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Abstract: Monthly hydrological models are useful tools for runoff simulation and prediction. This
study proposes a three‑parameter monthly hydrological model based on the proportionality hypoth‑
esis (TMPH) and applies to the Upper Hanjiang River Basin (UHRB) in China. Two major modules
are involved in the TMPH: the actual evapotranspiration and runoff, in which the coupled water–
energy balance equation and the proportionality hypothesis are used for calculation, respectively.
It is worth mentioning that the proportionality hypothesis was extended to the partitioning of the
available water into water loss and runoff at the monthly scale, which demonstrates that the ratio
of runoff to its potential value is equal to the ratio of continuing water loss to its potential value.
Results demonstrate that the TMPH model performs well when the NSE values are 0.79 and 0.83,
and the KGE values are 0.86 and 0.78 for calibration period and validation period, respectively. The
widely used two‑parameter monthly water balance (TWBM) model and ABCDmodel are compared
with the proposed model. Results show that TMPH performs better than TWBM model with NSE
increased by 0.07 and 0.11, and KGE increased by 0.02 and 0.16, respectively, whereas the TMPH
performs similarly as the ABCD model in the calibration period, and performs slightly better in the
validation period, with NSE increased by 0.02, and KGE increased by 0.03. Sensitivity analysis show
that the simulation result is most sensitive to parameter n, followed by SC and λ. In summary, the
proposed model has strong applicability to the study area.

Keywords: monthly hydrological model; proportionality hypothesis; sensitivity analysis

1. Introduction
Monthly hydrological models are useful tools for runoff simulation and prediction,

which have been an active subject for decades. Because of their simple structure, low in‑
put requirement, and well simulation performance [1], monthly hydrological models have
broad applications in water resource management, especially the monthly runoff simula‑
tion [2,3], assessment of climatic change impacts [4,5], as well as regional water resources
assessments [6,7]. In general, themonthly hydrologicalmodels conceptualize hydrological
processes using mathematical or physical formulas through two to five model parameters,
and the water balance equation is regarded as the basis of many hydrological models.

The first monthly water balance model was originally presented by Thornthwaite [8]
in the 1940s, and then it was subsequently revised by Thornthwaite and Mather [9]. Since
then, numerous monthly hydrological models were proposed to meet various research
purposes and different regions. Thomas [10] proposed a monthly water balance model
named “abcd”model with four parameters, that is widely used in hydrological simulation
research. In 1995, Boughton [11] developed the Australian water balance model, generally
shortened to “AWBM” model. Xiong and Guo [12] presented a monthly water balance
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model with only two parameters (TWBM) in 1999, which has been one of the most widely
used models in rainfall‑runoff simulation because it achieves high simulation accuracy
with a fewparameters. Based on the TWBM,many newmodels have been developed, such
as the DWBM model [13] and the TSPM model [3]. After nearly 70 years of development,
various hydrological models have been proposed, even so, it is still meaningful to explore
new hydrological models and their potential in practice.

To investigate the differences in model structure and application among different
types of monthly hydrological models, many researchers have concentrated on the com‑
parisons with those models [1,14,15]. For instance, Vandewiele and Ni Lar [16] applied
two monthly models to 55 basins in 10 countries, and they concluded that no universal
model can perform well for all watersheds; Cheng et al. [1] introduced five widely used
monthly water balance models and then compared them in 443 Australian catchments,
and they highlighted that monthly models with nonlinear baseflow modeling structure
perform better in simulation. Previous studies have revealed that the major differences
among the different monthly hydrological models focus on the solution of actual evapora‑
tion and runoff [13,15]. It also is found that the model becomes more and more complex
with the number of parameters increasing due to a deeper understanding of the physical
mechanism of hydrological processes. However, it is worth noting that the simple models
are still effective and efficient, and even achieve better performance compared with the
complex models in some simulations [14,17]. In the author’s opinion, the development of
hydrological models should not always pursue complexity, and how to balance the model
performance and complexity is the key issue.

