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Abstract: The proper dispatching of hydraulic structures in water diversion projects is a desirable
way to maximize project benefits. This study aims to provide a reliable, optimal scheduling model
for hydraulic engineering to improve the regional water environment. We proposed an improved
gravitational search algorithm (IPSOGSA) based on multi-strategy hybrid technology to solve this
practical problem. The opposition-based learning strategy, elite mutation strategy, local search
strategy, and co-evolution strategies were employed to balance the exploration and exploitation
of the algorithm through the adaptive evolution of the elite group. Compared with several other
algorithms, the preponderance of the proposed algorithm in single-objective optimization problems
was demonstrated. We combined the water quality mechanism model, an artificial neural network
(ANN), and the proposed algorithm to establish the optimal scheduling model for hydraulic struc-
tures. The backpropagation neural network (IGSA-BPNN) trained by the improved algorithm has a
high accuracy, with a coefficient of determination (R2) over 0.95. Compared to the two traditional
algorithms, the IGSA-BPNN model was, respectively, improved by 1.5% and 0.9% on R2 in the train
dataset, and 1.1% and 1.5% in the test dataset. The optimal scheduling model for hydraulic structures
led to a reduction of 46~69% in total power consumption while achieving the water quality objectives.
With the lowest cost scheme in practice, the proposed intelligent scheduling model is recommended
for water diversion projects in plain river networks.

Keywords: optimal scheduling model; gravitational search algorithm; multi-strategy hybrid technology;
artificial neural network

1. Introduction

Water environmental pollution in plain river networks is a common problem in coastal
areas. In recent years, a variety of comprehensive measures have been implemented
to improve the regional water environment, including engineering measures and non-
engineering measures. As an effective auxiliary control measure, water diversion projects
have been widely used in foreign countries in the past [1–4]. They are also an important
measure for water environment treatment in China, which can rapidly improve water
quality and increase the fluidity of water bodies [5,6].

However, existing studies on the optimal dispatching of hydraulic structures mainly
focus on flood control projects [7–10], hydroelectric projects [11–13], water distribution sys-
tems [14], reservoir operation decisions [15], and multi-objective water transfer projects [16].
Water diversion projects for improving water quality mainly adopt an empirical method
or an exhaustive method [17,18] to determine a feasible water diversion scheme, which is
difficult to obtain better environmental and economic benefits from. An artificial neural
network coupled with a hybrid genetic algorithm is applied to solve the problem of opti-
mal scheduling for small-scale water diversion projects [19]. Because the performance of
traditional artificial neural networks based on gradient descent is often not as expected, it
cannot be directly used to replace the water quality mechanism model of the complex plain
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river network. Therefore, the hydrodynamic-controlling optimal model cannot solve the
problem of optimal scheduling for large-scale water diversion projects.

Nowadays, machine learning algorithms have been widely applied in many research
fields, including the chemical engineering, civil engineering, agriculture and forestry
science, and environmental fields. Feedforward Neural Networks are the best-known
artificial neural network. The backpropagation algorithm is a classic algorithm for training
Feedforward Neural Networks. The disadvantage of the backpropagation algorithm is that
the global optimization ability is poor and it is easy to fall into local extreme values. In
recent years, intelligent optimization algorithms have been used to train neural networks
to avoid parameters falling into local extrema [20–24]. The typical optimization strategies
can be broadly categorized into the following three types: one is to find the appropriate
network structure for the ANN in a specific problem; the second is to apply intelligent
optimization algorithms to determine the optimal learning rate, momentum factor, and
other parameters for the ANN; and the third focuses on finding the optimal combination of
network connection weights and node biases to minimize the error of the ANN.

In recent decades, intelligent optimization algorithms have been promptly developed
and have become an effective means to solve the optimization problems in the fields of sci-
ence and engineering [25–29]. Different from other optimization algorithms based on group
behavior, the gravitational search algorithm (GSA) is an intelligent heuristic evolutionary
algorithm in accordance with Newton’s gravitation theorem. Compared to some proverbial
swarm algorithms, such as the traditional genetic algorithm (GA) and particle swarm
optimization algorithm (PSO), the GSA has clear advantages in both its search convergence
speed and optimization accuracy [30,31]. However, the traditional GSA also has problems,
such as the algorithm easily falling into local optimal solutions and individuals being prone
to premature maturity [32,33]. The opposition-based gravitational search algorithm applies
opposite numbers to the population initialization and exploration process to improve the
convergence rate of the GSA [34]. In addition, several studies combined the GSA with other
algorithms [35]. Since the traditional GSA is a memoryless heuristic optimization algorithm,
there is a possibility to deviate from the optimum trajectory. Efforts have been made to
improve the algorithm by using historical optimal solutions. A memory-based version of
the GSA changes the force of every two individuals by using the global optimal solution of
the population from the former iteration when calculating the individual positions [36]. In
2017, a modified gravitational search algorithm was proposed in which the position of each
agent was regenerated in accordance with the crossover search tactic to extract favorable
feedback from the optimum location obtained until now with a certain probability [37]. The
PSOGSA is a hybrid algorithm that integrates with the advantages of PSO and the GSA,
and has a better capability in avoiding local minima and convergence speeds. Compared
with the GSA, the hybrid algorithm enhances the abilities of exploitation and makes the al-
gorithm powerful enough to acquire the overall best solution of the extensive optimization
problems [38]. To control oscillations and avoid the divergence of the PSOGSA, the fuzzy
logic algorithm was applied to adjust the velocity in the search space [39]. In addition, the
performance of the PSOGSA has also been enhanced in numerous studies by optimizing
the related parameters [40], adopting the hybrid strategy [41], the mutation strategy [42],
or the chaos strategy [43] to improve the structural defects of the GSA. Although efforts
have been made to ameliorate the competence of the gravitational search algorithm, how
to quickly obtain optimal solutions while maintaining high-quality capabilities remains a
challenging task.

