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Abstract: Machine learning (ML) algorithms slowly establish acceptance for the purpose of stream-
flow modelling within the hydrological community. Yet, generally valid statements about the
modelling behavior of the ML models remain vague due to the uniqueness of catchment areas. We
compared two ML models, RNN and LSTM, to the conceptual hydrological model Hydrologiska
Byråns Vattenbalansavdelning (HBV) within the low-land Ems catchment in Germany. Furthermore,
we implemented a simple routing routine in the ML models and used simulated upstream streamflow
as forcing data to test whether the individual model errors accumulate. The ML models have a
superior model performance compared to the HBV model for a wide range of statistical performance
indices. Yet, the ML models show a performance decline for low-flows in two of the sub-catchments.
Signature indices sampling the flow duration curve reveal that the ML models in our study provide
a good representation of the water balance, whereas the HBV model instead has its strength in the
reproduction of streamflow dynamics. Regarding the applied routing routine in the ML models,
there are no strong indications of an increasing error rising upstream to downstream throughout the
sub-catchments.

Keywords: river discharge; streamflow; LSTM; RNN; HBV model; model intercomparison; flow
duration curve

1. Introduction

Conceptual and process-based models are the traditional way to represent catchment
hydrological processes. Based on process understanding, equations are combined to mimic
the observed flow processes. The Hydrologiska Byråns Vattenbalansavdelning (HBV)
model is one of the pioneers of catchments’ hydrological models [1,2]. It was applied
in numerous catchments around the world, representing water flow of catchments with
different characteristics. However, despite the plausible hydrological behavior, such models
are limited by the understanding of the underlying processes, limiting the models’ flexibility
to represent catchments’ individual flow processes. The underlying uncertainties resulting
from those limitations have been widely discussed [3,4].

Next to conceptual and physical hydrological models, also, data-driven approaches
such as machine learning (ML) and Deep Learning (DL) gained awareness in the scientific
community due to data availability and rising computational power. Whereas conceptional
models and physical models rely on our, so far, acquired knowledge about the hydrological
cycle, instead, ML models are purely based on observations and do not require information
about the physical properties [5]. ML models mimic the physical, relevant runoff processes
from historical data by building functional relationships between input and output data [6].
The rapid progress of ML is arguably even one of the most important advances in hydrology
in recent years [7].
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Numerous approaches of different ML models were applied in hydrology in the
past, using, for example, Artificial Neural Networks (ANNs) [8–10] or Support Vector
Machines (SVMs) [11,12]. However, during recent years, DL models with a recurrent
design such as Long Short-Term Memory (LSTM) models have been predominately applied
to forecast streamflow within ML [13–17]. Moreover, in other environmental disciplines,
such as groundwater modelling, air pollution modelling and climate change forecasting,
LSTM have gained rising attention due to their superior performance for the prediction of
sequential data and modelling of long-term dependencies [18–22].

In general, recent hydrological research often focus on multi-catchment modeling
to gain generally valid results [23]. However, river flow processes are influenced by
basin-specific factors, and models tend to perform unequally well for low-, medium-, and
high-flow zones [24]. Specific approaches might be required in catchments where the
effects of groundwater flow dominate [25]. Therefore, we (i) compared the results of a
conceptual model (HBV) to two recurrent ML models (i.e., Recurrent Neural Network
(RNN), LSTM) for the mainly baseflow-influenced river Ems in northwestern Germany.
We used a wide range of statistical performance indices but also included metrics focusing
on specific parts of the flow duration curve (FDC) to gain an in-depth understanding
of the model performance. Furthermore, (ii) we applied a simple routing routine for
the individual sub-catchments in the catchment and tested whether modelled upstream
inflow works sufficiently as forcing data for ML models or whether error is adding up
upstream-to-downstream.

2. Materials and Methods
2.1. Study Area

The Ems catchment area covers a total area of around 17,800 km2 within northwestern
Germany and the Netherlands. The river flows 371 km from its spring to the outlet in
the Northern Sea with a relatively low elevation difference of only 135 m and a general
flow direction from southeast to northwest. The catchment’s climate is defined by the
humid–temperate western wind zone of Central Europe with pronounced, but not very
long, cold seasons. Mild winters, cool summers and abundant precipitation characterize
this Atlantic-influenced region, whereas easterly wind conditions result in drier conditions,
warmer summers as well as colder winters. Mean long-term annual precipitation is about
800 mm; mean annual temperature is between 8.5, and 9 ◦C and mean annual potential
evapotranspiration (pET) is around 490 mm. The discharge of the Ems in most years is
characterized by flood events in winter and a low-flow period from June to October. The
high-flow phase usually lasts from December to March [26].

