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Abstract: Microalgae play an important role in the formation of biofloc. To demonstrate the feasi‑
bility of Chlorella pyrenoidosa in biofloc formation, an experiment was performed with a simple ran‑
dom design consisting of five inoculation levels (in triplicate) of C. pyrenoidosa (0, 1 × 108, 1 × 109,
5× 109, and 1× 1010 cells·L−1) in the biofloc system. All treatments kept aC:N ratio of approximately
15:1. This study observed the effects of different initial concentrations of C. pyrenoidosa on biofloc
formation, water quality and bacterial community in biofloc systems. The results indicated that
C. pyrenoidosa had the ability to enhance biofloc development, especially when the C. pyrenoidosa ini‑
tial concentration reached 5~10× 109 cells·L−1. Too high or too low a concentration of C. pyrenoidosa
will adversely affect the formation of biofloc. The effect of C. pyrenoidosa addition on water quality
(TAN, NO2

−‑N, andNO3
−‑N) was not significant in the final stage. The inoculation ofC. pyrenoidosa

decreased the species richness anddiversity of the bacterial community but increased the domination
ofProteobacteria andBacteroidota in the biofloc system, especially the order ofRhizobiales. The addition
of C. pyrenoidosa could maintain water quality by increasing the proportion of several denitrifying
bacteria, including Flavobacterium, Chryseobacterium, Pseudomonas, Brevundimonas, Xanthobacter, etc.
These above dominant denitrifying bacteria in the biofloc system could play a major role in reducing
the concentration of NO2

−‑N and NO3
−‑N. So, we recommended the reasonable concentration is

5~10 × 109 cells·L−1 if C. pyrenoidosa is used to rapidly produce biofloc.

Keywords: Chlorella pyrenoidosa; biofloc formation; water quality; bacterial community

1. Introduction
The aquaculture industry plays an important role in providing aquatic products for

the world population through intensive cultivation. However, as aquaculture cultivation
intensifies, researchers found that only 20–30% of nitrogen is utilized and retained in or‑
ganisms [1]. That is, around 70–80% of nitrogen is released into the adjacent environment,
which could produce an adverse effect [2,3]. Biofloc technology (BFT) was considered to
play an important role in maintaining the rearing water quality and providing extra nutri‑
tion for aquaculture animals [4,5]. This technology could solve the adverse effect from
nitrogen discharge by constructing biofloc systems [6,7]. This system is generally con‑
structed by providing organic carbon and maintaining the C/N ratio at a reasonable level
to remove toxic nitrogen [8,9]. As a microbial‑based system, its structure is considered
to contain 29% microalgae, 35% bacteria, 24% fungi and 12% zooplankton [10]. Microal‑
gae, as one of the main components, is involved in the formation of biofloc. For instance,
Chlorophyceae, Bacillariophyceae, and Cyanophyceae were discovered as the most common
species in the initial stages of the biofloc system [11,12]. In addition, Chlorella, Acutodesmus
and Chlamydomonas have been regularly found to be a stable biofloc composition [13].
These microalgae not only participate in the formation but also play a key role in remov‑
ing nitrates, providing oxygen to heterotrophic bacteria and enhancing the aggregation
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of microorganisms in the water by their excreta [14–16]. Many studies thought that the
enhancing effect of microalgae is important in the formation of biofloc. Loria et al. [17]
found that the addition of Chlorella vulgaris, Chlorella sorokiniana, Scenedesmus dimorphus,
andNeochloris oleoabundans could formbiofloc. The addition ofChlorella sp.,Grammatophora
sp., and Navicula sp. could increase the quantity of protein and lipids in biofloc [17,18]. It
was proven that the improvement of C. vulgaris on floc was caused by secreting extracel‑
lular metabolites, which could provide a high level of flocculating activities [19,20]. This
suggested that the choice of appropriate species could be a key factor that influenced the
effect of biofloc formation. However, these studies were conducted using conventional
production, culturing biofloc in the same units with farmed animals [21]. To focus on
the quality of the biofloc and facilitate the quantification of biofloc production, the biofloc
needs to be cultured in a separate way [22,23].

