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Abstract: The El Nino Southern Oscillation (ENSO) phenomenon is devastating as it negatively
impacts global climatic conditions, which can cause extreme events, including floods and droughts,
which are harmful to the region’s economy. Pakistan is also considered one of the climate change
hotspot regions in the world. Therefore, the present study investigates the effect of the ENSO on
extreme precipitation events across the Upper Indus Basin. We examined the connections between
11 extreme precipitation indices (EPIs) and two ENSO indicators, the Southern Oscillation Index
(SOI) and the Oceanic Niño Index (ONI). This analysis covers both annual and seasonal scales and
spans the period from 1971 to 2019. Statistical tests (i.e., Mann–Kendall (MK) and Innovative Trend
Analysis (ITA)) were used to observe the variations in the EPIs. The results revealed that the number
of Consecutive Dry Days (CDDs) is increasing more than Consecutive Wet Days (CWDs); overall,
the EPIs exhibited increasing trends, except for the Rx1 (max. 1-day precipitation) and Rx5 (max.
5-day precipitation) indices. The ENSO indicator ONI is a temperature-related ENSO index. The
results further showed that the CDD value has a significant positive correlation with the SOI for
most of the UIB (Upper Indus Basin) region, whereas for the CWD value, high elevated stations
gave a positive relationship. A significant negative relationship was observed for the lower portion
of the UIB. The Rx1 and Rx5 indices were observed to have a negative relationship with the SOI,
indicating that El Nino causes heavy rainfall. The R95p (very wet days) and R99p (extreme wet
days) indices were observed to have significant negative trends in most of the UIB. In contrast, high
elevated stations depicted a significant positive relationship that indicates they are affected by La
Nina conditions. The PRCPTOT index exhibited a negative relationship with the SOI, revealing that
the El Nino phase causes wet conditions in the UIB. The ONI gave a significant positive relationship
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for the UIB region, reinforcing the idea that both indices exhibit more precipitation during El Nino.
The above observations imply that while policies are being developed to cope with climate change
impacts, the effects of the ENSO should also be considered.

Keywords: ENSO; Upper Indus Basin; Mann–Kendall test; Innovative Trend Analysis

1. Introduction

Pakistan has regularly experienced a variety of meteorological disasters, including
droughts and floods [1–3]. Environmental harm, deaths, financial losses, and population
displacement were all results of these catastrophes [4–7]. These natural disasters cannot
be avoided, but they may be managed well to reduce the risk that people will be exposed
to them. The climate variability known as the El Nino Southern Oscillation (ENSO) is
responsible for changes in ocean temperatures over the equatorial Pacific. Over time, the
ENSO has had a significant influence on the world’s climate and weather [8–10]. El Nino,
or the warm phase, occurs when the ocean water is noticeably warmer than normal [11–13],
and a cold phase, known as La Nina, occurs when the ocean water becomes significantly
colder than usual, and it is thought to follow a roughly opposite pattern to that of El
Nino [14–16]. Pakistan has had rainfall that has been above or below average at various
times during the past few decades due to the ENSO [17–19]. When the ENSO is present,
Pakistan has a weather anomaly that impacts both the summer and winter rains [17,18,20].
During El Nino episodes, the summer monsoon rainfall confronts shortfall across Pakistan
and can result in meteorological droughts, which are conditions that can happen when
precipitation is insufficient to support established human activities [17,19–23]. However,
during La Nina years, which often cause floods, it receives near-normal to above-normal
rainfall [18,24–26]. El Nino circumstances are frequently followed by La Nina conditions,
albeit not always [8,27,28].

The Indus River Basin begins in China’s Western Tibetan Plateau (TP), travels across
India, reaches Pakistan in the north, and empties into the Arabian Sea in the south [29–31].
Pakistan is primarily an agricultural nation, and 85% of its wheat and rice obtain their
water from the Indus River [32]. It is Pakistan’s lifeblood [33]. Pakistan stores water from
the Indus River at the Tarbela Reservoir for use in agricultural and electricity production.
This region is referred to as the Upper Indus Basin (UIB) from its source at the Western
TP to this reservoir [34,35]. In the UIB, the temperature changes mostly demonstrate
regional and seasonal variability [36–38]. The UIB has previously emphasized differences
in precipitation throughout time [39–41]. While the authors of [42] found different results
between 1980 and 2006, the authors of ref. Archer et al. [40] found substantial rising
trends in the winter, in the summer, and in the annual precipitation over the 1961–1999
period. In addition, ref. [30] noted an increase in precipitation in western UIB between
1995 and 2012. Additionally, higher elevations showed more pronounced decreasing
precipitation, as seen in reference [43]. The historical records included in the UIB should
be used to evaluate these divergent precipitation reactions seen by various researchers
utilizing data from various time periods [44–46]. On the other hand, the regional climate
of the UIB is significantly impacted by the North Atlantic Oscillation (NAO), the El Nino
Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), and Pacific Decadal Oscillations
(PDOs) [47]. The Tmax, Tmin, and precipitation in this area need to be better understood
for these four climatic indicators. Here, the NAO serves as a predictor of Atlantic Ocean
oscillations (mid-latitude westerlies). The influence indices from the Pacific Oscillations
and the Indian Ocean Dipole (IOD) are called the ENSO and PDO, respectively. Strong La
Nina conditions in 2010 were linked to Pakistan’s floods [48]. In the UIB [40], the authors
of ref. [48] found a positive and negative connection between the NAO and the winter
and summer precipitation levels, respectively. The winter precipitation level and ENSO
linkages were described by the authors of ref. [49], where they discovered a consistent
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difference between heavier winter precipitation in El Nino years and condensed early
winter precipitation in La Nina years. Additionally, ref. [50] discussed how the NAO
affected winter precipitation and how the Southern Oscillation Index (SOl) affected the
monsoon in the neighboring Himalayas [51–53]. The Indus River contributes water to
the largest irrigation system in the world, providing water for 90% of food production in
Pakistan, which furnishes 25% of the country [54,55]. However, the Indus Basin is prone
to extreme events, i.e., floods and droughts, due to excess or limited stream flows, which
affects the crop yields, and ultimately, the economic development of the country. The
purpose of this study is to find the effect of the ENSO on the rainfall in the Upper Indus
Region of Pakistan. The biggest impact of the ENSO was observed in Pakistan in the event
of the 1998 El Nino, due to which a severe drought was experienced in the country for four
years. Similarly, in the 2009 El Nino event, In 2010, a massive flood destroyed Pakistan,
resulting in millions of dollars’ worth of damage [56]. The primary objective of this research
is to find the impact of ENSO on the Upper Indus Basin. To meet the requirement, several
objectives include the evaluation of different extreme precipitation indices (EPIs) to analyze
the extreme events, and an investigation of the spatiotemporal variations in the EPIs by
using an Innovative Trend Analysis (ITA) and the Mann–Kendall test. Also, the phases
of the ENSO indices and teleconnections of the ENSO-related index, SOI, with EPIs are
analyzed using statistical methods.

