
Citation: Lin, Q.; Yang, Z.; Huang, J.;

Deng, J.; Chen, L.; Zhang, Y. A

Landslide Displacement Prediction

Model Based on the ICEEMDAN

Method and the TCN–BiLSTM

Combined Neural Network. Water

2023, 15, 4247. https://doi.org/

10.3390/w15244247

Academic Editors: Edoardo

Rotigliano, Pierluigi Confuorto,

Michele Delchiaro and Chiara

Martinello

Received: 13 November 2023

Revised: 27 November 2023

Accepted: 30 November 2023

Published: 11 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

A Landslide Displacement Prediction Model Based on the
ICEEMDAN Method and the TCN–BiLSTM Combined
Neural Network
Qinyue Lin *, Zeping Yang *, Jie Huang , Ju Deng, Li Chen and Yiru Zhang

Department of Civil and Architectural Engineering, East China University of Technology,
Nanchang 330013, China; 2020120379@ecut.edu.cn (J.H.); 2022120482@ecut.edu.cn (J.D.);
2021120293@ecut.edu.cn (L.C.); 2023110464@ecut.edu.cn (Y.Z.)
* Correspondence: 2021120291@ecut.edu.cn (Q.L.); zpyang@ecut.edu.cn (Z.Y.)

Abstract: Influenced by autochthonous geological conditions and external environmental changes,
the evolution of landslides is mostly nonlinear. This article proposes a combined neural network
prediction model that combines a temporal convolutional neural network (TCN) and a bidirectional
long short-term memory neural network (BiLSTM) to address the shortcomings of traditional recur-
rent neural networks in predicting displacement-fluctuation-type landslides. Based on the idea of
time series decomposition, the improved complete ensemble empirical mode decomposition with
an adaptive noise method (ICEEMDAN) was used to decompose displacement time series data into
trend and fluctuation terms. Trend displacement is mainly influenced by the internal geological
conditions of a landslide, and polynomial fitting is used to determine the future trend displacement;
The displacement of the fluctuation term is mainly influenced by the external environment of land-
slides. This article selects three types of landslide-influencing factors: rainfall, groundwater level
elevation, and the historical displacement of landslides. It uses a combination of gray correlation
(GRG) and mutual information (MIC) correlation modules for feature screening. Then, TCN is used
to extract landslide characteristic factors, and BiLSTM captures the relationship between features
and displacement to achieve the prediction of wave term displacement. Finally, the trend term and
fluctuation term displacement prediction values are reconstructed to obtain the total displacement
prediction value. The results indicate that the ICEEMDAN–TCN–BiLSTM model proposed in this
article can accurately predict landslide displacement and has high engineering application value,
which is helpful for planning and constructing landslide disaster prevention projects.

Keywords: landslide displacement prediction; temporal decomposition; neural network; geological disaster

1. Introduction

Landslides, as one of the most frequent, widely distributed, and destructive geological
disasters in the world, have had a significant impact on the safety, lives, and property
of nearby residents [1–5]. According to statistics, landslides cause 4500 deaths each year,
and the economic losses caused by landslides can reach up to 20 billion US dollars per
year [6]. Factors that can trigger landslides include rainfall [7–12], changes in groundwater
levels [13–16], earthquakes [17–19], and human engineering activities [20,21], all of which
can potentially lead to geological disasters such as landslides. Therefore, analyzing and
considering the influencing factors of landslides and establishing a high-precision landslide
displacement prediction model is of great significance for accurately grasping the evolution
stage of landslides and reducing landslide disaster losses [22,23].