However, hydrological processes are extremely complex in practice, including all
hydrological components and the interactions, ties, and consequences among these com‑
ponents [18]. Lumped conceptual hydrological models always try to simplify complex
hydrological processes, which can yield adequate results by greatly reducing the com‑
plexity of structure and input requirements. One of the most commonly used methods
is the Soil Conservation Service (SCS) curve number model applied for a given rainfall
event [19,20]. Poncea and Shetty [21] subsequently derived the generalized proportion‑
ality hypothesis as a more general form of the SCS method. Inspiring research by Wang
and Tang [22] found that the generalized proportionality hypothesis can be identified as
the commonality among hydrological models at different time scales and further study
shows that the generalized proportionality hypothesis actually can serve as the result of
the maximum entropy production principle [23,24]. In theory, the proportionality hypoth‑
esis offers a hydrological principle that the ratios of different hydrological variables to
their potential values should be equal, which can be seen as a marker of coevolution in
natural ecosystems [22–24]. In the previous work, the proportionality hypothesis has been
successfully used for runoff simulation at the inter‑annual [21,25], mean annual [22], and
seasonal time scale [26]. In this study, we try a different partitioning of available water
into two‑component competition based on the proportionality hypothesis and seek if it
can be used for the construction of a monthly water balance model and obtain promising
simulation results.

In order to search the possibility of constructing the new hydrological models, and
further search for a balance between the model performance and complexity. A three‑
parameter monthly model based on the proportionality hypothesis (denoted as TMPH) is
developed in this study and then applied to Upper Hanjiang River Basin in China. The pa‑
per is organized as follows: In Section 2, themodel structure is described in detail. Section 3
illustrates the study area and data source. Section 4 is devoted to results and discussion.
At last, in Section 5, the conclusions are summarized.
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2. Methodology
2.1. SCS Runoff Model and Generalized Proportionality Hypothesis

The SCSmodel has beenwidely used in runoff simulation at the event scale. In the SCS
runoff model, water loss caused by vegetation interception and infiltration is assumed to
be initial abstraction (Ia), and this portion of the water does not compete with runoff. Thus,
the remaining precipitation (P − Ia) is partitioned into two components, direct runoff (Q)
and continuing abstraction (Fa), where the potential value for Q is the P − Ia, and the po‑
tential value for Fa is S that defined as a variable related to soil properties. The competition
between direct runoff and continuing abstraction can be explained by the proportionality
hypothesis as follows (Equation (1)):

Fa

S
=

Q
P − Ia

(1)

In the previous studies, Poncea and Shetty [21] have proposed the generalized pro‑
portionality hypothesis as a more general form of the SCS method. The available water
(Z) is partitioned into X and Y. The X can be deemed to be bounded by its potential value
Xp, and it should be preferred to meet X0, which doesn’t compete with Y. Furthermore,
the potential for Y is the remaining available water Z − X0. Thus, the partitioning can be
determined by the generalized proportionality hypothesis as follows (Equation (2)):

X − X0

XP − X0
=

Y
Z − X0

(2)

Recently, Wang and Tang [22] have successfully applied the generalized proportional‑
ity hypothesis to the partitioning of precipitation into evaporation and runoff at the annual
scale, in which the change of water storage in soil is neglected. In this case, the proportion‑
ality hypothesis demonstrates that the ratio of runoff to its potential value and the ratio of
continuing evaporation to its potential value should be equal.

2.2. Proportionality Hypothesis Application for Monthly Water Balance
At the annual scale, the change of water storage in soil is usually neglected. How‑

ever, for the monthly water balance, this change should be considered. In this case, the
total available water can be defined as Wt, which is the summation of precipitation (P) and
water soil content at the beginning of the period (St−1). The total available water can be
partitioned into three components, direct runoff (Qt), evaporation (Et), and soil water con‑
tent at the end of the time t (St). Here, we define the sum of Et and St as water loss (Yt) to
stand for the total water loss except for runoff in the basin during the period. Compared
with the partitioning of precipitation into evaporation and runoff at an annual scale, we
try to incorporate the change of soil water content in the division of water quantity. In fact,
this partition can be seen as another form of the water balance equation (Equation (3)):

Pt + St−1

Wt

= Qt + Et + St

Yt

(3)

In the first stage, the available water is partitioned into two components, initial water
loss and runoff potential, where the initial water loss includes initial evaporation and ini‑
tial infiltration that are considered to be related to soil water content at the beginning of the
period. At the second stage of the partitioning, the runoff potential is further subdivided
into runoff and continuing water loss (i.e., continuing evaporation and continuing infiltra‑
tion). The conceptual model of the partitioning is presented in Figure 1. A portion of water
is lost without any competition with runoff by initial evaporation and initial infiltration,
defined as the initial loss Y0, and we consider Y0 as a percentage of St−1 (Equation (4)):