The spring of the Ems is located in the heathland area Senne in the federal state
North Rhine–Westphalia from where it continues through the Münster chalk basin. After
surpassing the last stretches of the Teutoburger Forest, the stream flows through limestone
dominated geology. Sand and clay dominate the catchment’s soil, and the baseflow ratio is
relatively high, up to 0.8 [27]. Downstream from the weir Herbrum, the river is influenced
by the tide on the last 50 km before flowing into the Dollart, a bay-like estuary.

Compared to other large European catchments, the Ems can be considered rather
rural, as it does not cross any major cities. Yet, about three million people live within the
catchment area, and land use is characterized by intensive agriculture. The upstream part
of the river is mainly covered with areas for crop production whereas the downstream area
(not simulated in this study due to a lack of streamflow gauges) (Figure 1) is covered by
pasture areas predominantly. Due to its far-stretched floodplains, historically, the catchment
suffered regular flooding and riverbed modifications, and weirs have since controlled
streamflow. Just in recent years due to the requirements in the European Water Framework
Directive, local constructions have been conducted to restore the natural dynamics of the
river. The river still has significant economic importance—in particular, the downstream
part, which is declared a federal waterway [26].



Water 2023, 15, 505 3 of 18

Figure 1. (a) Overview map of the study area location in Germany. (b,c) Maps of the river Ems
showing the five individual sub-catchments delineated upstream from the last available streamflow
gauge located 235 km downstream from the spring with its streamflow gauges, land use (b) and
elevation (c). It appears that six separated catchments were delineated; yet, the smallest one actually
has a connection to sub-catchment 2 on the bottom left side.

2.2. Data

Hydro–climatic input data were obtained from the federal observation network in
Germany provided in the Climate Data Center of the German Weather Service [28]. All
available stations inside the official Ems catchment area were considered. Within the
timeframe 1 January 1960 to 31 December 2016, the number of stations stated in Table 1
were available. They do not necessarily provide information over the whole period because
stations are added to and withdrawn from the observation network on a regular basis.
Data gaps were not filled. Daily mean streamflow data were acquired for five available
gauges from the Global Runoff Data Center (GRDC) [29]. For each day and each variable, all
available stations were used for a two-dimensional inverse distance weighting interpolation
(IDW) to generate daily raster datasets to prepare the hydro–climatic input data for the
specific model requirements. Then the mean values within each sub-catchment were
calculated. On average, only about 60% of the stations are available for a particular
day. However, potential biases due to missing data and the orographic effects on climate
data can be neglected, due to the homogeneity and low elevation differences in all sub-
catchments. Furthermore, Corine Land Cover data [30] were used to distinguish the
dominant land use within the sub-catchments to derive a preliminary kc-value for the HBV
model before calibration.
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Table 1. Number and data source of hydro–climatic stations used to derive forcing data for the
models and to calculate the potential evapotranspiration.

Data Number of Stations Source Required For

Precipitation (daily sum) 142 DWD HBV, LSTM, RNN
Rel. Humidity (hourly mean) 10 DWD HBV (pET estimation after Haude [31])

Maximum Temperature (daily) 25 DWD LSTM, RNN
Minimum Temperature (daily) 25 DWD LSTM, RNN

Temperature (daily mean) 33 DWD HBV
Temperature (hourly mean) 8 DWD HBV (pET estimation after Haude [31])
Vapor Pressure (daily mean) 29 DWD LSTM, RNN

Streamflow (daily mean) 5 GRDC HBV, LSTM, RNN

2.3. Models
2.3.1. HBV

The HBV model [1,2] is a semi-distributed conceptual rainfall–runoff model and has
been previously applied in northern and central Europe, e.g., in Germany [32], Sweden [33],
the Meuse river [34] and Slovakia [35]. The HBV showed a robust model performance
in a model intercomparison study in central Germany compared to other hydrological
catchment models [36].