The combination of machine learning algorithms and artificial intelligence with exist-
ing science and technology in various fields to realize engineering digitization is a current
scientific research hotspot. Intelligent scheduling is conducive to realizing the maximization
of the economic and environmental benefits of water environment management projects.
Therefore, it is necessary to establish an optimal scheduling model to provide optimal
scheduling strategies for water diversion projects. In this paper, an improved gravitational
search algorithm was applied to optimize the backpropagation neural network to replace
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the complex water quality mechanism model and solve the optimal scheduling problem
of hydraulic structures in water diversion engineering to obtain the optimal scheduling
scheme. Based on the rational allocation of water resources to optimize the economic and
social development of the basin, an optimal scheduling model of water diversion projects
was developed, which is composed of a water quality mechanism model, an artificial neural
network, and the improved gravitational search algorithm. Through the rational joint man-
agement of sluices and pumps, this study minimizes the economic cost of water diversion
projects and provides technical support and a theoretical basis for water environment
management in plain river network areas.

2. Methods
2.1. Traditional Gravitational Search Algorithm

The traditional GSA is a heuristic evolutionary algorithm without memory that fol-
lows the law of universal gravitation and masses interaction force [28]. Every search
individual has four characteristics: a position vector, inertial mass, active gravitation, and
passive gravitation. Each position vector corresponds to a set of feasible solutions to the
optimization problem, and the individual performance is evaluated based on their inertial
mass. Due to the gravitational force, one agent actively attracts others and moves towards
the heavier agent, thus affecting the direction and speed of the next iteration. Assuming
that the dimension of the optimization problems is D and the search group consists of
K individuals, the position and velocity of the j-th individual are described as follows:

Xj =
(

x1
j , x2

j , · · · , xD
j

)
, j = 1, 2, · · · , K (1)

xd
j ∈

[
lowd, upd

]
, d = 1, 2, · · · , D (2)

Vj =
(

v1
j , v2

j , · · · , vD
j

)
, j = 1, 2, · · · , K (3)

The closer the agent is to the optimum solution of the optimization problem, the
greater the inertial mass (M), which is strongly associated with the fitness obtained at
the current position of the agent. In accordance with the law of universal gravitation, the
gravitational force (Fd

ij) defines the force of agent i acting on agent j at the t-th iteration.

Therefore, the total force (Fd
j ) and acceleration (ad

j ) on the d-th dimension of agent j are
expressed as follows [44]:

Fd
j (t) =

K

∑
i∈kbest , i 6=j

randi × Fd
ij(t) (4)

Fd
ij(t) = G(t)

Mi(t)Mj(t)∥∥Xi(t), Xj(t)
∥∥

2

(
xd

i (t)− xd
j (t)

)
(5)

ad
j (t) =

Fd
j (t)

Mj(t)
(6)

mj(t) =
f j(t)− fbad(t)

fbest(t)− fbad(t)
(7)

Mj(t) =
mj(t)

∑N
i=1 mi(t)

(8)

where kbest is a group of individuals with high fitness value in the population, which is
correlated with time; G(t) is the gravitational constant at time t; Mj(t) is the inertial mass
of particle j at time t; f j, fbad, and fbest are the fitness of agent j, the worst agent, and the
best agent at the t-th iteration.
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In the GSA, the search strategy is depicted as follows:

vd
j (t + 1) = randj × vd

j (t) + ad
j (t) (9)

xd
j (t + 1) = xd

j (t) + vd
j (t + 1) (10)

where randj is random value within the interval [0, 1].

2.2. Proposed Algorithm: IPSOGSA

An improved gravitational search algorithm (IPSOGSA) based on PSO and the GSA is
proposed in this study by introducing opposition-based learning, the elitist agent mutation
strategy, the Simulated Annealing Algorithm, a local search strategy, and co-evolution
strategies. Firstly, we employed opposition-based learning for population initialization
to alleviate the shortage of random initial populations. Then, to avoid trapping in local
extrema during the search procedure, the Cauchy mutation operator was introduced into
elite agents with a certain probability according to the population aggregation degree,
and the Metropolis criterion based on the Simulated Annealing Algorithm was applied to
determine whether elite agents should accept mutation updating. Finally, a local search
strategy and co-evolution strategies were utilized to speed up the convergence velocity of
the GSA. Details of the above functions are provided as follows:

2.2.1. Opposition-Based Learning

As a population-based optimization algorithm, the search process of the GSA is mainly
divided into two aspects in a similar way: the random initialization of the population and
updating the next generation based on Newton’s gravitation theorem. Random initial
populations tend to result in a slow convergence velocity and unstable solution accuracy.
Hence, in the present work, the reverse vectors of all initial populations were calculated
based on opposition-based learning [45], and the first K individuals were finally obtained
as the initial populations by sorting the fitness values.

X′ = up + low− X (11)

2.2.2. Elite Mutation Strategy

As the iterations goes on, the convergence of particles leads to a decrease in population
diversity, and it is easy to become trapped in local optimal solutions when disposing of
multi-peak problems. Elite particle mutation could help particles to jump out of the current
extreme value to explore other solution spaces.