Y0 = λSt−1 (4)



Water 2023, 15, 474 4 of 13

where λ represents the initial water loss ratio, that is, the first parameter in the study. The
available water is preferred to meet the initial water loss, which does not compete with
runoff. After that, the remaining available water (Wt − Y0) is then partitioned into runoff
and continuingwater lossYe (i.e., continuing evaporation and continuing infiltration). The
sum of theY0 andYe is the total water lossYt, which is constrained by its potential value SC.
The relationship between runoff and continuingwater loss is competitive, where the runoff
is constrained by remaining available water, and the continuing water loss can be deemed
to be bounded by the rest of its potential value (SC − Y0). Based on the proportionality
hypothesis, we obtain (Equation (5)):

Qt

Wt − Y0
=

Yt − Y0

SC − Y0
(5)

where Qt represents the runoff; Wt stands for the total available water; Yt donates for the
total water loss; Y0 is the initial water loss; and SC is a parameter representing the water
loss capacity of the basin. The equation can be expressed as the ratio of continuing water
loss to its potential value is equal to the ratio of runoff to its potential value.

Figure 1. The partitioning of the total available water.

2.3. Model Structure and Solution Method
2.3.1. The Solution of Actual Evapotranspiration

To estimate the actual evapotranspiration, the widely used coupledwater–energy bal‑
ance equation [27] is applied in this study. Following the Budyko hypothesis, the coupled
water–energy balance equation was proposed for arbitrary time scales and has considered
the effect of soil moisture content [28]. Moreover, the formula has obtained good results in
numerous actual evaporation simulations at arbitrary time scales, and it has been widely
used in region evaporation simulations [29], the establishment of a unified framework for
water balance models [30], as well as climate and quantifying human impacts [31]. The
equation can be described as follows (Equation (6)):

E(t) =
E0(t)(P(t) + S(t − 1))[

(P(t) + S(t − 1))n + En
0 (t)

]1/n (6)

where E(t) (mm) and E0(t) (mm) represent the actual evapotranspiration and the potential
evapotranspiration, respectively; P(t) (mm) is the precipitation; S(t − 1) (mm) is the water
storage in the soil at the beginning of the time t; n is the third parameter in this study
representing the characteristic of catchment underlying surface.

2.3.2. The Solution of Soil Water Content and Runoff
The calculation of soil water content St(mm) can be obtained using the monthly pro‑

portion hypothesis andwater balance equation. Based on Equation (3), the runoffQt (m3/s)
can be calculated by (Equation (7)):

Qt = Wt − Yt (7)
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Thus, the monthly proportionality hypothesis can be described as follows
(Equation (8)):

Wt − Yt

Wt − Y0
=

Yt − Y0

SC − Y0
(8)

Expanding further we have (Equation (9)):

Yt =
(SC − Y0)Wt + (Wt − Y0)Y0

Wt + SC − 2Y0
(9)

Then, St (mm) can be obtained through Yt − Et, and Qt (m3/s) is finally calculated by
the water balance equation after the calculation of St (mm) as follows (Equation (10)):

Q(t) = P(t)− E(t)− ∆S(t) (10)

where ∆S(t) represents the change of the water storage in soil, which is given as
(Equation (11)):

∆S(t) = S(t)− S(t − 1) (11)

where S(t) (mm) and S(t − 1) (mm) mean the water storage in soil at the beginning of the
time t and the water storage in soil at the end of the time t, respectively.

2.4. Parameter Optimization
A total of three parameters need to be calibrated in this study, namely initial water

loss ratio λ (dimensionless), water loss capacity of the basin SC (mm), and the evapotran‑
spiration parameter n (dimensionless), respectively. The definition and ranges are shown
in Table 1.

Table 1. The parameters of TMPH.

Parameters Defintion Ranges

λ Initial water loss ratio (‑) 0–1
SC Water loss capacity of the basin (mm) 0–2000
n Evapotranspiration parameter (‑) 0–2

For the optimization of model parameters, it is a task to minimize the error between
simulated runoff and observed runoff. Thus, the objective function is considered to maxi‑
mize the Nash–Sutcliffe Efficiency (NSE), which will be introduced in Section 2.5. In order
to search the optimal parameters, a high‑performance algorithm called the Shuffled Com‑
plex Evolution algorithm (SCE‑UA) [32] is used in this study. The SCE‑UA algorithm is
a global optimization method, which is effective and of great use in the rainfall–runoff
model since it can effectively solve common problems such as nonlinearity, discontinuity,
as well as multi‑extremum [33]. Here, we only give a brief description of the SCE‑UA, and
more details can be found in Duan’s paper [34].