2. Materials and Methods
2.1. Study Area and Data Sets

The Upper Indus Basin (UIB) is located at the spatial domain of 33◦40′ to 37◦12′ N and
70◦30′ to 77◦30′ E (Figure 1). The Indus Basin is considered to be one of the largest trans-
boundary river basins in the world, shared by different countries including Pakistan (56%),
India (26.6%), China (10.7%), and Afghanistan (6.7%) [57]. Due to its large boundary, it is a
complex and entangled geopolitical region. It flows through the three mighty mountain
ranges, including Karakoram, Hindukush, and the Himalayas, along with the Tibetan
Plateau. As these are the highest mountain ranges in the world, they also encompass one
of the world’s largest glaciated systems, having almost 110,000 glaciers in number [16]
with a massive area of about 16,000 km2 of the surface area [58]. The annual average
precipitation distribution varies from 1065 mm to 70 mm with elevation, while going from
the direction of southeast to the northwest. The elevation of the area ranges between 8616 m
and 140 m from the north to south direction of the UIB [59]. The water supplied by the
UIB works as a lifeline for the socio-economic development of the country, and millions of
inhabitants depend on it. The water demand in Pakistan is very high due to its utilization
in agricultural and hydropower generation divisions; therefore, the Indus Basin is the most
overstressed basin in the world [60]. Therefore, it is necessary to study the climatic changes
in the UIB as it is considered the lifeline of the country.

2.2. Data Collection

The daily precipitation data were collected from PMD and WAPDA for 12 stations in
the UIB. The data ranged from 15 to 49 years as there are some highly elevated areas whose
gauge was installed later compared to other stations. The ENSO data including Nino 3.4
and ONI were taken from the Climate Prediction Center (CPC) www.cpc.ncep.noaa.gov
(accessed on 12 July 2023). For SOI monthly pressure, data were taken for Tahiti and
Darwin for 50 years from Climate Research Unit UK website https://crudata.uea.ac.uk/
cru/data/soi/ (accessed on 10 September 2023). For the ONI, monthly and seasonal data
were taken for 50 years. For Nino 3.4, 50-year SST data were taken. The stations and their
characteristics are shown below in Table 1.

www.cpc.ncep.noaa.gov
https://crudata.uea.ac.uk/cru/data/soi/
https://crudata.uea.ac.uk/cru/data/soi/
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Figure 1. Study area (Upper Indus Basin) with climatic stations and elevation data.

Table 1. List of precipitation gauges.

Sr. No. Stations
Longitude
(Decimal
Degrees)

Latitude
(Decimal
Degrees)

Elevation
(m)

Mean Annual
Precipitation (mm)

Available Data
(Year)

1 Bunji 74.63 35.67 1372 164 1974–2020
2 Chilas 74.1 35.4 1251 215 1980–2020
3 Gilgit 74.3 35.9 1460 134 1975–2020
4 Gupis 73.4 36.2 2156 201 1972–2020
5 Hunza 74.67 36.32 2200 263 2007–2020
6 Hushey 76.4 35.4 3010 526 1995–2020
7 Kakul 73.3 34.2 1309 1242 1971–2020
8 Khunjerab 75.4 36.9 5182 280 1999–2020
9 Skardu 75.7 35.2 2210 237 1971–2020
10 S-Sharif 72.4 34.6 962 957 1974–2020
11 Yasin 73.3 36.4 3353 474 1999–2020
12 Ziarat 74.3 36.9 3688 395 1999–2020

2.3. Precipitation Extreme Indices

The Expert Team on Climate Change Detection and Indices (ETCCDI) standardized
27 extreme indices, out of which 11 indices were related to precipitation [61]. The indices
were calculated using the package RClimDex 1.1 in R. The indices used are explained below
in Table 2.
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Table 2. Extreme precipitation indices recommended by ETCCDI.

Index Name Definition Unit

CDD Consecutive dry days Maximum consecutive days having R < 1 mm days
CWD Consecutive wet days Maximum consecutive days having R ≥ 1 mm days

PRCPTOT Annual total wet day precipitation Total precipitation on wet days annually, i.e.,
R > 1 mm mm

R10mm Number of heavy precipitation days Annual count of days when R ≥ 10 mm for the
given period days

R20mm Number of very heavy
precipitation days

Annual count of days when R ≥ 20 mm for the
given period days

R25mm Number of extremely heavy
precipitation days

Annual count of days when R ≥ 25 mm for the
given period days

R95p Very wet days Annual total precipitation when R > 95th
percentile where R > 1 mm mm

R99p Extremely wet days Annual total precipitation when R > 99th
percentile where R > 1 mm mm

Rx1 day Max 1-day precipitation amount Maximum 1-day precipitation for the
given period. mm

Rx5 day Max 5-day precipitation amount Maximum 5-day consecutive precipitation for
the given period mm

SDII Simple daily precipitation
intensity index

Total precipitation divided by the number of
rainy days mm/day

These extreme precipitation indexes are normally used around the world to measure
the changes in precipitation patterns [62].

The daily precipitation data should be incorporated into the Excel file in comma-
delimited format. The data which are missing are represented by −99.9 or −99.99. Once
the file is uploaded, a simple quality control check is performed to find any missing data.
The indices are calculated after the QC is performed.

2.4. Spatiotemporal Variation in Indices

To analyze the changes in spatiotemporal variation in extreme precipitation indices,
we used the methods described in the methodology flowchart in Figure 2.

2.4.1. Mann–Kendall Test

The Mann–Kendall (M-K) test, also known as the M-K test, is widely used for trend
analysis as it is a non-parametric test [63]. A non-parametric test means that the test is
unaffected by the normal distribution [64]. The data should not have a serial correlation. If
the data have normal distribution, linear regression should be used.

The Mann–Kendall statistics in S are given in the following equation:

S = ∑n−1
k=1 ∑n

j=k+1 sign(Yj − Yk) (1)

sgn(Yj − Yk) =


i f
(
Yj − Yk

)
< 0; then −1

i f
(
Yj − Yk

)
= 0; then 0

i f
(
Yj − Yk

)
> 0; then 1

 (2)

where Yj and Yk = successive data points of time series for the periods j and k, n = the
number of data points, and sgn = the function that takes the values −1, 0, 1, as shown above.

