], delineation of homogenous hydro-
meteorological regions [59], catchment classification [60], regionalization of the catchment
for flood frequency analysis and prediction [61], flood risk studies [62], hydrological
modeling [63], hydrologic similarity [64], and groundwater assessment [65,66]. Clustering
is useful in these situations because it simplifies the creation of effective executive plans
and maps by reducing the problem diversity. Furthermore, one of the more traditional
uses of clustering analysis is in spotting outliers and other anomalies in the dataset. Any
clustering approach can be used for anomaly detection, but the choice will depend on the
nature and structure of the data. To sum up, cluster analysis is advantageous for complex
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projects because it enables accurate dimension reduction for both models and features
without compromising accuracy.

3.2.3. Clustering Applications and Challenges in WRM

Some recent applications of clustering algorithms in WRM are summarized in Table 6.
Model simplification, ease of learning, and dimensionality reduction are all areas where
K-means variants contribute significantly to hydrological research. Moreover, they are easy
to change to fit different types, shapes, and distributions of data, and they are easy to apply
and available in most commercial data analysis and statistics packages. As shown in Table 6,
K-means and hierarchical clustering are the most commonly used methods in WRM. The
former can handle big data well, while the later cannot. This is because the time complexity
of K-means is linear, whereas that of hierarchical clustering is quadratic [67]. Hierarchical
algorithms are predominantly used for dimension reduction [68]. Data imputation and
cleaning are two examples of secondary data analytics applications that benefit from
density-based algorithms. Furthermore, a recent study by Gao et al. [69] reported the
capability of density-based algorithms for clustering a dataset with missing features. Most
studies report the number of clusters required for the successful application of a clustering
algorithm because conventional clustering algorithms cannot efficiently handle real-world
data clustering challenges [70]. As shown in Table 6, the required number of clusters
varies considerably based on the nature of the problem. While the optimal method for
determining the number of clusters to employ is discussed in the majority of clustering
papers, this is still a topic of debate in the ML community.

Table 6. Applications of clustering algorithms in WRM.

Research Field Cluster No. Algorithm Goal Ref.

Water distribution
system 3–5 OPTICS/K-means

Determine different customer patterns
based on the geographic locations of
households

[71]

Water monitoring
system 3 k-means Monitor water consumption in a

household to improve WRM [72]

Sediment 5 Fuzzy C-means
Classify the Rhône River hydrology
according to the main
hydrological events

[73]

Hydrological
regionalization 6 Hierarchical and K-means Delineate the homogeneous clusters

of watersheds [74]

Water consumption
patterns - k-means Observe the consumption patterns

with regard to their variability. [75]

Hydrological time
series clustering 4 Hierarchical/DBSCAN Develop a clustering framework [76]

Flood risk 1–3, 5, 7, 10, 20,
50, 100, 200, 500 k-means

Choosing the optimal number of
clusters and associated parameter sets
for a hydrologic model. model

[62]

Groundwater 2–10
K-Means/hierarchical
(WARD)/self-organizing neural
network (GNG)

Promote remediation measures for
groundwater depletion
and contamination

[77]

Groundwater 4, 5, 6 K-means/FCM/GNG/Cluster
ensemble

Identify the patterns of groundwater
level (GWL) over the
Ghorveh-Dehgolan plain (GDP)
located in western Iran

[37]
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Table 6. Cont.

Research Field Cluster No. Algorithm Goal Ref.

Watershed zonation 1–7 K-means/hierarchical/Gaussian
mixture

Characterize the organization and
functions of the watershed in a more
tractable manner by integrating
multiple spatial data layers

[78]

Groundwater 5 agglomerative hierarchical Classify wells in the San Joaquin River
Basin, California [79]

Hydrological
regionalization 3 K-value

Regionalize lowland rivers using long
data series and selected hydrological
characteristics based on the example
of Lithuanian rivers.