2.5. Model Evaluations
In this study, two widely used efficiency criteria are applied to evaluate the perfor‑

mance of the hydrologicalmodel, includingNash–Sutcliffe Efficiency [35] andKling–Gupta
Efficiency [36].

(1) Nash‑Sutcliffe Efficiency (NSE)

The NSE is the most widely used statistical criterion to evaluate the goodness‑of‑fit
in runoff simulation. The value of NSE varies from −∞ to 1. In general, a value closer to
1 represents a better model performance. NSE can be calculated as follows (Equation (12)):

NSE = 1 − ∑n
i=1 (Qsim,i − Qobs,i)

2

∑n
i=1 (Qobs,i − Qobs)

2 (12)
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where Qsim,i and Qobs,i represent the simulated runoff and observed runoff at time i, respec‑
tively; n is the number of months for simulation, and Qobs is the mean of all observations.
In general, model performance can be considered satisfactory if NSE > 0.50 [37].

(2) Kling–Gupta Efficiency (KGE)

The KGE is also selected to justify the simulation performance that is sensitive to high
flows and variance [38], with the value ranging from −∞ to 1. In general, the value of
KGE close to 1 means good fitting effect. The KGE is composed of three basic assessments,
including Pearson’s linear correlation coefficient (r), the ratio of standard deviations of
simulation and observation (α), as well as the ratio of the average value of simulation and
observation (β), which can be calculated as follows (Equation (13)):

KGE = 1 −
√
(r − 1)2 + (α − 1)2 + (β − 1)2 (13)

3. Case Study
3.1. Study Area

TheUpperHanjiang River Basin, with a catchment area of 95,217 km2, is located in the
upper reaches of Hanjiang River Basin in China, accounting for 60% of the total Hangjiang
river basin area. For simplicity, the Upper Hanjiang River Basin is referred to as UHRB,
as shown in Figure 1. UHRB includes innumerous rivers and complex terrain with mostly
mountainous valleys and small areas of plains. Affected by the subtropical monsoon cli‑
mate, the mean annual temperature varies from 12 ◦C to 16 ◦C, and the mean annual pre‑
cipitation is approximately 873 mmwith nearly 80% of the annual precipitation occurring
in the summer. The average annual runoff is 4.11 billion m3. Correspondingly, the runoff
distribution is uneven throughout the year, which is similar to that of precipitation, with
great inter‑annual differences.

Danjiangkou Reservoir is the outlet of the UHRB basin, as one of the main water
sources of the South‑to‑North Water Transfer Project. It plays an important role in stable
water supply and effective operation. And it has comprehensive functions of power gen‑
eration, water supply, flood control, irrigation, shipping, tourism, etc. Accurate monthly
runoff prediction is fundamental for the Danjiangkou reservoir operation. Due to its cru‑
cial function, there is a great need to predict future runoff in the basin for reservoir opera‑
tion and control.

3.2. Data Sources
Monthly evaporation data, monthly rainfall data, as well asmonthly runoff data span‑

ning the years 1987–2020 are used in this study, in which the first 20 years (1987–2006)
are selected as the calibration period, and the rest of the 14 years (2007–2020) are selected
as the validation period. In particular, the evaporation and rainfall data, measured at
15 hydrological stations are extracted from the National Meteorological Information Cen‑
tre (http://data.cma.cn), accessed on 1 June 2021. The used evaporation and rainfall data
is the mean of all observations of 15 stations in UHRB, and the distribution of the hydro‑
logical stations is shown in Figure 2. Furthermore, the used runoff data is obtained from
Danjiangkou Reservoir station which is the outlet of the UHRB by reduction calculation.

http://data.cma.cn
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Figure 2. The region of Upper Hanjiang River Basin (UHRB) in China.