The values of S represent the trend; if it is positive, the trend is increasing, and for
negative values, it has a decreasing trend. The test is further followed by probability (E)
and variance (Var), as suggested by Helsel and Hirsch, as shown below for a sample size of
n > 10:

E[S] = 0 (3)
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Var(S) =
n(n − 1)(2n + 5)− ∑

q
p=1 tp

(
tp − 1

)(
2tp + 5

)
18

(4)

where q = tied groups, which represent observations of the same value but do not include
the location of unique rank numbers, tp = the number of data values in the pth group, and
sigma (∑) = the sum of all tied groups.

Figure 2. Schematic diagram of methodology.

However, if the data do not contain any tied classes, this description sequence can be
overlooked. The standardized test statistics (ZMK) value is determined using the equation
below after manipulating the variance Var(S) from the above equation:

ZMK =


S−1√
VAR(S)

, i f S > 0

0, i f S = 0
S+1√
VAR(S)

, i f S < 0
(5)

The Z value calculates the magnitude of variation and obeys a normal distribution
with a variance of “1” and a mean of “0”. The null hypothesis, H0, is tested using the
test statistics. When ZMK is greater than Z α/2, the data series shows a significant trend.
At a confidence level of α = 10%, the computed value of ZMK is compared to the usual
distribution table of a two-tailed test. The null hypothesis (H0) for no trend is accepted in
a two-tailed test if the computed value of ZMK falls between −Z1-α/2 and Z1-α/2, and
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therefore, H1 is rejected. The patterns in the precipitation time series data are calculated at
1%, 5%, and 10% significance levels in this analysis.

2.4.2. Innovative Trend Analysis (ITA)

The trend analysis test, like the MK test, must meet certain criteria before being used,
i.e., there should not be a serial correlation in the time series, and a normal distribution of
data should not be present. A new method was proposed by Sen [65] that gives results as a
graphical representation of trends without having any assumptions in the time series.

The basis of the ITA lies in the fact that if two time series are identical, their plot
would be 45◦ with a 1:1 ratio in a Cartesian plane. The first half of the data is on the X-axis,
and the second half is on the Y-axis. To categorize each half’s variance, a sequence of
clusters will be used. If all of the data sets in a scatter diagram are on the 45◦ (1:1) axis, the
hydro-meteorological time series data has no trend.

In the first step of calculating the ITA, the data are equally divided into two halves
and are arranged in ascending order. The two halves are arranged on the X axis and Y axis,
respectively, and for their classification of the variance, a sequence of clusters is used. The
trend is observed by looking at the scatter plot. If the data sets are completely placed on
the 45◦ (1:1) line, it means there is no trend, and if the data points are distributed in the
upward or downward portion of the triangular areas, it represents upward and downward
trends, respectively. Figure 3 shows the graphical representation of the ITA. The equation
used to estimate the magnitude of the trend is given by [66–68].

D =
1
n ∑n

i=1

10
(
Yj − Yi

)
µ

(6)

where D = the trend indicator, n = the number of data values in each subseries, Yi and Yj = the
first and second subseries data values, respectively, and µ = the first subseries’ means. The
negative or positive values of D represent a decreasing or increasing pattern, respectively.

Figure 3. Representation of ITA graph and its components. (a) No trend, datasets, (b) upward and
downward trend, datasets.

2.5. ENSO Index

The ENSO phenomenon, as described above, is a large-scale phenomenon that is
observed through atmospheric and sea surface changes. Various indices are used for
this purpose; these indices give the overall picture of global circulation patterns that are
occurring in the atmosphere and oceanic surface. The index used for this study is mainly
the SOI (Southern Oscillation Index). However, other indices are also incorporated to
obtain a better picture of the ENSO phenomenon. The purpose of choosing the SOI is that
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it has the oldest record for pressure changes from 1866 to the present. Also, it can be used
to find the changes in the Walker Circulation and predicts its strength; these changes in the
WC further affect the rainfall [69] stream flows, agricultural production, etc.

The Southern Oscillation Index (SOI) mentioned above is a pressure-related index, so
it oscillates between two phases known as El Nino and La Nina due to the pressure changes
in the Tahiti and Darwin areas. The SOI gives stable values when the Tahiti minus Dar-
win index is calculated for the global phenomenon. (https://climatedataguide.ucar.edu/
climate-data/southern-oscillation-indices-signal-noise-and-tahitidarwin-slp-soi (accessed
on 12 July 2023)).

The SOI values move from −1 to 1, indicating El Nino and La Nina conditions,
respectively. The threshold for the SOI is −0.5 and 0.5, i.e., if the SOI values go down from
−0.5, this indicates an El Nino event, and if they move upward from 0.5, this indicates a La
Nina event.

Derivation of SOI

The Southern Oscillation Index is a standardized index, which means its values are
confined between −1 and 1 for a better understanding of the phenomenon. The NOAA
used a method for calculating the SOI, which is shown below:

Tahiti Anomaly = Actual Sea Level Pressure − Mean Sea Level Pressure (7)

Darwin Anomaly = Actual Sea Level Pressure − Mean Sea Level Pressure (8)

The anomalies are calculated by using the climatology of the 1951–1980 period.

Tahiti Standard Deviation =

√
∑(Tahiti Anomaly)2

N
(9)

Darwin Standard Deviation =

√
∑(Darwin Anomaly)2

N
(10)

Standardized Tahiti =
Actual SLP − Mean SLP

Standard Deviation Tahiti
(11)

Standardized Darwin =
Actual SLP − Mean SLP

Standard Deviation Darwin
(12)

MSD =

√
∑(Std. Tahiti − Std.Darwin)2

N
(13)

SOI =
Std. Tahiti − Std. Darwin

MSD
(14)

2.6. Oceanic ENSO Indices

The ENSO comprises atmospheric as well as oceanic temperature indices. For this
purpose, other indices dealing with sea surface temperature (SST) were also used, named
Nino 3.4 SST and ONI.

For the sea surface temperatures, different regions are considered in the Pacific. These
regions are termed Nino 1 + 2, Nino 3, Nino 3.4, and Nino 4. The locations of these regions
are shown below in Table 3 and Figure 4.

For the current study, the Nino 3.4 SST Index is used. The Nino 3.4 Index uses a
5-month running mean, and El Nino and La Nina are considered when the Nino 3.4 SSTs
exceed ±0.4 ◦C for six months or more.