The cumulative displacement of landslides is composed of the trend term displacement
that changes over time and the displacement fluctuation term caused by external factors [24].
Decomposing the cumulative displacement of landslides into components with practical
physical significance and establishing prediction models separately could effectively predict
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the cumulative displacement of landslides. Du et al. [25] decomposed the cumulative
displacement of landslides into trend and fluctuation terms and used a BP neural network
to predict the displacement components. Yang et al. [26] used the moving average method
to separate the cumulative displacement of landslides and used a support vector machine
(SVM) to predict the periodic term displacement. Liu et al. [27] characterized the external
displacement and internal state of the landslide using clustering analysis (K-means), and
they predicted the landslide displacement using a support vector machine (SVM) and
a long short-term memory neural network (LSTM). Zhang et al. [28] used variational
mode decomposition (VMD) to decompose the monitoring values into high-frequency,
intermediate, and low-frequency components, and they constructed a deep bidirectional
long short-term memory neural network (BiLSTM) to predict the displacement components
separately. Zhang et al. [29] used complete ensemble empirical mode decomposition
(CEEMD) to decompose the cumulative displacement observations, and they optimized
the SVR model through multi-swarm intelligence algorithms (MSI) to achieve landslide
displacement prediction.

The above methods have achieved good results, but they also have their own short-
comings. In terms of displacement time series decomposition, the moving average method
is simple to operate, but it can only extract the trend term of displacement and cannot obtain
the fluctuation term part of landslide displacement. The K-means method decomposes
and reconstructs time series data, and the reconstructed data does not have actual physical
significance. The VMD method can freely select the number of displacement components,
but its dependence on initial conditions is high, and the calculation is complex. The CEEMD
method has problems with modal aliasing and residual white noise when decomposing
temporal data [30,31]. In response to these issues, the ICEEMDAN [32] method reduces
the number of pseudo modes and the impact of residual white noise. Compared to the
CEEMD method, it also has advantages, such as fewer minor reconstruction errors and a
faster computational convergence speed, and it is widely used in the fields of biomedical
engineering and computer science [33]. Therefore, this article uses the ICEEMDAN method
to decompose landslide displacement to improve the data decomposition quality and make
the decomposition terms more physically meaningful.

Predicting landslide displacement relies on the development of prediction models.
Currently, the prediction models in use can primarily be categorized as static and dynamic
models [34–36]. The commonly used static models include support vector machine re-
gression (SVR) and extreme learning machine (ELM) models. Due to the fact that the
displacement behavior of landslides is mainly caused by changes in external conditions,
static models often face difficulty in considering the complex evolution process of land-
slides and cannot effectively extract historical sequence data [37]. The dynamic model
takes into account the historical characteristics of time series data, such as the use by
Yang et al. [38] and Zhang et al. [39] of LSTM neural networks to predict the displace-
ment of landslide periodic terms, and the prediction effect is better than the static-model
SVM. Zhang et al. [40,41] used the gated recurrent unit (GRU) dynamic model to mine
effective historical features in temporal data, and they achieved an accurate prediction
of landslide displacement fluctuation segments. Although traditional dynamic models
have achieved the dynamic prediction of the temporal displacement of landslides, their
prediction accuracy is limited due to the suddenness and destructiveness of landslide dis-
asters and the limitations of monitoring sample data. The LSTM neural network requires a
large amount of training data, which can lead to increased computational costs and poor
model generalization ability. However, the GRU neural network has better computational
efficiency than the LSTM neural network, but its simplified gating structure cannot bet-
ter retain and transmit information. Lin et al. [36] used a bidirectional long short-term
memory neural network (BiLSTM) to simultaneously consider historical and future factors
that affect landslide displacement, effectively predicting the displacement of the Baishui
River landslide. Due to their unique bidirectional processing structure, BiLSTM neural
networks can usually provide richer feature representations, which means they can learn
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useful features from a small amount of sample data, and the prediction accuracy is further
improved compared to traditional LSTM and GRU. In recent years, temporal convolutional
network (TCN) neural networks have been widely used in fields such as meteorological
data prediction and computer data mining. For example, P. Hewage et al. [42] applied
TCN to meteorological prediction, achieving the long-term prediction of future weather.
Fan et al. [43] proposed a framework for PSTA–TCN based on TCN neural networks, which
significantly reduced the training time of the model through parallel computing while
significantly improving the accuracy. TCN has an extended causal convolution structure
and outstanding feature extraction ability to mine multi-dimensional feature temporal
information. Currently, the BiLSTM–TCN combination model is rarely used in various
neighborhoods and is almost never applied to landslide disasters. Landslide disasters often
exhibit nonlinear displacement curves due to their suddenness and seasonality. The feature
extraction and learning ability of the prediction model are essential to predict landslide
displacement accurately. This article combines BiLSTM with TCN and applies it to pre-
dict nonlinear temporal displacement. By extracting feature variables through TCN and
inputting them into the time series network BiLSTM, the processing efficiency of memory
units in the time series network is greatly improved, thereby reducing the training time
and obtaining more accurate prediction results.