ComparedwithC. vulgaris, Chlorella pyrenoidosa (C. pyrenoidosa) was found to produce
a higher biomass [24]. It is a widely distributed and cultivated freshwater microalga that
is extensively used in aquaculture as food for aquaculture animals [25]. According to the
Food and Agriculture Organization (FAO), C. pyrenoidosa is one of the healthy green foods,
rich in nutrients such as protein, total lipids and total carbohydrates [26]. In addition,
C. pyrenoidosa is characterized by a high reproduction rate and the ability to use carbon
sources for mixotrophic growth [27,28], especially the strong ability to convert ammonia
to high nutritional biomass under a mixotrophic mode [29]. This evidence indicated that
C. pyrenoidosawas regarded as themost potentially promising species for producing biofloc.
However, the effects of C. pyrenoidosa on the formation of biofloc are still unknown. So, we
explored the effects of different initial concentrations of C. pyrenoidosa on the formation
amount, water quality and bacterial community under the novel separate production of
biofloc. The aim of this study was to obtain which initial concentration of C. pyrenoidosa
would be suitable for the formation of biofloc. We tried to reveal the promotion mecha‑
nism of C. pyrenoidosa on biofloc through water quality and bacterial community. This is
vital in providing some fundamentals for elaborating the rapid establishment of biofloc by
inoculating C. pyrenoidosa.

2. Materials and Methods
2.1. Microalgae and Bacteria Strain

C. pyrenoidosa (FACHB‑9) was obtained from the Freshwater Algae Culture Collection
at the Institute of Hydrobiology, Chinese Academy of Sciences (Wuhan, China). This mi‑
croalga was grown in BG11 medium sterilized at 121 ◦C for 20 min. The cultivation was
performed at 25 ± 1 ◦C with a 12:12 light‑dark cycle. In the study of biofloc formation,
Bacillus subtilis, as a kind of probiotic bacterium in aquaculture, was widely applied to im‑
prove the formation process [30,31]. So, we selected this bacterium as an inoculating strain
for our biofloc system under separate production. B. subtiliswas obtained from Baiwo co.,
Ltd. (Beijing, China) and was activated by inoculating it into ultra‑water under sterile con‑
ditions and culturing it at 37 ◦C for 24 h with agitation.

2.2. Experiments Design
The experimental system consisted of a reactor (measuring cup, 3 L), a cylindrical

aeration stone and an air pump. Five treatments were set up for the current experiments,
including different inoculation concentrations of C. pyrenoidosa (0, 1 × 108, 1 × 109,
5 × 109 and 1 × 1010 cells·mL−1) with three replications (Table 1). B. subtiliswas added to
each reactor to a final concentration of 2× 107 CFU·mL−1, whichwas adjusted on the basis
of our pre‑experiments based on the results of Yusufi et al. [32]. All treatments were run
at 25± 1 ◦C and in a 12:12 light‑dark cycle for 13 days. Glucose was used in all treatments
as a carbon source, while urea was used as a nitrogen source. The ratio of carbon and
nitrogen (15:1) was maintained through the additional carbon and nitrogen source. No
water exchange was carried out in the biofloc treatments; however, the regular addition of
freshwater was performed to replace water loss due to evaporation. During a 13‑day ex‑
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perimental period, 100 mL of water in biofloc reactors was collected and filtered through a
0.45 µm pore size membrane under vacuum pressure through a pump. Then, filter papers
were used to determine the total suspended solid (TSS) [33], and the filtrate was used to
analyze the water quality.

Table 1. C. pyrenoidosa initial inoculation concentrations of the treatments in experiment.

Treatments A B C D E

C. pyrenoidosa (cells·L−1) 1 × 108 1 × 109 5 × 109 1 × 1010 0
B. subtilis (CFU·mL−1) 2 × 107 2 × 107 2 × 107 2 × 107 2 × 107

Volume (L) 3 3 3 3 3
C/N 15 15 15 15 15

2.3. Analytical Methods
2.3.1. Biofloc Development Analysis

Changes in TSS concentrations and turbidity over time can indicate the biofloc devel‑
opment in water [34]. To determine TSS, an unused filter of 0.45 µm pore size was dried
in a dryer at 105 ◦C and then weighed on an electronic microbalance. The filter was dried
after filtering a 100 mL biofloc water sample. The net dry weight was calculated by sub‑
tracting the weight of the unused filter from the final weight [35]. The turbidity was tested
with the turbidity meter (430IR, Turb, MUC, GER).