S(t) =
1(

1 +

√
1
K ∑K

j=1

(
f itj(t)− favg(t)

)2
) (12)

favg(t) =
1
K ∑K

j=1 f itj(t) (13)

where S(t) is the aggregation degree of population at the t-th iteration.
If the mutation rate (m) is greater than the random value, the Cauchy mutation operator

is introduced to the elite agent. Then, the agent will be updated when f it
(

xj
)
> f it

(
xj
)

(e.g., minimum problem). Otherwise, based on the individual location update strategy of the
Metropolis criterion in the Simulated Annealing Algorithm, if f it

(
xj
)
< f it

(
xj
)
, the agent

will only be updated with a certain probability.

m =

{
0 , S(t) ≤ mmin

S(t) mmax
1−mmin

, S(t) > mmin
(14)

xj = xj + c× (up− low)× Cauchy(θ, γ) (15)
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Tt+1 = Tt × rate (16)

When f it
(

xj
)
< f it

(
xj
)
, Xj =

xj , rand ≤ e−(
f itxj

− f itxj
Tt

)

xj , rand > e−(
f itxj

− f itxj
Tt

)

(17)

where mmax and mmin are the maxima and minima of the mutation rate; c is a contraction
constant between the interval [0, 1]; θ and γ are 0 and 1; and Tt is the temperature at the
t-th iteration.

2.2.3. Local Search Strategy

The opposition-based learning strategy and elite strategy are applied to strengthen the
population’s exploration ability to avoid the decline of the local search ability after Cauchy
mutation. A new set of solution vectors are generated by applying the opposition-based
learning strategy to the agents with the top 40% fitness values. Then, the elitist strategy
works on the agents with the top 20% fitness values in the new set and original population
to produce new agents. After sorting the fitness of all agents, agents with poor performance
are obsoleted to generate a new search population.

Q = Rjbest × rand(−0.5, 0.5)/D (18)

Xjnew = Xj ×Q (19)

where Rjbest is the Euclidean distance between the j-th individual and the optimal individual.

2.2.4. Co-Evolution Strategies

Based on the evolutionary algorithm, the population in co-evolution strategies is
divided into two groups: an elite subpopulation, which is implemented by an ego update,
and a common subpopulation, which is implemented by a mutual compulsory update and
a cooperation update [46]. Elite individuals with high fitness values lead the population
evolution in the process of co-evolution, which speeds up the convergence of the algorithm
by passing on good attributes to the offspring.

(1) Ego update
The initial population is divided into the elite subpopulation (PopE = M) and the

common subpopulation (PopC = K−M) in accordance with the fitness value. In addition,
the elite subpopulation should always satisfy the relationship of fitness(xm) ≥ fitness(xn),
1 ≤ m < n ≤ M. The ego update strategy for the elite subpopulation is to generate two new
individuals from two elitists through two opposite coupling patterns when the probability
(Re) is greater than a random value. Then, the optimal value between the two temporary
individuals (Em,n) and the current worst individual is retained.

Em,n,d =

{
xm,d ± rand× (xm,d − xn,d), rand < Re
xm,d , rand ≥ Re

(20)

1 ≤ m < M, m < n ≤ M, 1 ≤ d ≤ D

where Em,n,d is the d-th dimension of the new individual, Em,n.
(2) Compulsory update and cooperation update
The gravitational measurement value (GM) describes the relationship of two groups

of subpopulations. According to the GM, the compulsory update is applied to the common
individual corresponding to the minimum GM of any elite individuals, while other common
individuals are applied the cooperation update. Each common individual is mandatorily
updated and cooperation-updated as follows:

Cm
j =

{
xmax′ rand < Rc
xrand′ rand ≥ Rc

(21)
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1 ≤ max′ ≤ M, 1 ≤ rand′ ≤ M, 1 ≤ j ≤ K−M

Ni1 = xi,d + rand×
(

xi,d − cj,d

)
(22)

Ni2 = xi,d − rand×
(

xi,d − cj,d

)
(23)

Cp
j =

{
Ni1, f itness(Ni1) > f itness(Ni2)
Ni2, f itness(Ni1) < f itness(Ni2)

(24)

1 ≤ i ≤ M, 1 ≤ j ≤ K−M, 1 ≤ d ≤ D

where Cm
j is the replacement of the individual Cj after mandatorily updating; xmax is the

elitist individual that has the furthest distance to j; xrand is a random elitist individual; Rc is
a probability constant, the same as the Re; and Cp

j is the replacement of individual Cj after
the cooperation update strategy.

2.2.5. Location Update Strategy

After each iteration, the agent-moving strategy considers the guide of individual
memory and social information, which alleviate the shortcoming of the GSA that easily
loses the optimal trajectory during the optimization process by enhancing the information-
sharing ability.

vd
j (t + 1) = rand1 × vd

j (t) + w1 × ad
j + w2 × rand2 ×

(
pd

j − xd
j

)
+ w3 × rand3 ×

(
pd

g − xd
j

)
(25)

xd
j (t + 1) = xd

j (t) + vd
j (t + 1) (26)

where w1, w2, and w3 represent the degree of influence of “gravity”, “memory”, and “society”
on the agent search speed, respectively; pd

j is the historical optimum position of agent j until the

t-th iteration; and pd
g is the global optimum position of the population until the t-th iteration.