Precipitation input is transferred to streamflow by a potential snow routine, soil
routine, runoff and response routine, and three different reservoirs are implemented to
store water within the hydrological system: soil moisture storage, upper zone storage and
lower zone storage. The general water balance is defined by Equation (1):

P − E − Q =
d
dt

(SP + SM + UZ + LZ + lakes), (1)

where P is precipitation, E is evapotranspiration, Q is streamflow, SP is snow pack, SM
is the soil moisture, UZ and LZ are the upper and lower ground water zone and lakes
represent the volume of potential lakes [37]. For a detailed description of the model design,
please refer to Bergström [2].

Forcing data requirements are precipitation, temperature and potential evapotranspira-
tion to return streamflow at the catchment’s outlet with a daily timestep. Daily precipitation
sum and daily mean temperature were directly taken from the interpolated measured data
mentioned above in Table 1. Potential evaporation instead was calculated based on the
approach of Haude [31].

2.3.2. RNN

In early state machine learning architectures, the network could not “remember” past
states [6], which is vital for the modeling of processes with high autocorrelation. The
recurrent neural network was first introduced in the 1980s [38]. RNN cells include a
feedback loop, which redirects information from the previous timestep back into the cell.
That way the output from step t − 1 is transferred back into the network to influence the
outcome of step t and for each subsequent step [14] (Figure 2a). RNNs are typically used
for time series modeling [6]. However, Bengio et al. [39] showed that, in traditional RNN
structures, a maximum of 10 timesteps is remembered by the model. In the hydrological
context, this seems to be sufficient to model the response of streamflow to rainfall events
induced by fast surface and sub-surface streamflow, but it does not necessarily cover
long-term processes [40]. The RNN’s output is calculated by the following equation:

h[t] = tanh(x[t]Wi + bi + h[t − 1]Wt + bt), (2)

h[t] is the internal state/output computed within each timestep. Tanh is the hyperbolic
tangent activation function, and x[t] is the input of the current timestep, whereas W and b
are learnable parameters.
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Figure 2. (a) The architecture of a RNN cell is displayed on the left side with x being the input and h
the internal state; t indicates the current timestep. (b) Internals of the LSTM cell with h referring to
the hidden state, c the cell state, f the forget gate, i the input gate and o the output gate at timestep t.
Further details are explained by Equations (3)–(8).

2.3.3. LSTM

With the Long Short-Term Memory, a more sophisticated recurrent design was intro-
duced [41] (Figure 2b). Compared to other recurrent network architectures, LSTMs do not
suffer from exploding or vanishing gradients. This makes them, in particular, suitable for
the modelling of processes including long-term storage effects such as streamflow, which is
altered by enduring dependencies such as soil moisture and snow accumulation [40]. The
idea behind the LSTM is a so-called cell state, which works as the long-term memory of the
cell. This cell state is fed back into the LSTM cell in the following timestep but is modified
by the forget gate, which can alter the cell state. The internal processes within the LSTM
cell can be described by the following equations [13]:

i[t] = σ(Wix[t] + Uih[t − 1] + bi) (3)

f [t] = σ
(

W f x[t] + U f h[t − 1] + b f

)
(4)

g[t] = tanh
(
Wgx[t] + Ugh[t − 1] + bg

)
(5)

o[t] = σ(Wox[t] + Uoh[t − 1] + bo) (6)

c[t] = f [t]� c[t − 1] + i[t]� g[t] (7)

h[t] = o[t]� tan h(c[t]) (8)

Referring to Figure 2b, i[t], f [t] and g[t] are the input gate, forget gate and output
gate. g[t] is the cell input; x[t] is the forcing data input at timestep [t], and h[t − 1] is the
hidden-state of the previous timestep. c[t − 1] is the cell state of the previous timestep.
W, U and b are adjustable parameters during the training process, while the subscripts
indicate for which gate the parameter is applied. σ is the sigmoid activation function; tanh
is the hyperbolic tangent function, and � is the element-wise multiplication.
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LSTMs have been applied for streamflow prediction in Europe for the German part of
the Elbe basin [42], the Danube basin and Austria [43] and for multi-catchment modeling
in Great Britain [44].