2.3.2. Water Quality Analysis
Water quality parameters, including total ammonia nitrogen (TAN), nitrite nitrogen

(NO2
−‑N), nitrate nitrogen (NO3

−‑N), temperature (T), pH and dissolved oxygen (DO),
were measured once every two days. The concentration of TAN, NO2

−‑N, and NO3
−‑N

were analyzed using a flow‑injection analyzer (QC8500, Hach, Loveland, CO, USA). The
physicochemical variables of T (◦C), pH, and DO (mg·L−1) were measured in situ using
the multiparameter (ProQuatro, YSI, Yellow Springs, OH, USA).

2.3.3. Bacterial Community Analysis
To investigate the impact of C. pyrenoidosa on bacterial community composition more

comprehensively, three time points were chosen to analyze the bacterial community. Wa‑
ter samples were filtered through a 0.22 µm pore size membrane and stored frozen at
−80 ◦C for further analysis. These samples were sent to Yuanxin Co. (Shanghai, China)
for the sequencing of the 16S rDNA V4‑V5 region and biofloc bacterial diversity anal‑
ysis (primer sequence information, 515F: 5′‑GTGCCAGCMGCCGCGG‑3′ and 907R: 5′‑
CGGTCAATTCMTTTRAGTTT‑3′) [5]. Operational taxonomic units (OTUs) were clus‑
tered with a 97% similarity cutoff using UPARSE (version 7.0.1090). The bacterial diver‑
sity was measured using Shannon and Simpson indexes, while the Chao1 and Ace indexes
were used to reflect species richness. These four parameters were determined based on the
calculated OTUs and calculated in Qiime (Version 1.9.0).

2.4. Statistical Analysis
Data were shown as the average value± standard deviation. SPSS (Version 25.0) was

used to process the data. One‑way analysis of variance (ANOVA) was used to examine
significant differences among the treatments of samples. Differences were considered sig‑
nificant when p < 0.05. The Duncan test was adopted for post hoc multiple comparisons
if there was a significant difference among data. CCA (canonical correspondence analy‑
sis) was performed with the top 10 dominants at the genus level to clarify the relationship
between environmental factor dynamics and bacterial community variations.
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3. Results
3.1. Biofloc Formation Differences under Different C. pyrenoidosa Concentration

The biofloc development over time is shown in Figure 1. Both TSS (Figure 1a) and
turbidity (Figure 1b) levels increased gradually throughout the experiment period. There
were significant differences between the experimental treatments and the control treat‑
ment. The TSS and turbidity no longer changed significantly after the 11th day (p > 0.05). At
the end of the experiments, the maximum TSS and turbidity were observed in treatment C,
reaching about 535.02± 95.52mg·L−1 and 110.03± 13.80 NTU, respectively. The least TSS
and turbidity were reported with the control treatment, recording 293.00 ± 50.91 mg L−1
and 84.67± 11.82 NTU, respectively. Following these results, C. pyrenoidosa had the ability
to enhance biofloc development. The promotional effect was the most obvious when the
C. pyrenoidosa initial concentration reached 5~10 × 109 cells·L−1.
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3.2. Change in Water Quality under Different C. pyrenoidosa Concentration
The water quality parameters of experimental and control treatment are shown in

Table 2. The water temperature, pH and DO in all treatments remained stable and were
within the ideal range throughout the trial.

Table 2. Water quality parameters in five treatments throughout the 13‑day experimental period.

Treatments pH DO (mg·L−1) Temperature (◦C)

A 8.38 ± 0.35 5.84 ± 1.37 25.19 ± 0.32
B 8.55 ± 0.30 6.46 ± 0.94 25.28 ± 0.24
C 8.46 ± 0.42 6.77 ± 1.14 25.34 ± 0.20
D 8.56 ± 0.37 6.25 ± 0.78 25.32 ± 0.39
E 8.37 ± 0.34 5.55 ± 1.13 24.32 ± 0.49

Note: Each value represents mean ± SD.