2.2.6. The Procedure of IPSOGSA

Opposition-based learning is first employed to improve random initial agents
(Equation (11)), and the fitness of all agents is then calculated by using the objective
function, and the optimal solution should be updated until the current iteration. After that,
the convergence and mutation rate are defined as Equations (12)–(14), and whether the
particles should be mutated and updated is determined (Equations (15)–(17)). In order to
enable the algorithm to effectively deal with complicated optimization problems, the local
search strategy and co-evolution strategies are incorporated (Equations (11), (18)–(24)). In
each iteration, the gravitational mass, gravitational constant, resultant force, and accelera-
tion of agents are calculated using Equations (4)–(8). Finally, the positions of agents are
updated using Equations (25) and (26). The IPSOGSA will continue to search until the end
of the iteration. The sequential steps of the IPSOGSA are depicted in Figure 1.
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2.3. Experiment Results and Discussion

Thirteen classical benchmark functions were applied to examine the feasibility and effective-
ness of the algorithm, which are presented in Tables S1 and S2 (in Supplementary Materials) along
with their dimension, range of search space, and optimal value of function [47]. The unimodal
benchmark functions that have a unique minimum value in the search space are helpful for testing
the exploitation and convergence of the algorithm. The multimodal benchmark functions have
several local extreme points that are close to each other in the entire search range, which
easily causes the algorithm to become trapped in the local minimum. The multimodal
benchmark functions are applied to examine the exploration ability of the algorithm and
verify whether the algorithm can effectually search the global optimum. The initial values
of related parameters are presented in Table 1. The population size is 50. The max iteration
was 1000 and the operation of the algorithm was repeated until the stopping criteria were
met. The experiment results are presented in Tables S5 and S6 (in Supplementary Materials)
in accordance with 30 independent runs.

Table 1. Parameters for GSA, PSOGSA, and IPSOGSA.

Algorithm G0 α mmin mmax T0 rate Tend

GSA 100 20 - - - - -
PSOGSA 100 20 - - - - -
IPSOGSA 100 20 0.1 0.2 1000 0.96 0.01

In addition, two types of complex functions, IEEE CEC 2015 and CEC 2017, were applied
to further evaluate the performance of the algorithm. Both test sets contain different numbers
of unimodal functions, simple multimodal functions, hybrid functions, and composition
functions (Tables S3 and S4 in Supplementary Materials), since these four types functions
contain a single peak or multiple local extremes that are often applied to evaluate the ability of
an algorithm to balance exploration and exploitation. The dimension of the IEEE test functions
is 30. The population size is 150. The algorithm iteration terminating criterion is when the
iteration reaches maximum = 6000. Each algorithm was run 51 times independently, and the
experimental results are shown in Tables S8 and S9 (in Supplementary Materials).

With the objective of finding the minimum value, the capability of the algorithm was
appraised from two aspects, the mean value and standard deviation, and was compared
with the GSA and PSOGSA. Moreover, the boxplot graphs are applied to depict the quality
of the optimal solutions on traditional benchmark test functions. Each box includes a
median value, abnormal value, and the 25th and 75th percentiles of the 30 independent
run results. All the optimal results are expressed in bold style with red color. The entire
simulations were performed using MATLAB® version R2019b.

2.3.1. Classical Benchmark Functions Set

(1) Comparison with unimodal benchmark functions test set
The IPSOGSA showed the best performance on the mean value of six functions

(f 1(x)– f5(x), f 7(x)), as illustrated in Table S5 (in Supplementary Materials). Especially
for functions f1(x)–f 4(x), the IPSOGSA could acquire the theoretical optimal solution, 0,
in three different dimensions. For function f6 (Dim = 30/50), the mean value with the
highest precision was obtained by the PSOGSA, while the IPSOGSA showed an improved
performance compared to other two algorithms when dealing with the high-dimensional
(Dim = 100) problem of function f 6, where the result differed by at least four orders of
magnitude. On the other hand, their final ranks point out the superiority of the IPSOGSA
over the GSA and PSOGSA, especially high-dimensional problems. the IPSOGSA provided
90% of the best mean values of the unimodal benchmark functions on three different
dimensions, followed by the PSOGSA (10%) and the GSA (0%). These results imply that
the GSA and PSOGSA suffered from premature convergence.
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According to the convergence curve, the IPSOGSA always converges first to the opti-
mal solution of the unimodal benchmark functions (Figure S1 in Supplementary Material).
In addition, the IPSOGSA provided 95% of the best standard deviations on seven test
functions over 30 independent runs. Since the standard deviation of the IPSOGSA in
f1(x)–f 4(x) is 0, the other three representative results are selected to be exhibited in boxplots,
and from left to right, the data distributions of the three algorithms from low-dimensional
to high-dimensional are shown. The box-and-whisker diagrams illustrate that the proposed
algorithm possesses the shortest distance and lowest altitude in Figure 2, while the GSA and
PSOGSA have more discrete data distribution as the dimension increases. For the seven bench-
mark functions with dimensions 30/50/100, the IPSOGSA not only converged to the global
optimal solutions, but also had stronger stability. These results indicate that the proposed
algorithm is more competitive and reliable for solving unimodal benchmark functions.

Water 2023, 15, x FOR PEER REVIEW 8 of 18 
 

 

Table 1. Parameters for GSA, PSOGSA, and IPSOGSA. 