2.4. Model Set-Up
2.4.1. RNN and LSTM Forcing Data

Different forcing data have been sufficiently applied for ML streamflow simulations.
Duan et al. [6] used precipitation, temperature and solar radiation, whereas Kratzert
et al. [40] added vapor pressure and specified the temperature in daily minimum and
maximum temperatures. In this study, we used daily values of precipitation (mm), mini-
mum and maximum temperatures (◦C) vapor pressure (hPa) and simulated daily mean
upstream inflow (m3/s) into the sub-catchment. This forcing data are comparable to the
HBV input, as vapor pressure and maximum temperature are included in the potential
evapotranspiration calculation by Haude [31]. The window size specifies the number of
previous timesteps included in the input data to model the streamflow. Window sizes of
365 days [6,40] and 270 days [45] have previously been applied. Whereas a window size of
250 resulted in a better model performance in this study during the hyperparameter tuning.
The forcing data to simulate streamflow at timestep t has the vector-shape (5250) and
contains the hydro–climatic drivers mentioned above of timestep t plus the 249 previous
days. Zero-to-one scaling was applied to forcing data, given the range of the training data,
before data were fed into the model.

2.4.2. ML Model Architecture

Both the RNN and LSTM models were applied with a similar architecture to allow
better comparability of model internals in further research. This is done at the expense of
a possible further improvement of the model quality by limiting the amount of flexible
hyperparameters [46]. The models consisted of a one-layer network of the respective type,
RNN or LSTM, with each having a hidden size of 10 followed by a linear layer to generate
a one-dimensional output. The learning rate was set to 0.002 for both ML models, and
1000 epochs were applied for the RNN and 500 for the LSTM, respectively. Optimization
was carried out by the adam optimizer which has shown superior results in previous
studies [46].

2.4.3. Routing

In total, five streamflow gauges are located in the catchment and were used to delineate
five separate sub-catchments (Figure 1, Table 2). In the HBV model, streamflow is routed
from one sub-catchment to the accompanying one further downstream, according to a
defined routine.

Table 2. Area (m2), flow length (km) and baseflow index (BFI) (baseflow/total streamflow) for each
of the five individual sub-catchments. Sub-catchments are numbered systematically upstream-to-
downstream.

Number of
Sub-catchment Area (km2) Flow Length (km) BFI (%)

1 1448 87 55
2 1283 26 51
3 871 40 57
4 1150 59 61
5 3324 22 55

In ML, instead, two approaches are feasible. First, one single model can be trained
if catchment-specific attributes such as size and land use would be included in the input
data. Second, five individual models can be trained—one for each sub-catchment. To test
the “traditional” second routing approach in this study, the sub-catchments were modelled
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systemically upstream-to-downstream. The simulated upstream streamflow entering each
individual sub-catchment was included in the forcing data of the sub-catchment down-
stream. If the actual measured streamflow would be used as forcing data, the values would
work as a continuous correction of the model output.

2.5. Calibration and Validation

In traditional hydrological modelling, a two-step approach is applied for the calibra-
tion and validation procedure, and, therefore, the available time series is divided into two
subsets. In ML instead, this process is usually divided in training, validation and test. The
training set is used to train the model, and the model performance is evaluated against the
validation set. By adjusting the model’s hyperparameters, the best model set-up is found
for the validation period. After finishing the hyperparameter tuning the model results are
then compared to the test data. In our study, we applied the two-step approach for the
HBV model and the three-step approach for the ML models as described in Figure 3a.

Figure 3. (a) Time ranges applied for the different model types during the modeling process.
(b) Overview of all goodness-of-fit criteria used to evaluate the model results.

To keep up with the sophisticated optimization algorithm for the ML models imple-
mented in PyTorch (Version 1.12.1), a semi-automated calibration process is used for the
HBV model. Thus, subjective choice of parameters and impacts of modelers’ decisions are
minimized [47]. A wide range between the imaginable maximum and minimum parameter
value was simulated for all sensitive input parameters with a relatively small step size in
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between. The results were compared regarding their Nash–Sutcliffe efficiency (NSE), and
the parameter with the best NSE was saved for the final simulations. However, it must be
taken into consideration that the internal training algorithm of the ML models minimizes
the mean squared error (MSE) of the results.