[80]

Karstic aquifers 1–5 K-means, fuzzy logic, fuzzy
C-mean genetic K-means

Improve protection in a vulnerable
karstic region [81]

Rainfall 2, 3, 4, 7, 11 K-Means/Fuzzy C-Means
Determining the spatiotemporal
patterns of torrential rainfall along the
East Coast of Peninsular Malaysia

[82]

Flood 8 K-Means Design and implementation of
real-time monitoring [83]

Streamflow 3 Hierarchical Study the collective similarity in
periodic phenomena [84]

River 5 Hierarchical Identify the primary causes of flow
and sediment load variations [85]

River 4 k-means Analysis of climatic and
physiographic catchment properties [86]

Catchment
hydrologic control 3 Hierarchical

Investigate landscape controls on
hydrologic response through
catchment classification

[87]

Water scarcity 3 k-means Investigate how human adaptation
affects water scarcity uncertainty [88]

Flow regime 2–10 k-means Stream analysis for bias estimation
and reduction [89]

Precipitation 3 k-means Improve both medium- and long-term
precipitation forecasting accuracy [90]

Aquifer system 11 Hierarchical Classify non-linear hydrochemical data [91]

Although unsupervised learning performs well in reducing the dimensions of com-
plicated models, the rate at which new clustering algorithms are created has fallen in
recent years. Various neural networks can play a role as clustering algorithms. It is antici-
pated that new ML algorithms will be required to solve multidisciplinary WRM problems,
and data clustering will be an important step in defining a constructive problem. After
discovering their hidden patterns, ML algorithms are able to autonomously solve these
problems. Clustering ensembles, as opposed to single clustering models, are at the forefront
of computer science. The effectiveness of diverse ensemble architectures still needs to be
investigated. The reliability of probabilistic clustering algorithms, which are an updated
version of classic decision-making tools, have also been investigated in recent research.
Unsupervised learning-based predictive models and their accuracy evaluation are a new
field of research.

3.3. Reinforcement Learning

This section provides an in-depth introduction to RL, covering all the fundamental
concepts and algorithms. After years of being ignored, this subfield of ML has recently
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gained much attention as a result of the successful application of Google DeepMind to
learning to play Atari games in 2013 (and, later, learning to play Go at the highest level) [92].
This modern subfield of ML is a crowning achievement of DL. RL deals with how to learn
control strategies to interact with a complex environment. In other words, RL defines how
to interact with the environment based on experience (by trial and error) as a framework
for learning. Currently, RL is the cutting-edge research topic in the field of modern arti-
ficial intelligence (AI), and its popularity is growing in all scientific fields. It is all about
taking appropriate action to maximize reward in a particular environment. In contrast to
supervised learning, in which the answer key is included in the training data by labeling
them, and the model is trained with the correct answer itself, RL does not have an answer;
instead, the reinforcement autonomous agent determines what to do in order to accomplish
the given task. In other words, unlike supervised learning, where the model is trained
on a fixed dataset, RL works in a dynamic environment and tries to explore and interact
with that environment in different ways to learn how to best accomplish its tasks in that
environment without any form of human supervision [93,94]. The Markov decision process
(MDP), which is a framework that can be utilized to model sequential decision-making
issues, along with the methodology of dynamic programming (DP) as its solution, serves
as the mathematical basis for RL [95]. RL extends mainly to conditions with known and
unknown MDP models. The former refers to model-based RL, and the latter refers to
model-free RL. Value-based RL, including Monte Carlo (MC) and temporal difference
(TD) methods, and policy-search-based RL, including stochastic and deterministic policy
gradient methods, fall into the category of model-free RL. State–action–reward–state–action
(SARSA) and Q-learning are two well-known TD-based RL algorithms that are widely
employed in RL-related research, with the former employing an on-policy method and the
latter employing an off-policy method [90,91].

When it comes to training agents for optimal performance in a regulated Markovian
domain, Q-learning is one of the most popular RL techniques [96]. It is an off-policy method
in which the agent discovers the optimal policy without following the policy. The MDP
framework consists of five components, as shown in Figure 5. To comprehend RL, it is
required to understand agents, environments, states, actions, and rewards. An autonomous
agent takes action, where the action is the set of all possible moves the agent can take [97].
The environment is a world through which the agent moves and responds. The agent’s
present state and action are inputs, while the environment returns the agent’s reward and
its next state as outputs. A state is the agent’s concrete and immediate situation. An action’s
success or failure in a given state can be measured through the provision of feedback in the
form of a reward, as shown in Figure 5. Another term in RL is policy, which refers to the
agent’s technique for determining the next action based on the current state. The policy
could be a neural network that receives observations as inputs and outputs the appropriate
action to take. The policy can be any algorithm one can think of and does not have to
be deterministic. Owing to inherent dynamic interactions and complex behaviors of the
natural phenomena dealt with in WRM, RL could be considered a remedy to solve a wide
range of tasks in the field of hydrology. Most real-world WRM challenges can be handled
by RL for efficient decision-making, design, and operation, as elucidated in this section.