Algorithm G0 α mmin mmax T0 rate Tend 
GSA 100 20 - - - - - 

PSOGSA 100 20 - - - - - 
IPSOGSA 100 20 0.1 0.2 1000 0.96 0.01 

2.3.1. Classical Benchmark Functions Set 
(1) Comparison with unimodal benchmark functions test set  
The IPSOGSA showed the best performance on the mean value of six functions (f1(x)–

f5(x), f7(x)), as illustrated in Table S5 (in Supplementary Material). Especially for functions f
1(x)–f4(x), the IPSOGSA could acquire the theoretical optimal solution, 0, in three different 
dimensions. For function f6 (Dim = 30/50), the mean value with the highest precision was 
obtained by the PSOGSA, while the IPSOGSA showed an improved performance com-
pared to other two algorithms when dealing with the high-dimensional (Dim = 100) prob-
lem of function f6, where the result differed by at least four orders of magnitude. On the 
other hand, their final ranks point out the superiority of the IPSOGSA over the GSA and 
PSOGSA, especially high-dimensional problems. the IPSOGSA provided 90% of the best 
mean values of the unimodal benchmark functions on three different dimensions, fol-
lowed by the PSOGSA (10%) and the GSA (0%). These results imply that the GSA and 
PSOGSA suffered from premature convergence.  

According to the convergence curve, the IPSOGSA always converges first to the op-
timal solution of the unimodal benchmark functions (Figure S1 in Supplementary Mate-
rial). In addition, the IPSOGSA provided 95% of the best standard deviations on seven 
test functions over 30 independent runs. Since the standard deviation of the IPSOGSA in 
f1(x)–f4(x) is 0, the other three representative results are selected to be exhibited in boxplots, 
and from left to right, the data distributions of the three algorithms from low-dimensional 
to high-dimensional are shown. The box-and-whisker diagrams illustrate that the pro-
posed algorithm possesses the shortest distance and lowest altitude in Figure 2, while the 
GSA and PSOGSA have more discrete data distribution as the dimension increases. For 
the seven benchmark functions with dimensions 30/50/100, the IPSOGSA not only con-
verged to the global optimal solutions, but also had stronger stability. These results indi-
cate that the proposed algorithm is more competitive and reliable for solving unimodal 
benchmark functions. 

  
f5 f6 

 
f7 

Figure 2. Boxplot graphs of optimal solutions on unimodal benchmark functions (Dim = 30/50/100,
A: GSA, B: PSOGSA, C: IPSOGSA).

(2) Comparison with multimodal benchmark functions test set
The results in Table S6 (in Supplementary Materials) indicate that the IPSOGSA

presented the best performance on the average results of five multimodal benchmark
functions ( f8(x)–f 12(x)). For the multimodal benchmark functions f9(x) and f 11(x) with
dimensions 30/50/100, the IPSOGSA could also find the theoretical optimal solution of 0.
For function f13(x), the IPSOGSA performed worse than the PSOGSA for low-dimensional
problems (Dim = 30). However, with the increase in the function dimension, the advantages
of the proposed algorithm appear more prominent. The IPSOGSA obtained the best mean
value compared with the other two algorithms in the high dimension of function f 13(x) (Dim
= 100). In addition, the final overall ranking indicated that the IPSOGSA outperformed the
GSA and PSOGSA in solving the global solution of multimodal benchmark functions in
three different dimensions. The IPSOGSA obtained 89% of the best results on the mean and
standard deviation of the multimodal benchmark functions. The PSOGSA was only superior
to the IPSOGSA in two (11%) of the test results, while the GSA had the worst performance.
According to the convergence curve, the IPSOGSA can obtain optimal results with fastest
convergence velocity (Figure S2 in Supplementary Materials). The optimal results of f 8, f 12,
and f 13 are exhibited in boxplots (Figure 3). The box-and-whisker diagrams indicate that the
IPSOGSA had a more concentrated distribution of optimal results over 30 independent runs
and still performed well in high-dimensional problems. For the multimodal benchmark
functions, the proposed algorithm had a higher probability of finding high-quality solutions
compared to other algorithms. Evidently, the hybrid optimization scheme enhanced the
exploration competence of the algorithm and prevented precocious convergence.
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The above test was to assess the solution’s quality and the convergence rate of three
algorithms. To further evaluate the superiority of the IPSOGSA, the Wilcoxon signed-rank
test with a significance level of α = 5% was applied to present the discrepancy between the
three algorithms, where win (w), tie (t), and lose (l), respectively, indicate that the proposed
algorithm is significantly superior, equal, and inferior to other algorithms. These statistical
results of Table 2 demonstrate the superior performance of the IPSOGSA over the other
algorithms. In addition, the performance of the IPSOGSA in high dimensional space shows
that the improved strategy is effective and promising.

Table 2. Results of Wilcoxon signed-rank test on classical benchmark functions.

Dimension IPSOGSA vs. w (+) t (=) l (−)

30
GSA 12 0 1

PSOGSA 11 1 1

50
GSA 12 0 1

PSOGSA 11 0 2

100
GSA 13 0 0

PSOGSA 13 0 0

(3) Comparison with the state-of-the-art variants
In order to measure the superiority of the proposed algorithm, we compared it with the

state-of-the-art variants and novel meta-heuristic algorithm. All conclusions in this section are
based on the mean results in the relevant papers (Table S7 in Supplementary Materials). For
thirteen benchmark functions with 30, 50, and 100 variables, the IPSOGSA outperformed the
HGSA (2021) on 7 (equal in 4 functions), 13, and 13 functions, respectively [11]. In addition, the
IPSOGSA was far superior to the COGSA (2023) on f 1–f 5 and f 8–f 12 with 30 variables [48].
Compared to a novel metaheuristic algorithm, the IPSOGSA outperformed the Chimp
Optimization Algorithm (2020) on 10 high-dimensional (Dim = 100) traditional benchmark
functions [49]. These findings suggest that the proposed algorithm possesses a strong
exploration ability and is effective for high-dimensional (Dim = 100) traditional benchmark
functions as well. The improved algorithm (IPSOGSA) significantly enhances the perfor-
mance of the traditional gravitational search algorithm and demonstrates competitiveness
in solving single-objective optimization problems.
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2.3.2. Modern Benchmark Functions Set

(1) Comparison with CEC 2015 and CEC 2017 test sets
The CEC 2015 test set contains 2 unimodal functions, 3 simple multimodal functions,

3 hybrid functions, and 7 composition functions. The IPSOGSA and the GSA achieved
best mean value on 10 and 4 functions, respectively, while the PSOGSA only performed
best on F15 (Table S8 in Supplementary Materials). In addition, the IPSOGSA, respectively,
outperformed the GSA and the PSOGSA on 10 and 12 test functions based on the analysis
results of the Wilcoxon test and w/t/l.