2.6. Model Evaluation

A hydrological model’s performance is usually evaluated using “objective” indices,
such as Nash–Sutcliffe efficiency [48], Kling-Gupta efficiency (KGE) [49] and R2. Each
metric has its focus, either the overall water balance or a specific flow range [50]. These
indices take the whole bandwidth of streamflow into account. Instead, the logNSE uses the
logarithmic transformed values of observed and simulated streamflow. This adds more
weight on lower values due to its mathematical formulation and, therefore, the logNSE
is a recognized low-flow index. However, all these metrics only quantify the statistical
characteristics of model residuals, which makes it necessary to include hydrologically
based metrics [51]. Examples for hydrologically based metrics are signature indices derived
from the flow duration curve [52]. The FDC is the cumulative distribution function where
streamflow is plotted against its exceedance probability, showing the percentage of time
when streamflow is equal or exceeds the given value [53]. Signature indices examine the
influence of specific aspects of the hydrograph and are sensitive to detect differences in
runoff generation, seasonality and reactivity [53,54]. Models which show similar NSE
values might differ when the FDC is analyzed [54]. We, therefore, used a wide range of
various indices, including performance indices and signature indices, to evaluate the model
performances and to gain a deep understanding of the models’ strengths and weaknesses
(Figure 3b). Due to the widespread application of the performance indices presented in
Figure 3b, we refrain from the full explanation of all indices. Here, we explain the five
less-common hydrological signature indices we used in this study. They were introduced
by [52] in full detail (Figure 4).

1. Bias RR: bias of the mean values in percent (black circles in Figure 4)

Bias RR =
mean(FDCsim)− mean(FDCobs)

mean(FDCobs)
× 100 (9)

2. Bias MM: bias of the median values in percent (black crosses Figure 4)

Bias MM =
median(FDCsim)− median(FDCobs)

median(FDCobs)
× 100 (10)

3. Bias FDC midslope: bias of the mean slope in mid segment of FDC in percent (dashed
lines in Figure 4)

BiasFDC =
(log(FDCsim,0.2 )− log(FDCsim,0.7 ))− (log(FDCobs,0.2 )− log(FDCobs,0.7 ))

(log(FDCobs,0.2 )− log(FDCobs,0.7 ))
× 100 (11)

4. Bias FLV: bias of the low segment of the FDC (orange and blue areas in Figure 4)

BiasFLV =

∫ 1
0.7

(
log
(

FDCsim,p
)
− log(Qsim,min)

)
dp −

∫ 1
0.7

(
log
(

FDCops,p
)
− log(Qsim, min)

)
dp∫ 1

0.7

(
log
(

FDCops,p
)
− log(Qobs,min)

)
dp

× 100 (12)

5. Bias FHV: bias of the high segment of the FDC (green area in Figure 4)

BiasFHV =

∫ 0.02
0

(
FDCsim,p

)
dp −

∫ 0.02
0

(
FDCops,p

)
dp∫ 0.02

0

(
FDCops,p

)
dp

× 100 (13)
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Figure 4. Two exemplary flow duration curves with highlighted features to explain the signature
indices after Casper et al. [53].

3. Results

Hydrographs of all models applied in this study are exemplarily displayed in Figure 5
for the most upstream and most downstream located sub-catchments. The hydrographs
show the overall good model performance of all models throughout the year but also
different response times to streamflow peaks.

Figure 5. Hydrographs of all models and observed streamflow within sub-catchment 1 (a) and
sub-catchment 5 (b) in the year 1998 to show annual variations in streamflow and the models’
performances exemplarily.

3.1. Statistical Performance Indices

A wide range of performance indices was applied for each sub-catchment and each
sub-period (calibration, validation, historical) to evaluate the performance of the different
models throughout the catchments (Figure 6).
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Figure 6. Radar plots showing the variety of statistical indices for the five different sub-catchments
and the three different periods (historical (a), calibration (b) and validation (c)). The minimal
value visible in this figure is 0.5. Yet, in catchment 2 and 3, the logNSE value can be lower than
0.5, and, therefore, the logNSE values below 0.5 are mentioned in the following. Sub-catchment
2 (historical: LSTM: 0.45, RNN: −1.71; calibration: RNN: −1.26; validation: LSTM: 0.23, RNN: −1.80);
Sub-catchment 3 (historical: LSTM: −0.47; calibration: LSTM: 0.42; validation: −0.11).
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For the calibration period, the LSTM and RNN perform similarly well for all sub-
catchments considering NSE, KGE, R2 and Index of Agreement (IoA), with values of
above 0.9, which can be considered “very good” [55]. Focusing on the logNSE, instead,
exceptionally lower performance can be observed, particularly in sub-catchments 2 and
3. For the LSTM, the logNSE drops down to 0.68 in sub-catchment 2 and even down to
0.42 in sub-catchment 3, whereas the RNN only shows a decreased logNSE of −1.26 in
sub-catchment 2. For the HBV model, the values of NSE, KGE, logNSE, R2 and IoA usually
are above 0.8. Exemptions occur in sub-catchment 2 with the KGE ranging slightly above
0.7 and in sub-catchment 5 when the logNSE falls below 0.8.