Water resources have always been vital to human society as sources of life and prosper-
ity [98]. Owing to social development and uneven precipitation, water resources security
has become a global issue, especially in many water-shortage countries where competing
demands over water among its users are inevitable [99]. Complex and adaptive approaches
are needed to allocate and use water resources properly. Allocating water resources
properly is difficult because many different factors, including population, economic, en-
vironmental, ecologic, policy, and social factors, must be considered, all of which interact
with and adapt to water resources and related socio-economic and environmental aspects.
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RL can be utilized to model the behaviors of agents, simplify the process of modeling
human behavior, and locate the optimal solution, particularly in an uncertain decision-
making environment, to optimize the long-term reward. Simulating the actions of agents
and the feedback corresponding to those actions from the environment is the aim of
RL-based approaches. In other words, RL involves analyzing the mutually beneficial rela-
tionships that exist between the agents and the system, which is an essential requirement
in an optimal water resources allocation and management scenario. Another challenging
yet less investigated issue in WRM and allocation is shared resource management. Without
simultaneously considering the complicated and challenging social, economic, and political
aspects, along with the roles of all the beneficiaries and stakeholders, providing an appli-
cable decision-making plan for water demand management is not possible, especially in
countries located in arid regions suffering from water crises. Various frameworks have been
proposed to analyze and model such a multi-level, complex, and dynamic environment.
In the last two decades, complex adaptive systems (CASs) have received much attention
because of their efficacy [100].

In the realm of WRM, agent-based modeling (ABM) is a popular simulation method
for investigating the non-linear adaptive interactions inherent to a CAS [95]. ABM has been
widely used for simulating human decisions when modeling complex natural and socioe-
cological systems. In contrast, the application of ABM in WRM is still relatively new [101],
despite the fact that it can be used to define and simulate water resources wherein individ-
ual actors are described as unique and autonomous entities that interact regionally with
one another and with a shared environment, thus addressing the complexity of integrated
WRM [102,103]. In RL water resources-related studies, when addressing water allocation
systems, from water infrastructure systems and ecological water consumers to municipal
water supply and demand problem management, agents have been conceptualized to
represent urban water end-users [104,105].

While RL has shown promise in self-driving cars, games, and robot applications, it
has not been given widespread attention related to applications in the field of hydrology.
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However, RL is expected to take over an increasingly wide range of real-world applications
in the future, especially to obtain better WRM schemes. Over the past five years, numerous
frameworks have emerged, including Tensorforce, which is a useful RL open-source library
based on TensorFlow [106], and Keras-RL [107]. In addition to these, it is notable that
there are now additional frameworks such as TF-agents [108], RL-coach [109], acme [110],
dopamine [111], RLlib [112], and stable baselines3 [113]. RL can be integrated with a DNN
as a function approximator to improve its performance. Deep reinforcement learning (DRL)
is capable of automatically and directly abstracting and extracting high-level features while
avoiding complex feature engineering for a specific task. Some trendy DRL algorithms
that are modified from Q-learning include the deep Q-network (DQN) [92], double DQN
(DDQN) [114], and dueling DQN [115]. Other packages for the Python programming
language are available to facilitate the implementation of RL, including the PyTorch-based
RL (PFRL) library [116]. Other fundamental, engineering-focused programming languages
such as MATLAB (MathWorks), and Modelica (Modelica Association Project) have also
been utilized for the development and instruction of RL agents. The application of RL
in WRM and planning will simplify the complexity of all the conflicting interests and
their interactions. It will also provide a powerful tool for simulating new management
scenarios to understand the consequences of decisions in a more straightforward way [95].
The categorization of RL algorithms by OpenAI using [112–129] was utilized to draw the
overall picture in Figure 6.
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4. Less-Studied Areas for ML Applications in WRM

In this section, less-studied areas for ML application, including spatiotemporal, geo-
spatiotemporal, and probabilistic challenges in WRM are reviewed in order of their signifi-
cance to future research. The following sections review the state-of-the-art applications of
ML techniques in the field of WRM, the relevant problems, and a future trend.