The concentration of TAN,NO2
−‑N andNO3

−‑N in five treatments during the 13‑day
experimental period are given in Figure 2. The TAN (Figure 2a) was not detected on day 1.
The TAN was gradually increased and then maintained a relatively stable state through‑
out the experiment. There was no significant difference in the TAN concentration among
treatments in the late stage of the culture (p < 0.05). The NO2

−‑N (Figure 2b), showing no
significant difference (p < 0.05) among treatments in the initial and late stages, fluctuated
within a relatively low level during themiddle stage. High values forNO3

−‑Nwere seen at
the start of the culture (Figure 2c). TheNO3

−‑Nwas gradually decreased and then became
stagnant throughout the 13‑day trial in treatments A, B, C and E. In contrast, treatment D
showed accumulation during the experiment.
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−‑N) of five treatments.

3.3. Dynamic Structure of the Bacterial Community under Different C. pyrenoidosa
Concentration

The species richness and diversity of the bacterial community are shown in Table 3.
The Chao1 and Ace indexes gradually increased over time in all treatments, while the con‑
trol treatment had a higher species richness than the experimental treatments. The Simp‑
son and Shannon indices in the experimental treatments were lower than the control treat‑
ment at the same sampling time. In summary, the inoculation of C. pyrenoidosa decreased
the species richness and diversity of bacterial community in the biofloc system.

Table 3. The richness and diversity of the bacterial community from all treatments at different sam‑
pling times.

Time Sample OTUs
Richness Diversity

Chao 1 Ace Shannon Simpson

1d

A 1006.67 ± 52.54 1405.67 ± 69.37 1871.00 ± 87.68 2.89 ± 0.17 0.12 ± 0.01
B 1421.00 ± 48.08 1988.50 ± 86.97 2084.00 ± 43.84 3.18 ± 0.29 0.12 ± 0.01
C 1272.00 ± 59.40 1662.67 ± 118.37 1905.00 ± 37.64 3.35 ± 0.15 0.09 ± 0.01
D 1019.50 ± 96.87 1796.00 ± 100.41 1922.00 ± 179.61 3.48 ± 0.20 0.08 ± 0.01
E 2556.00 ± 115.97 3651.00 ± 224.86 3531.67 ± 364.53 3.64 ± 0.18 0.10 ± 0.01

7d

A 990.00 ± 123.04 1592.00 ± 96.17 1697.50 ± 164.76 3.55 ± 0.04 0.09 ± 0.01
B 1441.67 ± 94.73 2007.67 ± 109.04 2158.67 ± 130.60 3.33 ± 0.31 0.17 ± 0.01
C 1350.67 ± 36.46 1947.33 ± 79.12 2508.67 ± 76.87 3.64 ± 0.24 0.06 ± 0.01
D 1297.50 ± 36.06 2035.00 ± 104.65 2745.67 ± 242.84 3.63 ± 0.24 0.08 ± 0.00
E 3290.67 ± 240.78 4200.33 ± 107.30 4350.00 ± 120.39 4.77 ± 0.19 0.06 ± 0.00

13d

A 1543.00 ± 183.85 2040.50 ± 293.45 2207.50 ± 300.52 3.23 ± 0.31 0.19 ± 0.01
B 1466.33 ± 77.91 1956.33 ± 87.81 2143.67 ± 90.18 3.30 ± 0.29 0.16 ± 0.01
C 1716.00 ± 50.91 2336.67 ± 203.01 2504.33 ± 208.71 4.10 ± 0.21 0.07 ± 0.01
D 2385.00 ± 168.29 3114.00 ± 290.56 3759.67 ± 370.09 3.85 ± 0.21 0.10 ± 0.00
E 3626.00 ± 113.37 4568.67 ± 37.45 4700.33 ± 66.91 5.32 ± 0.31 0.04 ± 0.01