When looking at the validation and historical period, as expected, all performance
indices range lower compared to the calibration. Yet, the overall tendencies described
above remain valid: LSTM and RNN perform similarly and usually better than the HBV
model for the indices NSE, KGE, R2 and IoA. The differences between the two ML models
for each index usually range between 0.05 and 0.1. For the ML models in sub-catchments 1,
3, 4 and 5 during the validation period, the indices NSE, KGE, R2 and IoA are all above 0.8.
In sub-catchment 2, those indices only range above 0.7.

The logNSE of RNN and LSTM are between 0.7 and 0.9 within the sub-catchments
1, 4 and 5. In sub-catchments 2 and 3, instead, similar behavior to the calibration can be
observed. The LSTM’s logNSE is far below 0.5, whereas the RNN’s logNSE is very low
(−1.26) only in sub-catchment 2.

For the HBV model, NSE, KGE, R2 and IoA are all above 0.7 and up to 0.9. Lowest
values also tend to occur in sub-catchment 2 and 3. The logNSE generally is also lower
than the other indices and is down to 0.66 in sub-catchment 2, but it does not drop as
significantly compared to the ML models. During the historical periods, the results are
almost similar to the validation period. Larger differences occur only for the HBV model.
In sub-catchments 1 and 2, the KGE is about 0.1 lower compared to the validation.

3.2. FDC and Signature Indices

In addition to the traditionally used statistical performance metrics, we analyzed the
FDC and signature indices to evaluate the models’ performances for specific flow ranges.

In Figure 7a, the FDCs are shown based on streamflow values of all three sub-periods
combined. The bias of the different signature indices is displayed on the right side
(Figure 7b). Looking at the FDCs, differences occur mainly in the low-flow section, but this
tendency is also exaggerated due to the log-scale applied in Figure 7a.

In the first sub-catchment, the FDCs diverge upwards from 50% flow exceedance
probability, with LSTM and RNN tending to overestimate streamflow and the HBV slightly
underestimating it. Those observations from the FDC are confirmed by the signature
indices. The low-flow bias (BiasFLV) is negative for the HBV and positive for both ML
models. Looking at the high-flow bias (BiasFHV) instead, all the models result in a negative
bias of around −15% to −20%. The highest biases can be seen for the mid-section slope
(BiasFDC). Both ML models have a value below −20%, whereas the HBV’s BiasFDC is only
1.3%. The median bias (BiasMM) is the highest for the LSTM (19.1%) and is −11.2% for the
HBV, and for the mean bias (BiasRR), both ML models show a good fit, whereas the HBV
has a negative bias of −15.6%.

In sub-catchment 2 and 3, a similar pattern can be observed. The FDCs of the RNN
(sub-catchment 2) and the LSTM (sub-catchment 3) show anomalous behavior. In both
sub-catchments, the ML models “run dry”, and the FDC decreases far earlier than the
observed streamflow. This also leads to a high BiasFLV of below −20% for both models.
All other signature index patterns remain comparable to sub-catchment 1, with only the
BiasFDC decreasing further downstream for the ML models.
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Figure 7. (a) Flow duration curves of all three model types and observed streamflow. (b) Bias of the
five signature indices for the three model types compared to the observed streamflow.

In sub-catchment 4, the FDC of the HBV is located continuously below the observed
FDC, which results in negative signature indices throughout the whole set, except for
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the slope bias. The LSTM’s and RNN’s FDCs exceed the observed values, in particular,
in the low-stream section, which results in a large slope bias (BiasFDC) and BiasFLV. In
sub-catchment 5, the FDCs show similar behavior to sub-catchment 4. Both ML FDCs are
almost equal and show constantly higher streamflow than observed for all values above an
exceedance probability of 0.5. This results in a BiasFHV value up to 30% and a BiasFDC
of −20%. For the HBV model, signature indices are relatively small. Only the BiasFLV is
around −20%.