The ONI is known as the Oceanic Nino Index, which uses the same region as Nino
3.4: 5 N-5 S, 170 W-120 W. The ONI uses a three-month running mean, and for El Nino or
La Nina events, the anomalies must exceed ±0.5 ◦C for at least 5 consecutive months. It is
defined by NOAA.

https://climatedataguide.ucar.edu/climate-data/southern-oscillation-indices-signal-noise-and-tahitidarwin-slp-soi
https://climatedataguide.ucar.edu/climate-data/southern-oscillation-indices-signal-noise-and-tahitidarwin-slp-soi
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Table 3. Nino types.

SST Region Location Comments

Nino 1 + 2 0-10 S, 90 W-80 W It is the most eastern part of Nino SST and is also the smallest.

Nino 3 5 N-5 S, 150 W-90 W It was considered as the key region for ENSO but it was observed that the key region
lies further in the west [70].

Nino 3.4 5 N-5 S, 170 W-120 W SST anomalies for this region are considered average for the Pacific Ocean

Niño 4 5 N-5 S, 160 E-150 W Nino 4 index captures SST anomalies in the central equatorial Pacific. It has less
variance than the other SST regions.

Figure 4. Sea surface temperature regions in the Pacific Ocean.

2.7. Teleconnections of ENSO

Teleconnections deal with large-scale atmospheric changes that occur globally. These
patterns occur from weeks to months and can extend even to years. ENSO teleconnections
mean that a change in one part of the globe can affect the other regions of the world.

The teleconnections of the SOI are found on annual and seasonal bases. For the annual
time series, the SOI averaged values are calculated annually, and for seasonal values, 3-
month averages are used to find 4 seasons denoted as DJF, MAM, JJA, and SON. The annual
and seasonal SOI values are lagged and related to EPIs using the Pearson Correlation
Method to find the Pearson coefficient. The correlation coefficient is further elaborated by
finding the p-value [71].

Pearson Correlation Method

The Pearson Correlation Method, also known as the Pearson Product Moment Correla-
tion Method, is used to find how much two variables are related to each other. The formula
used for the Pearson Correlation Method is shown below:

r = ∑(xi − x)(yi − y)√
∑(xi − x)2 ∑(yi − y)2

(15)

The Pearson Correlation Method is a widely used method for finding relationships
between two entities. The Pearson coefficient ranges from −1 to 1, and it shows how strong
or weak the relationship between two variables is; −1 shows that the two variables are
inversely related, and +1 shows that the variables are positively related. The values near
±0.5 give a good correlation value. The Pearson correlation coefficient is further elaborated
using a p-value. The p-value shows the significance of the relationship; if p < 0.05, it means
the relationship is significant, and there is a strong probability of one variable affecting
the other.
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3. Results and Discussion
3.1. Spatiotemporal Variations in Precipitation over the Upper Indus Basin

The Upper Indus Basin is a complex region as it is affected by different climatic
phenomena occurring in different regions. It can be seen that due to these climatic effects,
such as monsoons, westerly winds, and orographic variations, there is a large variation in
the precipitation of the Upper Indus Basin.

By observing the 12 stations in the UIB, it is seen that the variation in the monthly time
series is not that significant. However, higher than average precipitation can be observed
in the months of July and August, with about 40% more precipitation than in other months;
this is because they lie in the monsoon period, as precipitation mainly occurs during the
monsoon in Pakistan. Along with the monsoon effect on precipitation, an increase in
precipitation is also observed from February to April; this can be attributed to the climate
change that increases the temperature in the UIB, and abrupt changes are observed in the
spring season, as discussed in [72].

Looking at the variation in the annual time series, a much larger diversification is
observed compared to the monthly variation. This can be due to several reasons. As
we know, the UIB is affected by different climate phenomena, such as monsoons and
westerly winds, and orographic variations in different areas [73]. The monsoon is the
main regime that causes precipitation in the country, and it is observed that the stations of
Kakul and Saidu Sharif lie in the particular area of monsoons, due to which they depict
high precipitation levels with increases of 60% and 56%, respectively, than the average
precipitation levels of other stations. The stations in the northwest part of the Upper Indus
Basin, like Ziarat and Yasin, displayed 10% more average precipitation than the stations
situated between the Karakoram and Himalayas areas. This can be due to the effect of
westerly disturbances that cause little precipitation. The stations situated between the
Karakoram and Himalayas areas, such as Gilgit, Bunji, and Chilas, depicted the lowest
precipitation, having 38%, 52%, and 35%, respectively, less precipitation than the average,
which can be attributed to the orographic deviations that cause the least precipitation.
Figure 5 shows the spatial mean annual variation in the Upper Indus Basin. Figures 6 and 7
show the temporal mean annual variation and the mean monthly variation, respectively.

Figure 5. Spatial mean annual variation (mm).
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Figure 6. Temporal mean annual variation.

Figure 7. Temporal mean monthly variation.

3.2. Spatiotemporal Variation in EPI

The spatiotemporal variations are examined in the extreme precipitation indices (EPIs)
using statistical methods. It is observed that both significant increasing and decreasing
trends are displayed by different EPIs in the Upper Indus Basin. For most of the EPIs,
two stations, Yasin and Ziarat, showed increasing trends. The total precipitation index
(PRCPTOT), R10mm, R20mm, and R25mm gave significantly increasing trends for almost
all of the stations, but three stations, Chilas, Kakul, and Skardu, gave decreasing trends.

The magnitude for PRCPTOT was found to be 5.23 mm/year, which shows an overall
increase in precipitation. The index presented increasing and decreasing trends for nine and
three stations, significant increasing trends were observed for six stations, and significant
decreasing trends were observed for two stations (Chilas and Kakul), depicting an overall
increase in precipitation.

The heavy precipitation days indices (R10mm, R20mm, and R25mm) had increasing
magnitudes with the rates of 0.06 mm/year, 0.02 mm/year, and 0.00 mm/year. For the
increased heavy precipitation indices, it was seen that the magnitude of precipitation
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was decreasing. R10mm and R25mm exhibited decreasing trends for eight stations and
increasing trends for four stations, with significant increasing trends for two stations (Khun-
jerab and Ziarat). R20mm presented decreasing trends for seven stations and increasing
trends for five stations, with significantly increasing trends for two stations (Khunjerab
and Ziarat).

Indices like the CDD and CWD both gave significantly increasing results for four sta-
tions and significantly decreasing results at one station, which is Hushey. The magnitudes
of CDD and CWD were 0.13 days/year and 0.09 days/year, respectively. As CDD was
increasing more than CWD, dry conditions were the most likely to be observed.