According to the summary results of Table S9 (in Supplementary Materials), the IP-
SOGSA performed best on both the mean and standard deviation of 24 functions compared
to the other two algorithms. The PSOGSA and GSA possessed better means only on 1 (F28)
and 2 (F11, F28) functions than the IPSOGSA, respectively. Although the GSA slightly
outperformed the IPSOGSA in standard deviations on 5 functions (F4, F7, F10, F11, F13),
the latter was in the lead on the other 25 functions, with the largest gap being 10 orders
of magnitude. The p-value results of the Wilcoxon test indicate the significant difference
between the IPSOGSA and the two other algorithms. Over all, the IPSOGSA outperformed
the other two algorithms on the mean results of 3 unimodal functions, 7 simple multimodal
functions, 9 hybrid functions, and 9 composition functions. These results suggest that the
proposed algorithm improves the global search ability and exploitation ability of the agent.

(2) Comparison with the state-of-the-art variants
Since the IPSOGSA is a new variant of a GSA and PSO, we compared it with up-

to-date GSA and PSO variants and a novel meta-heuristic algorithm to further evaluate
the performance of the proposed algorithm. All results on the CEC 2017 test set were
directly obtained from relevant papers and summarized in light of the average results.
Table S10 (in Supplementary Materials) orders the algorithms in terms of the final optimized
mean results. The IPSOGSA outperformed all competitors on unimodal functions (F1–F3),
which suggests that the proposed algorithm possesses a strong exploitation ability. Accord-
ing to the mean values on CEC 2017, the IPSOGSA was superior to GPSG [41], SSC [50],
ESA [51], and HFPSO [52] on 18 (equal in 2 functions), 29, 21, and 30 benchmark functions,
respectively. The above comparative algorithms are well-performing algorithms proposed
in the last five years. For instance, the experimental results of GPSG [41] on the CEC
2017 test set outperform CSA [53], GWO [29], BSA [54], SCA [55], and PSOG [56]. These
comparison results demonstrate that the improved strategies in this study are effective and
reduce the possibility of algorithms falling into local extremes.

Both classical the benchmark function set and the modern benchmark function set in-
clude simple and complex functions, which are consistently applied to assess an algorithm’s
performance in balancing exploration and exploitation capabilities. Based on the above
experimental results, it is further confirmed that the proposed algorithm enhances the
global search and exploitation capabilities of the traditional gravitational search algorithm.
Therefore, the proposed algorithm possesses significant potential in addressing complex
optimization problems and can be employed for optimizing the performance of artificial
neural networks, as well as joint scheduling issues in hydraulic structures.

3. Optimal Scheduling Model of Hydraulic Structures
3.1. Mathematical Problem Formulation

Hydraulic structure regulation (sluices and pumps) to effectively improve water
quality is a multi-objective problem, including economic goals and water quality goals.
In this study, water quality objectives are transformed into constraints for multi-objective
decision making. We applied the improved gravitational search algorithm to minimize the
economic cost and maximize the environmental benefits of water diversion projects.
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3.1.1. Economic Objective

The economic goal of the optimal scheduling model can be depicted as follows:

Minimize EC = ∑P
i=1 UCγ

hpQiti

η
(27)

where EC is the economic cost; P is the number of pumps; UC is the unit cost; γ is the water
weight; hp is the pump head; Qi is the flow of the i-th pump; ti is the run time of the i-th
pump; and η is the efficiency of the pump.

3.1.2. Water Quality Constraints

Water quality objectives should meet the following constraints:

qj ≤ qs
j (28)

where qj is the concentration of the j-th pollutant; qs
j is the upper concentration limit of the

j-th pollutant.

3.1.3. Hydraulic Constraints

Hydraulic structures should meet the following constraints:

0 ≤ Qi ≤ Qlimit
i (29)

0 ≤ ti ≤ tlimit
i (30)

where Qlimit
i is the upper limit of flow; tlimit

i is the upper limit of the run time.

3.2. Water Quality Prediction Model

The intelligent scheduling model of water diversion projects includes a water environ-
ment model and an optimization model. Firstly, a process-based mechanism model was
applied to simulate the change in hydrodynamic and water quality in complex basins. The
application of intelligent optimization algorithms to solve dispatching problems usually
involves multiple searches in the decision space to obtain the optimal solution. Water
quality mechanism models coupled with optimization algorithms have the problem of
complex interface processing or time-consuming multiple calls. Hence, we applied a BPNN
instead of a water quality mechanism model to predict the improvement in water quality
via different dispatching schemes, which is the state variable in the water quality objective
function evaluation of the optimization dispatching model. Since it is easy to fall into the
local extreme value during the training of the BPNN, we applied the proposed algorithm to
optimize the connection weight and threshold of the BPNN. In addition, the proposed algo-
rithm was used to solve the optimal scheduling problem of water conservancy equipment
in water diversion projects.