Spatiotemporal studies model and analyze simultaneously how phenomena change
over space and time. Due to the fact that they construct a one-dimensional picture of a
multifaceted problem, they are of the utmost importance for the development of WRM
strategies. In recent years, the emphasis on ML-driven spatiotemporal analysis tools
has increased significantly. This is mainly due to the significant technical advancements
made in the implementation of new assets, such as sensors and online devices that collect
geographical and temporal data. At the beginning of the training process for an ML model,
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the input data are annotated with geo-spatial and temporal features. This is done in order
to model the data’s dynamics while the machine is being trained. Various techniques
have already been developed and formulated in order to make progress toward this
objective. Depending on the geo-spatiotemporal context, time data can be presented as
a continuous sequence, as a collection of sets that form an n-dimensional shape, or as a
hidden component within the dynamic model itself. In the first, the machine can be trained
with a single or multiple time series or the observation time can be recorded alongside
the model’s other variables as an independent variable. The second type of data includes
the date, hour, and minute to facilitate the learning process. In the third scenario, the
input data are organized according to the timestamps of the occurrences, increasing the
monitoring efficiency. Similarly, geographic coordinates can be used to precisely assign the
geo-spatiotemporal characteristics of data. In addition, data inputs can be labeled with
geo-spatiotemporal information, or model variables can be explored across discrete cells on
different grids. Each of these methods can be used to train a variety of algorithms; the most
appropriate method typically depends on the available modeling environment and library
resources, as well as the individual’s preferences. Overall, the features of spatiotemporal
and geo-spatiotemporal frameworks are instructed to consider time and location labels in
spatiotemporal and longitude and latitude in geo-spatiotemporal frameworks, as depicted
schematically in Figure 7a,b, respectively.
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spatiotemporal model.

The field of hydrology is characterized by a high degree of epistemic uncertainty
and limited knowledge of the inherent complexity. The limited quality and availability of
data have been hindrances in both areas. In the field of hydrology, the development of
automatic monitoring and surveillance sensors, as well as high-resolution remote sensing
data from a variety of sources, has resulted in an abundance of new, high-quality data
known as big data. Utilizing large-scale hydrological datasets necessitates the creation and
implementation of new geo-spatiotemporal tools for use in computational analytics and
hydrological modeling. In particular, technologies that fall under the concept of geospatial
and geo-spatiotemporal AI, such as DL and parallel computing, provide the ways to
effectively employ this geo-spatiotemporal dataset and improve integrated hydrological
system modeling, especially in poorly gauged or even ungauged basins.

The application of newly emerging ML technologies, along with accessible large-scale
hydroclimate data, simplifies the existing challenges in WRM due to the intermittent nature
of natural phenomena and complexities of the existing correlations and inter-dependencies
among them. Future studies must consider not only the complexity of integrated WRM
systems, but also the hydrological uncertainties. Probabilistic method is an alternative
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to consider the uncertainties in ML applications. A probabilistic approach is a method
that considers uncertainty in the data not only to optimize the expected value but also to
infer the distribution of such uncertainty. A probabilistic method such as the Bayesian
approach can serve as a straightforward illustration of uncertainty investigation. The fitting
of stochastic processes and determination of the parameters of distributions are examples
of applications of probabilistic methods in WRM. These applications can be utilized for a
wide variety of purposes, including streamflow prediction, pollution detection, resource
allocation, and groundwater level prediction.

Another less-studied issue in the field of hydrology is considering the complex geo-
spatiotemporal interdependencies among the input features in ML-driven models. Some
recent spatiotemporal studies are summarized in Table 7. ML tools have been employed in
a wide range of WRM fields, from streamflow prediction to pollution detection in a water
distribution network. Due to the complexity of hydro-meteorological data’s spatiotemporal
patterns, predictive models typically require more complex algorithms to detect as many
dependencies as possible. Newly emerged DNN algorithms can effectively capture spa-
tiotemporal patterns in data. The type of geo-spatiotemporal problem, chosen algorithm,
and the main objective of the simulation all influence the data resolution. Studies of basins
at different scales can be conducted from the national to the local scale. Likewise, the
temporal resolution can vary from monthly to just a few seconds in WRM studies. Many
developed and developing countries throughout the world have used ML algorithms
extensively. Prior to attention-based algorithms, which are more capable in handling the
geo-spatiotemporal complexities, CNN, and LSTM were the most widely used algorithms
in this field.