R95p and R99p both had increasing magnitudes of 0.11 mm/year and 0.08 mm/year,
but they both had decreasing trends for eight stations and increasing trends for four stations.
The indices displayed that five stations had significantly decreasing trends. Hunza and
Hushey both had significantly decreasing trends for R95p and R99p.

The Rx1 and Rx5 (maximum 1 and 5-day precipitation) indices presented decreasing
and increasing trends for eight and four stations, respectively. A significant increasing
trend was observed for only two stations, Khunjerab and Ziarat, and a significantly de-
creasing trend was only observed for Hushey. The indices were decreasing at the rates of
0.08 mm/year and 0.05 mm/year, respectively.

Along with the Rx1 and Rx5 indices, the SDII exhibited decreasing and increasing
trends for nine and three stations, respectively, with significant decreasing trends for
seven stations, and two stations displayed significantly positive trends, including Khun-
jerab and Ziarat. The magnitude of the SDII was found to be decreasing at the rate of
0.02 mm/day/year. The spatial patterns of the extreme precipitation indices are shown
in Figure 8. The graphical representation of the ITA is shown in Figures A1–A10 in
Appendix A. Most stations are within 10% variation of the (1:1) line of ITA. Some anoma-
lous values were also observed, which were not included in the variance.

Figure 8. Spatial patterns of extreme precipitation indices in the Upper Indus Basin.

3.3. Comparison of MK and ITA

The results of the MK test and ITA are graphically represented by radial graphs in
Figure 9. By analyzing the trends of both the MK test and ITA, it was observed that out
of 132 time series, 47% and 52% of the trends were significant for the MK test and ITA,
respectively. The results for almost all of the EPIs are comparable with very little difference.
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While analyzing the CDD values, it was observed that both had the same number of
significant trends, but there was little difference in the overall trends. The MK test showed
six stations with increasing and decreasing trends, whereas one station (Hushey) indicated
a significantly decreasing trend. The ITA, on the other hand, had four and eight stations
depicting decreasing and increasing trends, respectively. In the case of the CWD value,
10 stations had increasing trends and 2 stations had decreasing trends for the MK test,
while the ITA had 9 stations showing increasing trends and 3 stations showing decreasing
trends. Four stations, including Hushey, Khunjerab, Saidu Sharif, and Yasin, showed
significantly increasing trends for the MK test, and five stations, including Hunza, Hushey,
Khunjerab, Yasin, and Ziarat, exhibited significant positive trends for the ITA. Only one
station (Chilas) showed a significantly decreasing trend for the MK test, and none were
observed for the ITA.

Figure 9. Radial graph representing MK test and ITA comparison.
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PRCPTOT, R95p, R99p, Rx1, Rx5, and SDII gave exact increasing and decreasing trends
for the MK test and ITA, with a small difference in the significant trends. In the case of
PCPTOT, six stations exhibited significantly increasing trends, and two showed significantly
decreasing trends, while the ITA had five stations exhibiting significantly increasing trends
and only one station with a significantly decreasing trend. Hunza, Hushey, Khunjerab,
Yasin, and Ziarat exhibited significantly increasing trends in both the MK test and ITA. The
statistical tests indicate that Chilas manifested a decreasing trend for PRCPTOT.

While investigating the R10mm, R20mm, and R25mm indices, it was found that
two stations gave significantly increasing trends for the MK test, including Khunjerab
and Ziarat. In the case of the ITA, along with the aforementioned stations, Yasin also
displayed a significantly positive trend. Hushey was the common station in the very heavy
precipitation days indices that gave significantly decreasing trends for both the MK test
and ITA.

The percentile indices, R95p and R99p, also depicted similar results for both the MK
test and ITA, with eight stations presenting decreasing trends and four stations presenting
increasing trends. Khunjerab, Ziarat, and Yasin showed significantly increasing trends for
both the MK test and ITA, and Hunza and Hushey, along with Gilgit, exhibited significantly
decreasing trends for both the MK test and ITA and for both percentile indices. Similarly,
the maximum number of heavy precipitation days indices, i.e., Rx1 and Rx5, displayed
comparable results, with eight stations showing decreasing trends and four stations show-
ing increasing trends. Khunjerab and Ziarat showed significantly increasing trends, and
Hushey and Hunza, along with Chilas, showed significantly decreasing trends.

The SDII index, on the other hand, exhibited nine stations with decreasing trends, and
only three stations depicting increasing trends for both statistical tests, out of which only
two stations, Khunjerab and Ziarat, exhibited significantly increasing trends. In the case of
the MK test, seven stations displayed significantly decreasing trends, whereas five stations
depicted significantly decreasing trends. The common stations depicting significantly
decreasing trends consisted of the Hunza, Hushey, and Gilgit stations. It was seen that
some of the stations, like Khunjerab and Ziarat, showed significantly increasing results for
the maximum cases; this might be due to the stations being highly elevated. Other stations
like Gilgit, Hushey, and Hunza showed significantly negative trends; this is similar to what
was observed in [74]. The overall results reveal the compatibility between the MK test and
ITA, but a difference was observed due to the nature of the two statistical tests. The MK test
does not consider outliers while evaluating trends, whereas the ITA considers the outliers
during the evaluation. The ITA has the ability to distribute the data into low, median, and
high values, whereas the MK test has limitations such as the natural distribution of data, it
and should be independent of any correlations.

3.4. Comparison of ENSO Indices

The ENSO indices are compared to one another, revealing that the ONI index exhibits
contrasting relationships. For El Niño events, the ONI values are positive, whereas during
La Niña events, the ONI values become negative. This relationship is consistent with the
SST indices, as both are calculated for the same Nino 3.4 region. It is shown below in
Figure 10.

3.5. Phase Identification

The phase of Nino 3.4 is found by calculating the 5-month running mean, and for the
ONI, the 3-month running mean is considered. For the SOI average, the seasonal value is
considered for the phase identification. The phase for the ENSO year is considered when
the atmospheric and temperature indices give an El Nino, neutral, or La Nina phase. As it is
known that the ENSO is a complex global phenomenon, it is better to observe the behaviors
of different ENSO indices to identify the phase of the ENSO. The climatic departments of
the world have a consensus that strong El Nino events occurred in 1982, 1983, 1997, 1998,
2015, and 2016, whereas strong La Nina events were observed in the years 1973, 1974, 1975,
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1976, 1988, 1989, 1998, 1999, 2000, 2007, 2008, 2010, and 2011. The phases observed in the
study also verify the phases of the ENSO. The graph below shows the different years of El
Nino, La Nina, and neutral years for the SOI and ONI (Figure 11).