4. Result and Discussion
4.1. Model Performance and Parameter Result

The proposed TMPH model has been applied to the selected basin of UHRB. Simula‑
tion results, including the optimization result of the parameters, the value of the evaluation
indicators, are introduced below. To search the optimal parameters, the SCE‑UAalgorithm
was used in this study, and the optimization result of the parameters was
λ = 0.43, SC = 629.44, and n = 0.65. The values of NSE are 0.79 for the calibration period and
0.83 for the validation period. In general, the result is quite good. The KGE values are also
calculated in the study, which are 0.86 for the calibration period and 0.78 for the validation
period. Figure 3 shows the simulation in the validation period, and it is found that the
simulation generally performs well. Overall, the results demonstrated that the proposed
TMPH model can be successfully used for simulating and forecasting the monthly runoff
effectively in UHRB and obtain quite good simulation accuracy.

4.2. Comparison of Model Performance with the TWBMModel and the ABCD Model
To better verify the simulation effect, we compare and analyze the proposed mod‑

els in the selected basin. The TWBM model is one of the most widely used models in
rainfall–runoff simulation because it achieves high simulation accuracy with few param‑
eters. It has shown a good performance in runoff simulation and forecast in numerous
studies [39,40]. Furthermore, the ABCD model has been widely used around the world.
Thus, the TWBM model and ABCD model were selected as the base models for compari‑
son with the proposedmodel. The formulas for ABCDmodel and TWBMmodel are given
in the Appendix A. Table 2 shows the comparasion results of TMPH, TWBM, and ABCD.
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Figure 3. The simulated runoff in the UHRB in the validation period.

Table 2. The comparasion results of TMPH, TWBM, and ABCD.

Model
Calibration Period Validation Period

NSE KGE NSE KGE

TMPH 0.79 0.86 0.83 0.78
TWBM 0.72 0.84 0.72 0.62
ABCD 0.80 0.86 0.81 0.75

Specifically, compared with the TWBM model, the TMPH model has improved the
simulation accuracy in calibration period, when the value of NSE increased from 0.72 to
0.79, while simultaneously increasing the KGE from 0.84 to 0.86. A similar result was
shown in the validation period, and theNSE improved from 0.72 to 0.83, with an increasing
of KGE from 0.62 to 0.78. Compared with the ABCD model, the TMPH model has similar
results in the calibration period, with NSE values of 0.79 and 0.80 for TMPH and ABCD,
respectively. The KGE values are both 0.86. While in the validation period, the TMPH
model improved slightly when the value of NSE increased from 0.81 to 0.83, while KGE
increased from 0.75 to 0.78. Together these results indicated that TMPH achieves better
simulation results than TWBM under the condition of adding only one more parameter,
whereas the model accuracy of TMPH is comparable to that of ABCD.

For amore clear demonstration of the performance difference among the threemodels,
two figures, that is, Figures 4 and 5, are plotted, which have shown the simulated runoff
scatter diagram by TMPH, TWBM, and ABCD in the calibration period and validation
period, respectively. In the calibration period, as shown in Figure 4, most of the points
(Qobs, Qsim) fall within a very close range of the fuction y = x. By contrast, the TMPH
model andABCDmodel perform better at higher runoff values, especially when the runoff
is more than 3000 m3/s, whereas at lower values the performance of the three models is
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almost the same. It becomes more apparent in Figure 5, where the points of TMPH are
more concentrated, especially at higher runoff values.

Figure 4. Scatter plots of observed and simulated monthly runoff by TMPH, TWBM, and ABCD in
calibration period.

Moreover, Figure 5 presents the performance difference among TMPH, TWBM, and
ABCD in the selected year, in which Figure 5a,b represent the years of 1988 and 1998 in the
calibration period, respectively, and Figure 5c,d represents the years of 2007 and 2010 in
the calibration period, respectively. It can be found that the peaks for maximum monthly
runoff for both TMPHandABCDare very close to the observed runoff, whereas the TMBM
peak leads to an overestimation. The result indicated that the monthly runoff simulated
by the proposed TMPH model was improved to some extent compared with the TWBM,
and TMPH show a similar result with the ABCD model.

4.3. Sensitivity Analysis of TMPH Model Parameters
It is of great importance to study the sensitivities of model parameters to improve

the efficiency and accuracy of model parameter calibration. This paper analyzes the re‑
sponse of two performance evaluation indexes of TMPH model, that is, NSE and KGE, to
the changes of three parameters. The specific approach is to take the optimal result of au‑
tomatic parameter calibration as the fixed value, and change each parameter by ±50% in
turn, and observe the response of NSE and KGE. The results are shown in Table 3.
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Figure 5. Comparison of the simulation performance derived from TMPH, TWBM, and ABCD for
the selected years.