This article takes the Wanjiawan landslide as its research area. It uses the ICEEMDAN
decomposition method to decompose the landslide displacement monitoring values into
trend and fluctuation terms with practical physical significance. The polynomial is fit to
obtain a trend term displacement prediction formula for predicting trend term displace-
ment. Using the dual indicator screening method of GRG gray correlation and MIC mutual
information value, three candidate influencing factors, the displacement component, rain-
fall, and groundwater level, were screened to obtain the most correlated influencing factor.
Then, the selected influencing factors were used as inputs for the BiLSTM–TCN combina-
tion model, and the model was trained for hyperparameter optimization before being used
for landslide fluctuation displacement prediction. Finally, the predicted displacement of
the trend term was superimposed with the predicted displacement of the fluctuation term
to obtain the cumulative displacement prediction value of the landslide, which was verified
and analyzed. A flowchart of landslide displacement prediction is shown in Figure 1.
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Figure 1. Landslide displacement prediction flow chart: (a) data processing, (b) displacement
prediction, and (c) model validation.

2. Methods
2.1. Empirical Mode Decomposition

EMD has wide applications in signal processing, vibration analysis, and other fields.
Its essence is to decompose non-stationary signal data into a series of sequences with
different feature scales. The decomposed sequence is called the intrinsic mode function
(IMF), and the different intrinsic mode components of IMF represent different characteristic
fluctuation sequences. The specific decomposition process is as follows [44,45].

1. Mark the extreme points in monitoring data x(t) and connect the local maximum
points and local minimum points separately to form an upper and lower envelope curve,
where m1(t) is the mean curve between the upper and lower envelope lines.

2. Perform the first screening, and the calculation formula for the first component
C1(t) is as follows:

C1(t) = x(t)−m1(t) (1)

In the second screening process, C1(t) is considered the original data, and m2(t) is the
mean curve between the upper and lower envelope lines. Repeat the above steps to obtain
the component C2(t).

3. Repeat the above screening process until Cn(t) is an intrinsic mode function or
the residual component rn(t) becomes a monotonic function, terminating the decompo-
sition process.

4. The sum of the decomposed IMF term and rn(t) term is the original sequence, and
the x(t) formula is as follows:

x(t) =
n

∑
i=1

Ci(t) + rn(t) (2)
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2.2. Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

CEEMDAN solves the problem of EEMD mode aliasing and residual noise by adding
Gaussian white noise. ICEEMDAN is different from CEEMDAN, which directly adds
Gaussian white noise during the decomposition process. Instead, it selects the Kth IMF
component of the white noise decomposed by EMD, namely noise Ek(ω

(i)). The following
are the general steps of ICEEMDAN [30].

1. Adding noise E1(ω
(i)) to the original signal x yields:

x(i) = x + β0E1(ω
(i)) (3)

In the formula, β0 is the noise standard deviation; ω(i) is the added ith Gaussian
white noise.

2. Calculate the IMF value of the first modal component: r1 = 1
I

i
∑

i=1
m(x(i))

c̃1 = x− r1

(4)

In the formula, r1 represents the first-order residual; c̃1 is the first modal component
IMF value.

3. Calculate the IMF value of the second modal component: r2 = 1
I

i
∑

i=1
m(r1 + β1E2(ω

(i)))

c̃2 = r1 − r2

(5)

In the formula, r2 represents the second-order residual; c̃2 is the second modal compo-
nent IMF value.

4. By analogy, calculate the IMF value of the kth modal component: rk = 1
I

i
∑

i=1
m(rk−1 + βk−1Ek(ω

(i)))

c̃k = rk−1 − rk

(6)

In the formula, rk represents the k-order residual; c̃k is the IMF value of the kth
modal component.