Figure 10. Comparison of SOI vs. ONI.

Figure 11. Comparison of ONI vs. NINO 3.4.

3.6. Precipitation Trend during ENSO Phase in UIB

A general pattern of precipitation was observed for 50 years in the UIB during different
phases of the ENSO, and it exhibited that from 15 La Nina events occurring in 50 years
with respect to the SOI, 8 events increased the average precipitation, with the index value
of maximum increase being 0.6. Out of 13 El Nino events, on the other hand, 10 events
increased the precipitation from the average, with the minimum increase being 0.1 and the
maximum increase being 0.6 (Figure 12). By analyzing the ONI events for the UIB, it was
observed that 10 out of 15 El Nino events increased the precipitation, with the maximum
increase of 1 in the index, and a minimum increase of 0.1, and 6 out of 15 La Nina events
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increased the precipitation, with the maximum increase in the index value being 0.7, and
the minimum index value being 0.1 (Figures 13 and 14). The pattern revealed that the
increase in precipitation occurred during the El Nino phase of the ENSO (Figure 15), and
decreased precipitation was observed during the La Nina phase of the ENSO [75].

Figure 12. ENSO phases in SOI in the 1971–2020 period.

Figure 13. ENSO phases in ONI in the 1971–2020 period.
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Figure 14. Precipitation in UIB during ENSO phases of SOI.

Figure 15. Precipitation in UIB during ENSO phases of ONI.

3.7. Correlation of ENSO Indices and EPIs
3.7.1. Annual Scale Correlations

Teleconnections between the ENSO indices and EPIs were analyzed using the Pearson
Correlation Method. The seasonal and annual time series of the SOI and ONI were used to
find the relationship between the ENSO indices and extreme precipitation indices (EPIs).
For the annual time series, considering the CDD index, it was observed that five stations,
Hunza, Hushey, Khunjerab, Kakul, and Gupis, were negatively correlated with the SOI,
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and the remaining seven stations were positively correlated with the SOI. In the case of
the ONI, four of the above stations, Gupis, Hunza, Hushey, and Kakul, showed positive
correlations, but Khunjerab showed anomalous behavior by exhibiting a positive correlation
with the ONI. This might be due to Khunjerab being a highly elevated area, and it might
be affected by La Nina conditions more than El Nino conditions. The other seven stations
had a negative correlation with the ONI, depicting increases in dry days during the El
Nino period.

In the case of the CWD index, inconsistent behavior was observed, as eight stations
were positively correlated and four were negatively correlated with the SOI. The central
stations of the region had a negative correlation, including the Gupis, Chilas, Hunza, and
Bunji stations, while the other stations showed significant positive relationships with the
SOI. While the ONI showed an opposite result, eight stations were negatively correlated,
while four stations were positively correlated with the ONI. It was also seen that Bunji,
Chilas, and Hunza depicted the same behaviors and had positive correlations with the
ONI, showing that the precipitation in these central stations of the UIB increases during the
El Nino phase.

While investigating the PRCPTOT index, six stations, Bunji, Chilas, Gupis, Hunza,
Kakul, and Skardu, depicted negative correlations, in which three stations, Chilas, Gupis,
and Hunza, had significant negative relationships with the PRCPTOT, and the remaining
six stations had positive correlations, of which three stations, Khunjerab, Hushey, and Yasin,
were significantly correlated with the SOI. On the other hand, the ONI also gave similar
results, but four stations (Gilgit, Hunza, Hushey, and Khunjerab) had significant negative
correlations, and two stations (Chilas and Gupis) had significant positive correlations.

The very heavy precipitation days indices show similar trends, with most stations
having negative correlations with the SOI, and with Gupis and Hushey showing significant
negative correlations with R10mm, R20mm, and R25mm. For the ONI Bunji, Hushey,
Kakul, Khunjerab, and Saidu Sharif had positive correlations, but no significant correlation
was found.

The extremely wet days indices (R95p and R99p) gave similar results, with five stations
showing positive correlations, and seven stations showing negative correlations with the
SOI. Gilgit, Gupis, and Hushey showed significant negative correlations, while Hunza,
Yasin, and Ziarat showed significant positive correlations with the SOI. In the case of
the ONI, Chilas and Skardu had positive significant results, while Yasin and Ziarat had
significant negative correlations.

For the maximum 1-day and 5-day precipitation indices, Chilas, Gilgit, Gupis, Hushey,
and Kakul had significant negative correlations with the SOI, and Hunza, Yasin, and Ziarat
had significant positive correlations with the SOI. While investigating the ONI correlations
with Rx1 and Rx5, it was found that Chilas, Gilgit, Gupis, Kakul, and Skardu had significant
positive correlations, whereas Hunza had a significant negative correlation.

The SDII index had a negative correlation with the SOI for nine stations and a positive
correlation with three stations. Chilas, Gupis, and Kakul had significant negative correla-
tions, and no positive significant correlation was found. While observing the correlation
with the ONI, heterogeneous results were found. Chilas and Skardu had significant positive
correlations, while only Hunza had a significant negative relationship with the ONI.

R99p, Rx1, Rx5, and SDII consistently depicted significantly negative correlations
for most of the stations in the annual time series for the SOI. These indices indicate an
increase during the El Nino phase. Chilas, Gupis, and Hunza, the central areas of the UIB,
exhibited increases in precipitation during the El Nino phase of the ENSO. Kakul also
presented increased precipitation in the El Nino phase, whereas the high elevated areas like
Khunjerab, Yasin, and Ziarat depicted increased precipitation in the La Nina phase of the
ENSO; this might be because these stations have very high elevations that can cause the
circulation of winds to change and increase precipitation during the La Nina phase. The
ONI had a positive correlation, and the SOI had a negative correlation for most of the EPIs,
and the same behavior was depicted in the Poyang Lake Basin in China [76].
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3.7.2. Seasonal Scale Correlations

The investigation of the springtime series (MAM) relationship between the ENSO
and EPIs exhibited almost the same pattern as the annual time series. The CDD index
had heterogeneous results with Chilas, Gilgit, and Gupis, exhibiting a positive significant
correlation with the SOI, and Hunza, Hushey, Yasin, and Ziarat showed negative significant
correlations with the SOI. In the event of the ONI, mixed results were observed for the
stations, but three stations, Gupis, Hunza, and Ziarat had significant positive correlations,
and Gilgit had a significant negative correlation with the ONI. The CWD index had a
negative correlation with the SOI for eight stations, and a positive correlation for four
stations. Khunjerab, Skardu, and Ziarat had significant negative correlations with the SOI.
Considering the correlation with the ONI, it was observed that nine stations were positively
correlated, and three stations were negatively correlated with the ONI. Bunji, Kakul, Saidu
Sharif, and Ziarat depicted significant positive correlations with the ONI.