4. Practical Application
4.1. Case Study

Jiaxing City is a plain river network area in eastern China. This plain river network is
located between 30◦21′ N and 31◦2′ N latitude and 120◦18′ E and 121◦16′ E longitude. The
study area covers a total area of more than 130 km2, with 256 rivers and 52 hydraulic struc-
tures for flood control. Jiaxing City suffers from poor water quality in its rivers, owing to
the stagnant water flow caused by flood control structures. Long-term practice has proved
that water diversion through these structures can significantly improve the water quality
of the river network. In order to maximize the economic benefit and environmental benefit,
this study applied the improved gravitational search algorithm to solve the optimization
problem of the joint management of sluices and pumps in water diversion projects. In this
study, the IPSOGSA was applied as the optimizer. One is to optimize the weights and
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thresholds of the BPNN. The other is to solve the optimal dispatching problem of water
diversion projects (Figure 4).
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4.2. Backpropagation Neural Network

The BPNN is a multi-layer feedforward network trained in accordance with the error
backpropagation algorithm. Aimed at the problem that the BPNN can easily fall into local
optima, the GA is commonly used to optimize the weights and thresholds to improve the
accuracy of the BPNN. In this study, we compared the performance of the IPSOGSA, GA,
and GSA to establish the optimal parameters of the BPNN. The sample data are derived from
1000 scheduling schemes simulated by the water quality mechanism model, with an accuracy
of 86.7% established using the MIKE software (version 2016). The water quality prediction
indicators are the chemical oxygen demand (CODMn), ammonia nitrogen (NH3-N), and total
phosphorus (TP). The sample data of three models were consistent, which was divided into a
training set (900) and a test set (100). The network structure was 13-12-3. The initial interval of
weights and thresholds was [−3, 3]. The max iteration was 10 and the population size was 40.

The impact of different algorithms on the performance of the BPNN was evaluated by
using Equations (31) and (32). The root-mean-squared error (RMSE) and determination
coefficient (R2) of the predicted results were taken as evaluation indices to reflect the fitting
degree of the BPNN in practical engineering applications. The smaller RMSE and larger R2

mean that the model has a higher fitting degree, accuracy, and prediction ability.

RMSE(r, r̂) =

√
1
n

n

∑
i=1

(ri − r̂)2 (31)

R2 = 1− ∑n
i=1(ri − r̂i)

2

∑n
i=1(ri − r)2 (32)

where ri is the true value; r is the mean value; and r̂ is the forecasting value.
The evaluation results of three different algorithms are shown in Table 3. All the

optimal results are expressed in bold style. The IGSA-BPNN model obtained the smallest
RMSE and the largest R2 in both the training set and the test set. It is noteworthy that the R2

values of the IGSA-BPNN model are all more than 0.95. Compared with the GA and GSA,
the IGSA-BPNN model, respectively, achieved an average improvement of 1.5% and 0.9%
in R2 on the training set, and 1.1% and 1.5% on the test set. The IGSA-BPNN model led to a
reduction of 18.6% and 13.1% in RMSE in the training set, and 13.3% and 19.7% in the test
set. In addition, the IGSA-BPNN model does not suffer from overfitting or underfitting
problems. These findings verified that the IGSA-BPNN model is the best model for water
quality prediction.
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Table 3. Evaluation results of three neural network models.

Phase Indicators
GA GSA IGSA

RMSE R2 RMSE R2 RMSE R2

Training phase
CODMn 0.591 0.961 0.582 0.962 0.472 0.975
NH3-N 0.075 0.969 0.073 0.971 0.058 0.981

TP 0.023 0.933 0.020 0.946 0.020 0.950

Test phase
CODMn 0.496 0.971 0.572 0.962 0.463 0.975
NH3-N 0.080 0.966 0.087 0.960 0.066 0.976

TP 0.019 0.950 0.019 0.954 0.016 0.967

4.3. Optimal Operation Scheduling of Water Diversion Project

The water diversion project diverts water from the southwest and drains from the northeast.
According to government requirements, water quality should meet the Class III environmental
quality standards for surface water of China (Table S11 in Supplementary Materials). This study
focused on a provincial control cross-section located in the northeast direction to determine
the optimal joint management of hydraulic structures. To give evidence of the applicability
and efficiency of the proposed algorithm, we compared it to traditional algorithms on different
scenarios. The IGSA-BPNN model was used to replace the MIKE 11 model to predict the effect
of water quality improvement on diversion schemes.

The maximum flow rates of pump 1 (P1), pump 2 (P2), and pump 3 (P3) are 72 m3/s,
60 m3/s, and 36 m3/s, respectively (Figure 5). The maximum operation time of the pumps
is 180 h. The operation height of the gate was [0.3, 1.5] (unit: meters). Five scenarios are
depicted in Table 4. The initial target water quality in scenario 1 and scenario 2 is the same,
and the upstream water quality in scenario 2 is better than that in scenario 1. The upstream
water quality of scenario 2 and scenario 3 is the same, and the initial target water quality
in scenario 3 is better than that in scenario 2. The target water quality in scenario 4 meets
the Class III environmental quality standards for surface water. The target water quality in
scenario 5 is better than the upstream water quality.
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Under the condition of a consistent hp and η of the pump, the economic cost of a
water diversion project mainly depends on the water flow rate and the operation time. In
scenarios 4 and 5, when the target water quality meets Class III of the environmental quality
standards or is better than the upstream water quality, there is no scheduling required.
In the other three scenarios, the proposed algorithm obtained the operation scheme with
the minimum economic cost when the river water quality of Jiaxing city met the national
standard. From scenario 1 to scenario 3, the operating cost of the optimal scheduling
scheme gradually decreased, which indicates that the better the upstream water quality
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and the initial water quality, the less the demand for the scheduling of hydraulic structures.
From the optimal scheme obtained by the IPSOGSA in Table 5, it can be concluded that
the water quality of the provincial control section is mainly affected by the operation time
and flow rate of pump 2, which is consistent with the actual situation. While in scenario 3,
the optimal solution obtained by the GSA chooses to run pump 3 for a long time, which
leads to an increase in the operating cost. Compared with the optimal plan of the GSA, the
IPSOGSA reduces the economic cost by 69%, 66%, and 46% in scenarios 1 to 3, respectively.
These results show that the proposed model provided the optimal operation schemes with
the lowest cost of hydraulic structures to achieve the water quality objectives in water
diversion projects.