Table 7. State-of-the-art applications of ML to spatiotemporal studies.

Research Field Data/Period Location Algorithm Ref.

Hydrological extreme
Satellite rainfall estimates and sea
surface temperature (SST)
anomalies/1980–2020

Fiji’s islands LSTM [130]

Flood Six-hour precipitation based on
Himawari-8 and ground station data Xi County, China ConvLSTM [131]

Flood 60 historical events occurred in the
area/1995–2020 Venice, Italy LR, NN, RF [132]

Droughts

Meteorological data from the openly
accessible climate dataset PMD, which
contains land-based
observations/1980–2020

Cholistan, Punjab,
Pakistan RF [133]

Droughts
Standardized precipitation index
series with timescales of 3, 6, and 12
months during the 1951–2016 period

31 stations in Iran
Maximal overlap discrete

wavelet transform
(MODWT) and K-means

[134]

Precipitation Radar station Z9270/2016–2020 Wuhan, China ST-LSTM-SA [135]

Groundwater GWL, rainfall, runoff/1989–2018 Iran Ensemble learning (FFNN,
ANFIS, GMDH), LASTM [37]

5. Challenges and Future Research

There are still significant limitations, despite the fact that all of the aforementioned
studies have achieved great success. First, the majority of previous research focused on
conventional ML models, whereas the newly emerging DL attention-based models (i.e.,
long- and short-term time-series networks (LSTNet), transformer, informer, and conformer)
are in their infancy, particularly in the field of WRM. In addition, previous studies focused
primarily on one or two aspects of prediction improvement, such as spatial or temporal
dependencies, whereas the geo-spatiotemporal studies are still in the early stages. Notably,
traditional algorithms often ignore spatiotemporal consistency. Nonetheless, a framework
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that can generate 3D input data (i.e., high resolution, high spatiotemporal continuity, and
high precision) is urgently required. Even though autocorrelated patterns are frequently
identified in recorded datasets, ML algorithms have not been thoroughly utilized to manage
geo-spatiotemporal problems in WRM. In this regard, Ghobadi et al. [20] proposed the
application of multimedia tensors as inputs in order to extract the complex relationships
in a geo-spatiotemporal environment and increase the accuracy of long-term multi-step
ahead streamflow prediction. Moreover, in their research, the application of networks
comprising different topping and bottoming models, each focusing on different types of
interdependencies, was also proposed. Last but not least, attention-based DL, a new genera-
tion of ML technology, has been validated as a promising approach in a variety of domains,
outperforming conventional ML models with considerable performance improvements.

It is anticipated that geo-spatiotemporal models will be developed as an extension
of the current spatiotemporal models. In the absence of sufficient historical data, ML
algorithms struggle to make accurate predictions. Therefore, it is anticipated that transfer
learning algorithms will be developed in this area to take advantage of the data availability
in some areas for use in a location with a lack of sufficient in-situ data. Moreover, the
majority of recent nationwide spatiotemporal studies have employed static models that
oversimplify the problem. It is anticipated that future research will develop dynamic
models with accelerated data extraction. The remaining obstacles in spatiotemporal and
geo-spatiotemporal research include the removal of irrelevant information from spatial data
frames, the selection of the optimal temporal horizon and resolution, and the simplification
of the interface between data mining tools and ML algorithms.

The advent of global hydroclimate data provides a permanent solution to hydrologic
prediction at various geo-spatiotemporal scales for regions without sufficient stations or
ungauged basins. Several prior studies evaluated the global applicability of hydroclimate
data to improve prediction accuracy through spatiotemporal modeling [136,137]. These
models form multivariate time series by concatenating time series across columns for each
location. The open literature review indicates that the gradient vanishing issues prevent
standalone prediction models like LSTM and GRU from providing an accurate long-term
prediction, while integrated models can increase prediction accuracy [138]. Self-attention
allows for the re-representation of an input sequence by focusing on different positions and
capturing precise, long-term, and long-range dependencies. Recent studies suggest that the
transformer network can improve long-term multivariate time series (MTS) prediction [20].
To the best of our knowledge, an open challenge in the field of hydrology is a systematic
approach to dealing with complex geo-spatiotemporal dependencies to achieve robust
long-term prediction. Moreover, another major bottleneck in DL is automatic feature
engineering compatible with 3D data. [139]. To sum up, intelligent and cutting-edge
integrated networks are necessary to address the existing complex and dynamic long-term
dependencies in order to make accurate predictions and manage LSTF.