2.3. Temporal Convolutional Network

TCN is a convolutional neural network developed to address common flaws in recur-
sive neural networks. It is commonly used to mine image information and predict sequence
data. The TCN structure is simpler and clearer than typical recursive networks, mainly
composed of causal convolution kernels and residual modules [46].

2.3.1. Causal Dilated Convolutional

Causal convolution can be understood as the one-way transmission of temporal data.
Unlike traditional convolutional neural networks, in causal convolution, future data cannot
affect the past and only performs convolution operations at the current and previous time
steps. Hence, it is called causal convolution [47].

As shown in Figure 2, interval sampling is allowed for the input during convolution
based on causal convolution. If d = 1, it means sampling each data point; if d = 2, it
means sampling every two data points. Similarly, convolutional networks can obtain
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larger receptive fields even in fewer convolutional layers. Equation (7) is the mathematical
expression of causal dilation convolution [43]:

yh,t =
k

∑
i=0

fi × yh−1,t−2id (7)
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In the equation, yh,t represents the sequence value of layer h in the network at time t,
fi represents the filter, k represents the size of the convolutional kernel, and d represents
the convolutional expansion rate.

2.3.2. Residual Block

The residual module is a valuable technique for training deep networks because
it allows information to be sent between layers, which helps to prevent gradients from
disappearing or bursting during deep network training [48,49]. As seen in Figure 3, this
article builds a residual block in place of the convolutional layer. Two layers of nonlinear
mapping and convolution make up a residual block.
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2.4. BiLSTM

LSTM is an improved recurrent neural network that introduces an internal mech-
anism called a “gate” that can regulate the information flow by learning important
information and forgetting secondary information, thereby better handling long-term
dependency relationships in sequences. Unlike the standard LSTM, BiLSTM runs two
independent LSTM networks simultaneously, one processing input sequences from the
front and the other processing input sequences from the back, as shown in Figure 4. This
enables the network to capture information before and after each time step, including
past and future information.

2.5. TCN–BiLSTM

Due to its use of a dilated causal convolution structure, TCN has excellent feature ex-
traction capabilities. Therefore, TCN can fuse original features to obtain higher dimensional
abstract features, thereby strengthening the mining of feature information. The BiLSTM
network has strong temporal prediction ability. By combining TCN and BiLSTM networks,
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TCN features are extracted and input into the BiLSTM network, which improves the com-
putational performance of BiLSTM network memory units and makes the prediction model
more effective in learning the complex interaction relationships of time series. Therefore,
this article constructs a TCN–BiLSTM prediction model, and Figure 5 shows the structure
of the combined model.
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2.6. Evaluation Index

This article chooses the widely used techniques in landslide displacement prediction,
such as the root mean square error (RMSE), coefficient of determination (R2), and mean
absolute percentage error (MAPE), to assess the model’s performance in terms of accuracy
and applicability. The following is the calculation formula for measurement indicators:

RMMSE =

√√√√ 1
n

n

∑
k=1

(ŷk − yk)
2

(8)

MAPE =
1
n

n

∑
k=1

∣∣∣∣ ŷk − yk
yk

∣∣∣∣× 100% (9)

R2 = 1−

n
∑

k=1
(ŷk − yk)

2

n
∑

k=1
(yk − yk)

2
(10)

In the formula, yk is the kth true value sample, ŷk is the kth predicted value sample,
and yk is the arithmetic mean of all true values. Based on the calculation results of RMSE,
MAPE, and R2, the evaluation is conducted, and the calculation results of all three belong
to the range of 0 to 1.



Water 2023, 15, 4247 8 of 20

3. Overview of Study Area
3.1. General Description

The Wanjiawan landslide is located in Anping Village, Xinglong Town, northern
Tongjiang County, Sichuan Province. It is situated in Tongjiang County’s northern region,
on the west side of the Datongjiang River, and on the east side of the Xiaotongjiang River.
The terrain fluctuates greatly, with an overall trend of northeastern high and southwesterly
low. The slope direction is about 228◦, and the terrain slope is generally 10–20◦. The left
side of the landslide trailing edge is adjacent to the engineering site leveling area, and the
foot of the landslide slope is located in the living camp, as shown in Figure 6.
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(b) geological profile along sections II–II′.