The results of the bacterial community structure are given in Figure 3. At the phylum
level (Figure 3a), A, B, C, D and E mostly consisted of Proteobacteria (62%, 70%, 55%, 54%
and 52%), Bacteroidota (26%, 22%, 25%, 29% and 24%) and Firmicutes (5%, 1%, 2%, 1% and
6%). At the order level (Figure 3b), A, B, C,D andEmainly consisted of Flavobacteriales (17%,
14%, 20%, 20% and 14%), Rhizobiales (5%, 5%, 17%, 25% and 7%), Caulobacterales (11%, 27%,
8% 5% and 8%), Pseudomonadales (10%, 6%, 4%, 3% and 13%) and Sphingomonadales (6%,
8%, 7%, 7% and 1%). The predominant genus is shown in Figure 3c. There were many
unidentified species which illustrated the complexity of bacterial communities in biofloc
systems. A, B, C, D and Emostly consisted of Flavobacterium (14%, 9%, 17%, 20% and 15%),



Water 2023, 15, 536 6 of 12

Brevundimonas (11%, 32%, 9%, 5% and 2%), Chryseobacterium (8%, 9%, 12%, 11% and 4%),
Pseudomonas (11%, 6%, 5%, 4% and 5%) and Xanthobacter (3%, 3%, 10%, 10% and 7%).
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The result of CCA is shown in Figure 4. A positive correlation existed between TSS,
turbidity and TAN, whereas a negative correlation existed between these variables and
NO2

−‑N andNO3
−‑N.Xanthobacter, Flavobacterium and Brevundimonaswere influenced by

TSS and turbidity. NO2
−‑N had a positive relationshipwith Fimbriimonadaceae‑norank. The

dominant bacteria that were positively associated with NO3
−‑N included Sphingomonas,

Chryseobacterium, Pseudomonas andEnterobacteriaceae‑unclassified. Elstera andLegionellawere
influenced by TAN.
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−‑N, nitrite
nitrogen; NO3

−‑N, nitrate nitrogen; TSS, total suspended solid; Turb, turbidity. The water parame‑
ters were indicated as arrows. The dominant bacteria were represented as lozenges. Samples were
indicated as circles, with numbers corresponding to their sampling time.

4. Discussion
4.1. Influence of C. pyrenoidosa on Biofloc Development

When the concentration of phytoplankton in the biofloc system increases, the amount
of biofloc formation increases [36]. This statement is confirmed by the results that show
the Chlorella sp. inoculum enhances the stability of biofloc formation and makes biofloc
production higher [19]. So, our results indicated that C. pyrenoidosa could promote biofloc
formation. It is very reasonable to show similar characteristics for C. pyrenoidosa, which is
considered one of the important microalgae of Chlorella sp. From a macro perspective, we
also found that it had no significant effect on the biofloc formation when the initial addi‑
tion of C. pyrenoidosawas below 1× 108 cells·L−1. This finding is consistent with the result
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of previous research [37], which might be attributed to the lack of influence of the lower
concentration of Chlorella sp. (<1× 109 cells·L−1) on TSS concentration [38]. However, this
microalga still can affect the particle size of biofloc from a microscopic perspective [38].
When the initial addition of C. pyrenoidosa exceeded 1× 108 cells·L−1, it could significantly
promote the biofloc formation. Nevertheless, the biofloc system with C. pyrenoidosa addi‑
tion (1 × 1010 cells·L−1) demonstrated lower production during the final phase. This may
have been due to the fact that a high TSS concentration reduces the light entrances into
the system, intervenes in the growth of C. pyrenoidosa [39] and inhibits the growth of other
phytoplankton [40].

4.2. Influence of C. pyrenoidosa on Water Quality
In the present study, the addition of C. pyrenoidosa did not affect TAN, NO2

−‑N and
NO3

−‑N. The same evidence was revealed in the Chlorella sp. addition, which did not
significantly influence TAN and NO2

−‑N [41]. Although Chlorella sp. generally has the
ability to utilize carbon sources for growth to remove or uptake TAN [42], it does not
have enough ability to transform TAN through the production of bacterial biomass for
a large amount of glucose added [43]. Thus, it could have been caused by homologous
reasons as C. pyrenoidosa is one of the dominant microalgae of Chlorella sp. Additionally,
TAN showed an increasing trend until the end of all treatments, which was mainly due
to the degradation of dead biomass [23] and the development of denitrifying bacteria dur‑
ing biofloc formation. Contrary to TAN changes, NO3

−‑N went down in four treatments
except treatment D, which could have happened due to the following three mechanisms:
aerobic heterotrophic denitrification into nitrogen gas [19], dissimilatory nitrate reduction
to ammonium (DNRA) [44] and heterotrophic assimilated into bacterial biomass [45].