Table 3. Sensitivity analysis of model parameters.

Parameters Changes
Index Value Percentage Change

NSE KGE NSE KGE

λ
+50% 0.76 0.76 −3.80% −11.63%
−50% 0.77 0.88 −2.53% 2.33%

SC
+50% 0.74 0.69 −6.33% −19.77%
−50% 0.64 0.71 −18.99% −17.44%

n +50% 0.58 0.66 −26.58% −23.26%
−50% −0.13 0.13 −116.46% −84.88%
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After changing each parameter by +50% and −50%, it can be found that for NSE,
the change of parameter n has the greatest impact on it, with changes of −26.58% and
−116.46%, followed by parameter SC with changes of −6.33% and −18.99%, and param‑
eter λ with the minimum changes of −3.80% and −2.53%, respectively. While for KGE,
the change of parameter n still has the greatest influence on it, with changes of −23.26%
and−84.88%, the second one is parameter SC with changes of−19.77% and−17.44%, and
the third is parameter λ with the smallest changes of −11.63% and 2.33%, respectively. In
summary, the simulation result is most sensitive to parameter n, followed by parameter
SC and parameter λ.

5. Conclusions
In this study, we developed a three‑parameter monthly hydrological model based

on the proportionality hypothesis, and successfully simulated the monthly runoff in the
UHRB in China. In the TMPH model, the coupled water‑energy balance equation is ap‑
plied to estimate the actual evaporation, and the proportionality hypothesis is used for
runoff calculation. Conclusions derived are as follows:
(1) The proposed TMPH model shows good performance in the monthly runoff simula‑

tion in UHRB, with a simple model structure and few parameters. Specifically, the
values of NSE are 0.79 for the calibration period and 0.83 for the validation period,
with the value of KGE are 0.86 for the calibration period and 0.78 for the
validation period;

(2) InUHRB, the proposedTMPHmodel have better performance than the TWBMmodel,
especially in the case of higher runoff values. Specifically, the value of NSE increases
from 0.72 to 0.79 for the calibration period, and from 0.72 to 0.83 for the validation
period. Meanwhile, the value of KGE increases from 0.84 to 0.86 for the calibration
period, and from 0.62 to 0.78 for the validation period;

(3) In UHRB, the TMPH model shows a comparable result with the ABCD model in the
calibration period, with NSE values of TMPH and ABCD of 0.79 and 0.80, respec‑
tively, the KGE values are both 0.86, respectively. While in the validation period, the
TMPH model has improved slightly, with the value of NSE increasing from 0.81 to
0.83, while increasing the KGE from 0.75 to 0.78;

(4) The sensitivity analysis of TMPHmodel parameters shows that the simulation result
is most sensitive to parameter n, followed by parameter SC and parameter λ.
It is worth noting that the proposed TMPH model mainly applied to humid and sub‑

humid areas, while its performance in arid regions has not been verified. Future efforts
will concentrate on the improvement of runoff modeling in arid regions.
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Appendix A. Monthly Models
Appendix A.1. TWBMModel

The TWBMmodel has only two parameters, which is described as follows [12].

E(t) = c × EP(t)× tanh[P(t)/EP(t)] (A1)
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Q(t) = S(t)× tanh[S(t)/SC] (A2)

Expanding further we have:

Q(t) = [S(t − 1) + P(t)− E(t)]× tanh{[S(t − 1) + P(t)− E(t)]/SC} (A3)

Appendix A.2. ABCD Model
TheABCDmodel is an efficient four‑parameter conceptual hydrologicalmodel, which

is described as follows [10].

Pt − Et − DRt − GDt = St − St−1 (A4)

Wt = St−1 + Pt, Yt = St + Et (A5)

Yt =
Wt + b

2a
−

√(
Wt + b

2a

)2
− bWt

a
(A6)

St = Yte−Ep/b (A7)

DRt = (1 − c)(Wt − Yt), GRt = c(Wt − Yt) (A8)

Gt =
GRt + Gt−1

1 + d
, GDt = dGt (A9)

Qt = DRt + GDt (A10)
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