For PRCPTOT, a negative relationship with the SOI was observed for nine stations,
and three stations had negative correlations for the SOI in the UIB. Chilas, Gupis, Hunza,
Kakul, and Saidu Sharif represented significant negative correlations with the SOI, while
Hushey presented a significant positive correlation with the SOI. While investigating
the correlation with the ONI, a noteworthy relationship was found, as 11 stations had
positive relationships, and only Gilgit presented a negative correlation. Bunji, Gupis, Kakul,
Khunjerab, Skardu, Saidu Sharif, and Ziarat had significant positive correlations, enforcing
the idea that an increase in precipitation is observed during the El Nino phase of the ENSO.

R10mm, R20mm, and R25mm gave similar results, with maximum stations having
negative correlations with the SOI. Gupis and Saidu Sharif displayed negative significant
relationships for R10mm and R25mm. For the ONI and R10mm, nine stations presented pos-
itive correlations, and three presented negative correlations. Bunji, Hushey, Kakul, Khun-
jerab, Saidu Sharif, Yasin, and Ziarat exhibited positive significant correlations. R20mm and
R25mm did not have significant correlations; however, R20mm showed peculiar behavior,
as seven stations were negatively correlated, and four stations were positively correlated
with the ONI, which is different from the other heavy precipitation days indices, and this
was also in contrast to the results that were examined in California [77].

R95p and R99p had negative correlations with the SOI for seven and eight stations,
with Gupis and Hushey having significant negative correlations, and Chilas and Ziarat
exhibiting positive significant correlations with the SOI. When analyzing the correlation
for the ONI, it was found that heterogeneous observations were conducted for the whole
region, with Gupis, Hushey, and Khunjerab presenting significant positive correlations,
and Chilas having a significant negative correlation with the ONI.

For Rx1 and Rx5, most stations presented negative correlations with the SOI; Chilas,
Gupis, and Hushey had significant negative correlations, whereas no positive significant
relationship was found. While observing the correlation for the ONI, it was found that Rx1
gave anomalous results, as most of the stations had negative correlations with the ONI,
and only Gupis exhibited a significant positive correlation. Moreover, Rx5 had a positive
correlation with nine stations, and Gupis, Hushey, and Khunjerab had significant positive
correlations with the ONI. The SDII displayed a substantial correlation, with 10 stations
having negative correlations, and 2 stations having negative correlations with the SOI.
Bunji and Hushey had significant negative correlation with the SOI, while for the ONI,
Hushey, Yasin, and Ziarat presented significant positive correlations.

When analyzing the results exhibited by the stations, it was observed that the central
stations, Gupis, Hunza, and Chilas, are well correlated with the SOI and ONI. The monsoon
region stations, i.e., Kakul and Saidu Sharif, also exhibited good relationships with the
ENSO indices in the springtime series. The highly elevated stations, including Khunjerab,
Yasin, and Ziarat, presented heterogeneous behavior with the ENSO indices. This was
also observed in [78], where reduced precipitation was observed in highly elevated areas.
Considering the summertime series (JJA) for the SOI, a constant pattern was represented
for PRCPTOT, and the R10mm, R95p, and Rx1 EPIs had positive correlations with five
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stations and negative correlations for seven stations, with Gupis and Hunza exhibiting
significant negative correlations, whereas no significant positive correlation was found in
any stations for the SOI.

The CDD index had a significant negative relationship with five stations and a signifi-
cant positive relationship with two stations. However, the SDII had an abnormal pattern,
as seen in the annual and springtime series, and it had positive relationships with most of
the stations but had significant negative relationships with two stations, with no positive
significant trend. The ONI gave significantly positive correlation values for the maximum
stations, showing an opposite trend with the SOI. When analyzing the stations of the
study area, it can be seen that Hunza and Gupis are stations that give significant results
for the ENSO indices, implementing a precipitation increase in the central region of the
UIB, whereas no significant correlations were found for the La Nina conditions in the UIB.
Furthermore, the pattern of summer rainfall is more aggressive, which might be due to the
fact that monsoons also play roles in the summer (JJA), increasing the significant positive
trends with the ONI and negative trends with the SOI.

For the Autumn Time Series (SON), the R10mm, R20mm, and Rx1 EPIs had positive
correlations with three stations and negative correlations with nine stations, with very few
significant trends for one or two stations. The other EPIs also exhibited similar results,
with mostly negative correlations with the SOI, but very few significant trends. When
investigating the ONI teleconnections, aggressive significant positive correlations were
observed. PRCPTOT, R25mm, and R95p had positive correlations for all of the regions,
with significant positive relations at five to eight stations. For the SDII, 10 stations showed
positive trends, with 5 of them being significant. The overall autumn phase corresponded
to JJA aggressively like the Indonesian region [79].

When analyzing the winter time series (DJF) for the SOI, significant trends were found
between the CDD and SOI, with eight stations having negative significant correlations. The
results depict dry conditions during the El Nino conditions; this, too, corresponds to the
DJF behavior in the Indonesian region [79].

R10mm and R99p showed abnormal trends, with positive correlations for maximum
stations depicting that these extremes were decreasing with a decreasing SOI, i.e., the El
Nino phase is reducing the extremes, and the La Nina phase is increasing these extremes for
winter. This can be because the La Nina phase is stronger in the winter time [80]. Other EPIs
show the same negative correlations for the SOI, but significant trends are exhibited for
fewer stations. The ONI shows an opposite trend to the SOI for most of the stations, that is,
significant positive correlations are exhibited for almost all of the EPIs, but the CDD index
shows anomalous behavior as it also shows a positive trend with the ONI, resulting in an
increase in the CDD index for El Nino conditions and a decrease in La Nina conditions,
which can be further elaborated as drought conditions may prevail in El Nino conditions.
The dry conditions prevailing and other precipitation indices not giving up to the mark
result are because in the winter, rainfall is suppressed and is influenced by La Nina, as it
was confirmed by [56]. The spatial variation of the ENSO for various regions can be due to
other phenomena at play, like the monsoons, the westerlies, and the orographic variations.
Such phenomena can affect the impact of the ENSO on the UIB. Similarly, global warming
is also affecting the ENSO anomalies, as there is an extension towards the east of the warm
front pool of the western Pacific [81]. The spatial patterns of the ENSO correlations with
the EPIs are represented in Figures 16–19.
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Figure 16. Spatial patterns of ENSO correlations with EPIs (PRCPTOT, CWD, CDD).