4.3. Influence of C. pyrenoidosa on Bacterial Community
The observation that microalgae reduced bacterial richness and diversity in biofloc

systems has also been reported [46]. We further formalized the above view in our research
about the addition of C. pyrenoidosa. However, the dominant bacteria were indeed selec‑
tive in the biofloc formation. In this condition of high carbon, Proteobacteria could pro‑
duce a variety of metabolic species that could degrade organic matter as well as remove
nutrients [47]. We have found that Pseudomonadales, Caulobacterales and Sphingomonadales
belonging to the phylum of Proteobacteria were the four main orders playing a part in the
abovemetabolic process. In particular, the order of Rhizobialeswas proved to be conducive
to the nutrient cycling and organic compounds’ utilization in biofloc systems [48,49]. In ad‑
dition, the order of Flavobacteriales belonging to the phylum of Bacteroidota also has a high
capacity to use organic compounds [50]. A similar phenomenon has been verified in other
studies [5,51]. All of this could reasonably explain why the two bacteria (Proteobacteria
and Bacteroidota) at the phylum level were dominant in our research and why the relative
abundance of Rhizobiales at the order level increased with the increasing concentration of
C. pyrenoidosa. Meanwhile, several denitrifying bacteria were considered as the main bac‑
teria in the heterotrophic and aerobic conditions designed in this study. Under this circum‑
stance, as themembers of Bacteroidota, Flavobacteriales (Flavobacterium) were not only associ‑
ated with heterotrophic denitrification [52] and the accumulation of nitrogen [53] but also
had the ability to increase the flocculation efficiency of several green algae cultures [54].
In addition, Chryseobacterium was considered to be capable of utilizing NO3

−‑N aerobi‑
cally in the presence of NH4

+‑N [55]. We also found that Pseudomonas, Brevundimonas and
Xanthobacter were the dominant genera in the phylum of Proteobacteria. Pseudomonadales
(Pseudomonas) had the characteristics of heterotrophic nitrification and aerobic denitrifica‑
tion simultaneously [56], while Brevundimonas could perform aerobic denitrification with
high nitrate [57,58]. Xanthobacter also have the ability to make the dissimilatory reduc‑
tion of both NO3

−‑N and NO2
−‑N to gaseous forms of nitrogen [59]. This evidence could

also reasonably explain why these above bacteria at the genus level were dominant in
our research.
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5. Conclusions
The present research clearly demonstrated that the addition of C. pyrenoidosa could

promote the production efficiency of the biofloc. Especially when the initial concentra‑
tions of C. pyrenoidosawere in a reasonable range of 5~10 × 109 cells·L−1, it was the better‑
inoculated level for the rapid formation and stability of the biofloc. Too lowa concentration
could not produce a macroscopically visible effect, while too high a concentration would
inhibit the performance of the biofloc production. It is an important point that needs to
be taken into account for the higher TSS concentration, which could reduce the light en‑
trances into the system and intervene in the photosynthesis and the growth of microal‑
gae. We also proved that the addition of C. pyrenoidosa could bring about the reduction in
species richness and diversity. At the same time, the inoculation of this microalgae could
make Proteobacteria and Bacteroidota dominant in the biofloc system, while the order of
Rhizobiales could be a main biological factor promoting biofloc formation. In the process
of biofloc formation, the concentration of TAN over time was raised under the addition
of C. pyrenoidosa, which could be ascribed to the existence of three functions: the transfor‑
mation of TAN, the degradation of dead biomass, and denitrification in the biofloc system.
CCA analysis proved that the amount of biofloc formationwas negative withNO2

−‑N and
NO3

−‑N, as several dominant denitrifying bacteria in the biofloc system played a major
role in the formation. Furthermore, the inoculation of C. pyrenoidosa could maintain water
quality by increasing the proportion of several denitrifying bacteria (such as Flavobacterium,
Chryseobacterium, Pseudomonas, Brevundimonas, Xanthobacter, etc.).
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