4. Discussion

In this study we focused on one individual low-land river catchment instead of using
a multi-catchment approach for model comparison, which has previously been applied on
multiple occasions [40,44] with the capabilities of ML models already highlighted. Five
connected sub-catchments were implemented to model streamflow in the Ems catchment
and to distinguish potential differences in model performance but also to test whether a
simple routing routine works for ML models without the individual model error of each
sub-catchment adding up from upstream to downstream. This approach enabled us to
analyze the ability of the different models to represent flow dynamics beyond statistical
indices.

4.1. Statistical Performance Indices

Looking at the statistical performance indices, in general, the ML models show a
superior performance compared to the HBV model within all sub-catchments and almost
all indices except the logNSE. Those results are not necessarily surprising, as the ML
models are not constrained by the underlying hydrological concept formation of the model
developer. ML models develop an individual functional relationship between forcing
data and result for every catchment. Instead, conceptual models can struggle with certain
catchments and hydrological conditions which do not conform to the assumptions of
the developers underlying perceptual model [44]. Yet, the advantages of the hydrological
concept formation within conceptual models are visible within the results of sub-catchments
2 and 3. The logNSE values of the LSTM are exceptionally low in sub-catchments 2 and
3 and for the RNN in sub-catchment 2.

Preliminary results of the ML models went below zero for the predicted streamflow
within these sub-catchments and had to be manually constrained to a minimum value of
0.01. The lack of physical information in the ML algorithms lead to these weak results
in combination with unusual forcing data. In sub-catchment 2 and 3, streamflow from
the upstream sub-catchment is used as forcing data, but the differences between outflow
and inflow from upstream are relatively low. Sometimes resulting outflow is even smaller
than upstream inflow during low-flow periods. Moreover, in other studies, LSTM showed
improvement potential for LSTM models during low-flows [56], and Duan et al. [6] found
that different ML architectures tend to work better for different flow regimes.

To gain better results for low-flow, it could be beneficial to use a physically informed
ML architecture [57] or focus on low-flows in particular during hyperparameter tuning by
using the logNSE as the objective function. During ML training, the algorithm minimizes
the MSE which focuses on optimizing high-flows due to its mathematical formulation.
The parallel use of multiple objective functions can address this issue to some degree by
identifying models and hyperparameters that provide sufficient balance between different
objectives, such as an accurate representation of different portions of the flow hydro-
graph [58]. Furthermore, a systematic evaluation and eventual reduction of the input
features could further increase the model quality.

4.2. FDC and Signature Indices

The analysis of the FDC allows us to distinguish systematic differences between the
model results and particular streamflow ranges. Each model’s FDC does show a unique
shape compared to other sub-catchments. This can be expected as we trained the models
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individually. In sub-catchment 2 and 3, the curve for the ML models drops too early
compared to the observed streamflow. This indicates that the models do not simulate the
correct retention of precipitation or internal storage. Furthermore, the RNN model shows a
contrary behavior in sub-catchment 4, and the FDC reveals that the model systematically
overestimates streamflow. The signature indices now help to sample the model performance
for specific parts of the FDC. Some signature indices show a continuous signal for each
model and sub-catchment, whereas other signature indices are highly variable. In general,
the ML models show a low BiasRR and sufficiently manage to simulate the observed water
balance. Whereas the HBV continuously has a low BiasFDC within all sub-catchments. This
indicates that the HBV model has its strength in modelling the right streamflow dynamics
after precipitation events. The ML models, instead, show a negative BiasFDC indicating a
slower reaction of streamflow compared to the observed values.

The topic of low-flows was already discussed in Section 4.1 while focusing on the
statistical indices. The low-flow bias (BiasFLV) is highly variable for all models and sub-
catchments. The visible drop of the ML models in sub-catchment 2 and 3, respectively,
results in the expected underestimation of streamflow. Moreover, in sub-catchments 4 and
5, where logNSE values are fairly good, above 0.7, the BiasFLV is high, up to +30%. This
underlines the previously mentioned possibility for improvements in the low-flow section
by Gauch et al. [56]. Regarding the high-flow bias (BiasFHV), all models within all sub-
catchments show an underestimation of streamflow peaks. Yet, hydrological models as well
as ML models tend to underpredict high streamflow [40,44]. This is due to the non-linear
dynamics of threshold behavior within a catchment.