Figure 17. Spatial patterns of ENSO correlations with EPIs (R10 to R25).
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Figure 18. Spatial patterns of ENSO correlations with EPIs (Rx1, R99p and R95p).

Figure 19. Spatial patterns of ENSO correlations with EPIs (SDII, Rx5).

3.8. Overall Trends in UIB

The impact of the ENSO was analyzed over the UIB in an annual time series. The
three large-scale climate indices used include the SOI, ONI, and Nino 3.4 index, which
were correlated with 11 extreme precipitation indices, giving an overall pattern of the
ENSO’s impact on the UIB. The results exhibited that the atmospheric index of the ENSO,
i.e., the SOI, had a significant positive correlation with the CDD (36%) and CWD (37%)
indices. The remaining nine indices had significant negative correlations with the SOI,
emphasizing the fact that the El Nino phase of the SOI causes more extreme precipitation
annually, whereas the La Nina phase of the SOI is followed by dry conditions. When
investigating the correlation of the SST indices of the ENSO, i.e., the ONI and Nino 3.4,
an opposite correlation was detected for the EPIs compared to the SOI. In the case of the
ONI, all of the indices except for CWD exhibited significant negative correlations (36%)
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with the ONI, whereas, on the other hand, Nino 3.4 had similar results as the ONI, with
the CDD and CWD indices being negatively correlated, and the other 10 indices being
positively correlated. The overall impact of the ENSO revealed that the atmospheric and
sea surface temperature-related indices complement each other and form a coupled pattern
in the climate, with a noteworthy impact on extreme events (Figure 20).

Figure 20. Overall correlation of ENSO with EPIs.

Highly Elevated Stations’ Trends in UIB

It was observed that highly elevated stations, i.e., above a 3000 m elevation (Hushey,
Khunjerab, Yasin, and Ziarat), exhibited different relationships with the ENSO indices. A
further investigation revealed that for the SOI, all of the EPIs exhibited negative significant
trends, except PRCPTOT, which depicted a positive insignificant trend. It was observed
that PRCPTOT and CDD had opposite relationships with the SOI when observed during
the overall study area correlation.

While investigating the trend of the ONI, it was observed that the correlations were
not as significant as in the overall study area correlation. The CDD and Rx5 indices were
the only two EPIs that had significant correlations with the ONI. It was also observed
that the PRCPTOT and R25mm indices showed opposite results with the ONI when the
correlation of the whole study area was analyzed.

Nino 3.4 gave insignificant results with the EPIs, except for R95p and R99p, and Rx5
had significant results with Nino 3.4. Further investigations revealed that CDD, PRCPTOT,
and R25mm had opposite relationships compared to when it was observed for the whole
study area (Figure 21).
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Figure 21. Highly elevated stations’ correlations of ENSO with EPIs.

4. Conclusions

The purpose of this study was to analyze the effect of the ENSO on extreme rainfall in
Pakistan. Based on a detailed analysis, the following conclusions are presented:

■ An analysis of 132 time series revealed that 47% and 52% trends were significant
for the MK test and ITA, respectively. CDD, CWD, and PRCPTOT showed mostly
increasing significant trends for the EPIs.

■ However, the CDD index is increasing by 0.13 days/year, whereas CWD is increasing
by 0.09 days/year. This shows that the increase in CDD can cause drought conditions
in the UIB.

■ The very heavy precipitation days indices depicted decreasing trends for almost all of
the regions and showed significant negative trends for two to four stations. However,
it was seen that the overall magnitudes of R10 and R20mm were increasing with small
rates of 0.06 and 0.02 days/year.

■ Rx1 and Rx5 are decreasing at the rates of 0.08 and 0.05 mm/year, with eight stations
showing decreasing trends, but only three to four stations showed significant trends.

■ R95p and R99p also depicted decreasing trends for eight stations, but an overall
increase in the magnitudes of 0.11 and 0.08 mm/days was observed.

■ On the other hand, the SDII exhibited a decrease in magnitude by 0.02 mm/day/year.
Nine stations displayed decreasing trends, with five stations showing significant trends.

■ The climate indices revealed that there is a very slow increase in precipitation extremes
for most of the indices, and decreasing trends in the Rx1, Rx5, and SDII indices.

■ The correlation analysis revealed that the CDD index is significantly positively cor-
related with the ENSO indices during the winter period, and the inverse is true in
the warm period. We can accept that the ENSO can reduce CDD in the warm phase
and can increase CDD in the cold phase, as the warm phase, El Nino, increases
precipitation.

■ PRCPTOT exhibited a significant negative relationship with the SOI which indicates
the increase in total precipitation during the El Nino phase of the ENSO.

■ R95p and R99p also displayed negative relationships with the SOI in most of the
stations, revealing that El Nino can cause more precipitation in the area.

■ The maximum number of 1-day and 5-day precipitation indices also revealed that
there is an increase in such days during the El Nino phase, causing more precipitation.
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The ENSO is a global phenomenon that can have a significant effect on the climate of
Pakistan. Therefore, it is recommended that the concerned departments should consider
the impact of the ENSO while planning the water resources of the country. The ENSO
impacts on temperature and elevation should also be measured to understand the ENSO
better, as it can affect the climate of the country significantly.
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Figure A1. Results of CDD at 12 stations, obtained by using the ITA method.

Figure A2. Cont.
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Figure A2. Results of PRCPTOT at 12 stations, obtained by using the ITA method.

Figure A3. Cont.
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Figure A3. Results of R10mm at 12 stations, obtained by using the ITA method.

Figure A4. Cont.
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Figure A4. Results of R20mm at 12 stations, obtained by using the ITA method.

Figure A5. Cont.
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Figure A5. Results of R25mm at 12 stations, obtained by using the ITA method.

Figure A6. Cont.
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Figure A6. Results of R95p at 12 stations, obtained by using the ITA method.

Figure A7. Cont.



Water 2023, 15, 4311 32 of 38

Figure A7. Results of R99p at 12 stations, obtained by using the ITA method.

Figure A8. Cont.



Water 2023, 15, 4311 33 of 38

Figure A8. Results of Rx1 at 12 stations, obtained by using the ITA method.

Figure A9. Cont.
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Figure A9. Results of Rx5 at 12 stations, obtained by using the ITA method.

Figure A10. Cont.
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Figure A10. Results of SDII at 12 stations, obtained by using the ITA method.
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