6. Conclusions

The first part of this review classified the major ML techniques into prediction, cluster-
ing, and reinforcement learning categories. Determining an appropriate prediction strategy
as the main challenge of prediction studies has been addressed. Moreover, a prediction
model procedure has been divided into five main steps to facilitate future studies, including
data analytics, method selection, algorithm and metric selection, training, and evaluation.
Data have been clustered in order to simplify models, reduce their dimensions, or facilitate
the learning procedure in WRM-related studies. Several metrics have been reported to
address major clustering challenges, including figuring out the ideal number of clusters and
the clustering algorithm that best fits the data. The clustering algorithms were considered
according to their goals, overlap, and structure to pave the way for configuring efficient
ensembles of clustering algorithms in future studies. The second part of this review intro-
duced spatiotemporal and geo-spatiotemporal views in existing studies that contribute
to the design and operation of long-term WRM and planning. In order to solve complex
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multiobjective, multiperiod, nonlinear water resources-related problems, this review sug-
gested focusing on the RL method, which could be used to model the decision-making of
agents capable of adapting to a dynamic environment by learning from past experiences.
The spatiotemporal data resolution varies from miles and monthly values to inches and
seconds. Future geo-spatiotemporal studies will develop multidimensional models that go
beyond the spatial and temporal dimensions by employing new variants of attention-based
networks such as LSTNet, transformer, conformer, and informer. Because integrated WRM
and planning gives consideration to stakeholders’ cognitive beliefs and values, the circular
economy; water demand management; and natural, political, social, and economic disputes
that contribute to water management problems count as essential aspects that must be
considered. Moreover, owing to the existence of dynamic interactions and adaptations
between water resources and related socio-economic and environmental areas, water crises,
and resource allocation, this review suggests using RL in dealing with multidimensional
research related to integrated WRM. In the near future, it is anticipated that RL agents will
focus on this field in order to comprehend the behaviors of integrated hydrological systems,
develop policies by employing an integrated pathway, and reveal the optimal management
frameworks. Thanks to advancements in ML techniques, the WRM field is anticipated to
witness the growth of intelligent control and monitoring infrastructure in the coming years.

Author Contributions: F.G.: conceptualization, methodology, investigation, software, validation,
formal analysis, data curation, writing—original draft, writing—review and editing, visualization.
D.K.: supervision, validation, writing—review and editing, resources, and funding acquisition. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by (1) the Korea Ministry of Environment (MOE) as
“Graduate School specialized in Climate Change” and (2) the Korea Institute of Energy Technology
Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the
Republic of Korea (20224000000260).

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationships that could have appeared to influence the work reported in this paper.

Nomenclature

A2c-A3c Asynchronous Advantage Actor-Critic
ABM Agent-based modeling
AGNES Agglomerative nesting
AI Artificial intelligence
AR Autoregressive
ARIMA AR-integrated moving average
BART Bayesian additive regression tree
BNN Bayesian neural network
BP-ANN Back-propagation artificial neural network
C51 Categorical 51-Atom DQN
CAS Complex adaptive systems
CLARA Clustering Large Applications
CLARANS Clustering Large Applications based on RANdomized Search
CNN Convolutional neural networks
DBCLASD Distribution-based clustering of large spatial databases
DBSCAN Density-based spatial clustering of applications with noise
DDPG Deep Deterministic Policy Gradient
DDQN Double DQN
DIANA Divisive clustering analysis
DL Deep learning
DM Data management
DM Decision maker
DNN Deep neural networks
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DP Dynamic programming
DQN Deep Q-Network
DRL Deep reinforcement learning
ELM Extreme learning machine
EMD Empirical mode decomposition
GA Genetic algorithm
GNG Growing neural gas
GRU Gated recurrent unit
GWL Groundwater level
HER Hindsight Experience Replay
I2A Imagination-Augmented Agents
IHP Intergovernmental Hydrological Programme
KNN K-nearest neighbors
LSTF Long sequence time-series forecasting
LSTM Long and short-term memory
LSTNet Long- and Short-term Time-series network
MBMF Model-Based RL with Model-Free Fine-Tuning
MBVE Model-Based Value Expansion
MC Monte Carlo
MDP Markov Decision Process
ML Machine learning
MLP multi-layer perceptron
MODWT Maximal Overlap Discrete Wavelet Transform
MTS Multivariate time series
PCSA parallel cooperation search algorithm
PPO Proximal Policy Optimization
QR-DQN Quantile Regression DQN
RF Random forest
RL Reinforcement learning
RNN Recurrent neural networks
SAC Soft Actor-Critic
SARSA State–action–reward–state–action
STDM Serial triple diagram model
SVM Support vector machine
SWOT Strengths, weaknesses, opportunities, and threats
TD Temporal Difference
TD3 Twin Delayed DDPG
TRPO Trust Region Policy Optimization
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86. Giełczewski, M.; Piniewski, M.; Domański, P.D. Mixed Statistical and Data Mining Analysis of River Flow and Catchment
Properties at Regional Scale. Stoch. Environ. Res. Risk Assess. 2022, 36, 2861–2882. [CrossRef]