Table 4. Scenario list.

Scenario Number Description: Water Quality (mg/L)

S1 Upstream: CODMn:5; NH3-N:0.75; TP:0.15
Initial: CODMn:15; NH3-N:2.0; TP:0.4

S2 Upstream: CODMn:4; NH3-N:0.5; TP:0.1
Initial: CODMn:15; NH3-N:2.0; TP:0.4

S3 Upstream: CODMn:4; NH3-N:0.5; TP:0.1
Initial: CODMn:10; NH3-N:1.5; TP:0.3

S4 Upstream: CODMn:4; NH3-N:0.5; TP:0.1
Initial: CODMn:6; NH3-N:1.0; TP:0.2

S5 Upstream: CODMn:6; NH3-N:1.3; TP:0.25
Initial: CODMn:6; NH3-N:1.2; TP:0.25

Table 5. The optimal dispatching program of two algorithms on five scenarios.

Scenario
Number

Algorithm
Height of

Gate
(m)

Flow (m3/s) Run Time (h) Economic
Cost

(∑P
i=1 Qiti)P1 P2 P3 P1 P2 P3

S1
GSA 1.4 0 36 24 0 170 34 2.50 × 107

IPSOGSA 1.4 12 12 24 5 173 1 7.78 × 106

S2
GSA 0.7 72 12 12 45 177 53 2.16 × 107

IPSOGSA 1.4 12 12 0 3 167 0 7.34 × 106

S3
GSA 1.2 12 0 12 104 0 145 1.08 × 107

IPSOGSA 1.2 0 12 12 0 132 4 5.88 × 106

S4 No scheduling required
S5 No scheduling required

5. Conclusions

This paper proposed an improved gravitational search algorithm based on a multi-
strategy hybrid optimization technique. The comparison experiments of the GSA, PSO,
and IPSOGSA on traditional benchmark test functions and a modern benchmark test set
established the superiority of the presented algorithm. We applied the improved algorithm
to solve the problem of the optimal joint management of hydraulic structures in water
diversion projects. The focus of this paper is to provide desirable environmental benefits
while minimizing economic costs. In order to reduce the computational cost caused by
the repeated invocation of water quality mechanism models in the optimization process,
an artificial neural network was applied to replace the complex water quality mechanism
model to predict the improvement degree of water quality under different scheduling
schemes. Then, we integrated this algorithm with a backpropagation neural network
to create an intelligent optimal scheduling model. Compared to other algorithms, the
BPNN optimized by the IPSOGSA obtained smaller RMSE and higher R2 values. The
optimal scheduling model provided the optimal and feasible operation scheme under
various scenarios for the multi-objective regulation problem of the Jiaxing water diversion
project. These results show that the established intelligent scheduling model has good
reliability and application prospects. The intelligent scheduling model can be applied
to assist decision-makers in selecting the most efficient operation plan. This method can
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be extended to similar areas and used to develop operation strategies of water diversion
projects for regional water quality improvement.
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52. Aydilek, İ.B. A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems.
Appl. Soft Comput. 2018, 66, 232–249. [CrossRef]

53. Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm.
Comput. Struct. 2016, 169, 1–12. [CrossRef]

54. Civicioglu, P. Backtracking Search Optimization Algorithm for numerical optimization problems. Appl. Math. Comput. 2013, 219, 8121–8144.
[CrossRef]

55. Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
56. Salajegheh, F.; Salajegheh, E. PSOG: Enhanced particle swarm optimization by a unit vector of first and second order gradient

directions. Swarm Evol. Comput. 2019, 46, 28–51. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.knosys.2021.106926
https://doi.org/10.1007/s00366-019-00826-w
https://doi.org/10.1016/j.asoc.2018.02.025
https://doi.org/10.1016/j.compstruc.2016.03.001
https://doi.org/10.1016/j.amc.2013.02.017
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.swevo.2019.01.010

	Introduction 
	Methods 
	Traditional Gravitational Search Algorithm 
	Proposed Algorithm: IPSOGSA 
	Opposition-Based Learning 
	Elite Mutation Strategy 
	Local Search Strategy 
	Co-Evolution Strategies 
	Location Update Strategy 
	The Procedure of IPSOGSA 

	Experiment Results and Discussion 
	Classical Benchmark Functions Set 
	Modern Benchmark Functions Set 


	Optimal Scheduling Model of Hydraulic Structures 
	Mathematical Problem Formulation 
	Economic Objective 
	Water Quality Constraints 
	Hydraulic Constraints 

	Water Quality Prediction Model 

	Practical Application 
	Case Study 
	Backpropagation Neural Network 
	Optimal Operation Scheduling of Water Diversion Project 

	Conclusions 
	References