4.3. RNN Compared to LSTM

In traditional RNN structures, a maximum of ten timesteps is remembered by the
model [39], and Kratzert et al. [40] argue that RNNs, therefore, are not capable to model
catchments with long-term storage processes longer than this period. Yet, baseflow is
the dominating streamflow generation process in the Ems catchment [27], and baseflow
response to precipitation in Germany tends to be at least one month [59]. Following the
idea that RNN cannot model storage effects longer than ten days, the results of the RNN
model should be insufficient. However, our results showed a good streamflow prediction
in four of five sub-catchments. This is comparable to the LSTM models, which are capable
of incorporating long-term dependencies.

On the other hand, the low-flow index logNSE showed a decreased model performance
in sub-catchment 2, which is the expectable behavior as, during low-flow periods, the
importance of correct baseflow modelling is even higher [40]. A possible explanation is that
input features could indirectly contain the missing information or have a strong correlation
to the drivers of long-term dependencies in the catchment. In particular, this could be the
case in sub-catchments 2–5 when modelled streamflow is used as an input feature. Further
investigations on baseflow characteristics in the catchment and corresponding processes
within the RNN would be necessary to overcome this discrepancy.

4.4. Routing

We applied a simple routing routine in the ML models and used simulated streamflow
from the upstream sub-catchment as forcing data for model predictions. Every model is a
simplification of reality. This induces structural uncertainty. As modelled results were used
as input for the downstream model, it was questionable on how the model adapts to that
inaccurate information.

Going from upstream to downstream, no continuous decrease of statistical indices
can be observed. Instead, in sub-catchment 5, the statistical indices overall show the
best performance within all sub-catchments. The performance is even better than in
sub-catchment 1, which technically is a single-basin approach. Therefore, a significant
improvement in model results would not be expected compared to a methodology that
applies a single model for the entire basin.
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Each ML model shows an individual shape of the FDC on the first sight. Growing
distances between observed and modelled streamflow are not visible. The analysis of the
signature indices is more accurate. Not a single signature index rises continuously over all
sub-catchments, so model biases appear not to accumulate. Accordingly, the ML models
can mitigate the effect of uncertainty-containing input information. However, it remains
unsure how this uncertainty exactly influences the results. It could be possible that the
extremely low logNSE values and large BiasFLV values result from insufficient upstream
inflow information. Yet, it could be further investigated how the ML uses the inaccurate
input information using eXplainable Artificial Intelligence (XAI) techniques or by testing
the models with systematically biased data.

5. Conclusions

This study presents a model intercomparison between two ML models, RNN and
LSTM, and the conceptual hydrological model HBV for a low-land river catchment. Similar
to other studies, the ML models showed a superior model performance compared to the
HBV for a wide range of indices (NSE, KGE, R2 and IoA). Signature indices, sampling
specific parts of the FDC, reveal that the ML models have good representation of the overall
water balance (low BiasRR), whereas the HBV model provides a better representation of
streamflow dynamics (low BiasFDC). Further research is necessary to determine if this is
a general model behavior or if this phenomenon only applies to catchments with certain
characteristics.

Yet, both ML show decreased performance for the logNSE in one (RNN) and two
(LSTM) sub-catchments. For future applications regarding low-flows, the performance of
the ML models should be specifically evaluated using an appropriate low-flow index. In
particular, when the MSE was used as the objective function during model training, which
does not show sensitivity to low streamflow due to its quadratic character.

The models were tested in a catchment with a major baseflow share of total streamflow,
and baseflow can be considered the long-term component of streamflow. Yet, RNNs are
known to only memorize the previous ten timesteps, in our case ten days, for the modelling
process. The RNN models obtained good results in four of five sub-catchments, however.
Why the RNN models are actually capable of correctly representing the streamflow with
the expectable long-term dependencies in the study area remains unsure. On the other
hand, the network architecture of the LSTM should be able to represent baseflow dynamics
accordingly, but both models show weaknesses in the correct representation of low-flows,
when baseflow has its greatest relevance in streamflow generation. Linking the catchments
storage effects to the LSTM internal states and the use of explainable artificial intelligence
methods could help to disclose whether an incorrect representation of baseflow or only the
use of the MSE objective function explain the low-flow results.

Regarding the routing routine tested in this study, the qualitative evaluation of statis-
tical indices and signature indices revealed no growing biases upstream-to-downstream.
However, further in-depth analysis including qualitative approaches has to be carried out
to gain an understanding of the type and behavior of the potential errors and uncertainties.
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