http://doi.org/10.1111/jfr3.12772
http://doi.org/10.1029/2021WR031065
http://doi.org/10.1016/j.cageo.2022.105097
http://doi.org/10.1016/j.chemosphere.2022.136787
http://www.ncbi.nlm.nih.gov/pubmed/36220435
http://doi.org/10.1016/j.scitotenv.2022.155905
http://www.ncbi.nlm.nih.gov/pubmed/35569664
http://doi.org/10.1016/j.scs.2021.103618
http://doi.org/10.3390/sym14010060
http://doi.org/10.1016/j.engappai.2022.104743
http://doi.org/10.1109/ECAI54874.2022.9847435
http://doi.org/10.1109/AQTR55203.2022.9801952
http://doi.org/10.1016/j.watres.2022.118652
http://www.ncbi.nlm.nih.gov/pubmed/35709598
http://doi.org/10.1007/s12517-021-09286-3
http://doi.org/10.3390/w14142187
http://doi.org/10.3390/W14132095
http://doi.org/10.1016/j.jhydrol.2021.127272
http://doi.org/10.5194/hess-26-429-2022
http://doi.org/10.2166/nh.2022.048
http://doi.org/10.1007/s41742-021-00380-8
http://doi.org/10.1016/j.jhydrol.2022.127706
http://doi.org/10.3390/ATMOS13010145
http://doi.org/10.1016/j.jenvman.2022.114939
http://doi.org/10.1016/j.jocs.2022.101767
http://doi.org/10.1016/j.jhydrol.2022.127750
http://doi.org/10.1007/s00477-022-02169-3


Water 2023, 15, 620 27 of 28

87. Tafvizi, A.; James, A.L.; Yao, H.; Stadnyk, T.A.; Ramcharan, C. Investigating Hydrologic Controls on 26 Precambrian Shield
Catchments Using Landscape, Isotope Tracer and Flow Metrics. Hydrol. Process. 2022, 36, e14528. [CrossRef]

88. Hung, F.; Son, K.; Yang, Y.C.E. Investigating Uncertainties in Human Adaptation and Their Impacts on Water Scarcity in the
Colorado River Basin, United States. J. Hydrol. 2022, 612, 128015. [CrossRef]

89. Saber, J.; Hales, R.C.; Sowby, R.B.; Williams, G.P.; James Nelson, E.; Ames, D.P.; Dundas, J.B.; Ogden, J. SABER: A Model-Agnostic
Postprocessor for Bias Correcting Discharge from Large Hydrologic Models. Hydrology 2022, 9, 113. [CrossRef]

90. Tang, T.; Jiao, D.; Chen, T.; Gui, G. Medium- and Long-Term Precipitation Forecasting Method Based on Data Augmentation and
Machine Learning Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1000–1011. [CrossRef]

91. Rahman, A.T.M.S.; Kono, Y.; Hosono, T. Self-Organizing Map Improves Understanding on the Hydrochemical Processes in
Aquifer Systems. Sci. Total Environ. 2022, 846, 157281. [CrossRef] [PubMed]

92. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-Level Control through Deep Reinforcement Learning. Nature 2015, 518, 529–533. [CrossRef]
[PubMed]

93. Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow SECOND EDITION Concepts, Tools, and Techniques to
Build Intelligent Systems; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022.

94. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT press: Cambridge, MA, USA, 2016; Volume 521, ISBN 978-0262035613.
95. Agha-Hoseinali-Shirazi, M.; Bozorg-Haddad, O.; Laituri, M.; DeAngelis, D. Application of Agent Base Modeling in Water

Resources Management and Planning. Springer Water 2021, 177–216. [CrossRef]
96. Jang, B.; Kim, M.; Harerimana, G.; Kim, J.W. Q-Learning Algorithms: A Comprehensive Classification and Applications. IEEE

Access 2019, 7, 133653–133667. [CrossRef]
97. Zhu, Z.; Hu, Z.; Chan, K.W.; Bu, S.; Zhou, B.; Xia, S. Reinforcement Learning in Deregulated Energy Market: A Comprehensive

Review. Appl. Energy 2023, 329, 120212. [CrossRef]
98. Nurcahyono, A.; Fadhly Jambak, F.; Rohman, A.; Faisal Karim, M.; Neves-Silva, P.; Cruz Foundation, O.; Horizonte, B. Shifting

the Water Paradigm from Social Good to Economic Good and the State’s Role in Fulfilling the Right to Water. F1000Research 2022,
11, 490. [CrossRef]

99. Damascene123, N.J.; Dithebe, M.; Laryea, A.E.N.; Medina, J.A.M.; Bian, Z.; Gilbert, M.A.S.E.N.G.O. Prospective Review of Mining
Effects on Hydrology in a Water-Scarce Eco-Environment; North American Academic Research: San Francisco, CA, USA, 2022;
Volume 5, pp. 352–365. [CrossRef]

100. Yan, B.; Jiang, H.; Zou, Y.; Liu, Y.; Mu, R.; Wang, H. An Integrated Model for Optimal Water Resources Allocation under “3
Redlines” Water Policy of the Upper Hanjiang River Basin. J. Hydrol. Reg. Stud. 2022, 42, 101167. [CrossRef]

101. Xiao, Y.; Fang, L.; Hipel, K.W.; Wre, H.D.; Asce, F. Agent-Based Modeling Approach to Investigating the Impact of Water Demand
Management; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2018. [CrossRef]

102. Lin, Z.; Lim, S.H.; Lin, T.; Borders, M. Using Agent-Based Modeling for Water Resources Management in the Bakken Region.
J. Water Resour. Plan. Manag. 2020, 146, 05019020. [CrossRef]

103. Berglund, E.Z.; Asce, M. Using Agent-Based Modeling for Water Resources Planning and Management. J. Water Resour. Plan.
Manag. 2015, 141, 04015025. [CrossRef]

104. Tourigny, A.; Filion, Y. Sensitivity Analysis of an Agent-Based Model Used to Simulate the Spread of Low-Flow Fixtures for
Residential Water Conservation and Evaluate Energy Savings in a Canadian Water Distribution System. J. Water Resour. Plan.
2019, 145, 1. [CrossRef]

105. Giacomoni, M.H.; Berglund, E.Z. Complex Adaptive Modeling Framework for Evaluating Adaptive Demand Management for
Urban Water Resources Sustainability. J. Water Resour. Plan. Manag. 2015, 141, 11. [CrossRef]

106. Tensorforce: A TensorFlow Library for Applied Reinforcement Learning—Tensorforce 0.6.5 Documentation. Available online:
https://tensorforce.readthedocs.io/en/latest/ (accessed on 26 October 2022).

107. Plappert, M. keras-rl. “GitHub—Keras-rl/Keras-rl: Deep Reinforcement Learning for Keras.” GitHub Repos. 2019. Available
online: https://github.com/keras-rl/keras-rl (accessed on 26 October 2022).

108. Guadarrama, S.; Korattikara, A.; Ramirez, O.; Castro, P.; Holly, E.; Fishman, S.; Wang, K.; Gonina, E.; Wu, N.; Kokiopoulou, E.; et al.
TF-Agents: A Library for Reinforcement Learning in Tensorflow. GitHub Repos. 2018. Available online: https://github.com/
tensorflow/agents (accessed on 26 October 2022).

109. Caspi, I.; Leibovich, G.; Novik, G.; Endrawis, S. Reinforcement Learning Coach, December 2017. [CrossRef]
110. Hoffman, M.W.; Shahriari, B.; Aslanides, J.; Barth-Maron, G.; Nikola Momchev, D.; Sinopalnikov, D.; Stańczyk, P.; Ramos, S.; Raichuk, A.;
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