The overall elevation of the landslide is between 840 m and 890 m, and the width of the
entire landslide area is about 222 m. The overall plane shape is in a “circular chair” shape.
About 275 m is the landslide’s longitudinal length, with an area of about 3.84× 104 m2. Silty
clay containing broken stones makes up most of the sliding soil, and the gravel is mostly
composed of sandstone blocks. The landslide volume is around 38.4 × 104 m3, and the
landslide mass has an average thickness of roughly 10 m. The sliding zone is a soft plastic silty



Water 2023, 15, 4247 9 of 20

clay with a small amount of breccia during the period, which has poor water permeability and
can form a relatively impermeable layer. The sliding bed is an underlying bedrock, mainly
composed of strongly to moderately weathered carbonaceous sandy mudstone and sandstone.

3.2. Macroscopic Deformation Characteristics

The Wanjiawan landslide is a shallow-soil landslide and a medium-sized landslide
according to its scale. Due to the exposure of the surface soil layers and the combined
effect of long-term rainfall, landslide disasters ultimately occurred. On 7 July 2022, a crack
appeared in the upper residential area on the north side of the well pad (Figure 7a), with a
maximum crack width of 20 mm and a maximum crack length of 500 mm. From 19 to 27
July 2022, excavation construction was carried out in the slope toe area, during which two
rainfall events occurred. The existing cracks on the site expanded, and new cracks appeared
in the flat area of the trailing edge engineering site (Figure 7b). Starting on 4 August 2022,
displacement monitoring points and groundwater level monitoring points were set up
in the landslide area. During the monitoring period, the existing cracks continued to
intensify, and new cracks continued to emerge (Figure 7c). From 7 to 28 August 2022,
except for the central leveling area of the landslide, the displacement and deformation were
relatively stable, with overall small changes, while the deformation in the filling area was
relatively large. After two days of continuous rainfall on 30–31 August 2022, the overall
deformation of the surface subsidence cracks (Figure 7d) that occurred in the residential
area significantly intensified. Based on comprehensive analysis, the landslide has been in
the stage of creep deformation and has a tendency to intensify after rainfall.
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3.3. Analysis of Monitoring Data and Triggering Factors

The factors affecting landslides are often very complex and can be divided into internal
factors and external factors according to their sources [50–52]. Adverse environmental geo-
logical conditions, including slope landforms, thick and loose soil layers, highly weathered
lithology, and large-scale free surfaces formed via engineering excavation, are the main
internal factors for the occurrence and development of landslides [53]. Under the influence
of internal factors, the time displacement relationship curve of the landslide presents an
approximate monotonic function, which reflects the trend term of the overall cumulative
displacement of the landslide. External factors are different from static factors, and they
are mainly dynamic environmental factors outside the landslide, including natural rainfall,
groundwater level, wind load, environmental temperature and humidity, etc. Under the
influence of external factors, the time displacement relationship curve of the landslide
shows a certain regularity of fluctuations.

This project adopts various monitoring methods, and the monitoring data obtained
mainly includes rainfall, groundwater level, surface displacement, and deep soil displace-
ment. The above data are all sourced from on-site engineering monitoring reports. After
processing and analyzing the data from all monitoring points, the surface displacement
monitoring points D1, D18, and J12 located in the middle and lower parts of the landslide
showed obvious displacement development trends throughout the entire monitoring cycle.
The above three surface displacement monitoring data and the groundwater level moni-
toring point data located in the middle of the landslide were selected for research. All the
monitoring data consisted of 65 periods (from 7 August 2022 to 10 October 2022), as shown
in Figure 8.
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Figure 8. Wanjiawan landslide cumulative displacement, rainfall, and groundwater level moni-
toring data.

The monitoring period was during the period of frequent rainfall in the summer,
and the groundwater level fluctuated frequently. Two rainstorm events occurred at the
beginning and end of August, leading to a sharp rise in the groundwater level, during which
the cumulative displacement of each monitoring point increased significantly. During
non-rainfall periods, the groundwater level showed a slow downward trend, and the
cumulative displacement growth rate slowed down. The two rainstorms in August broke
the original stable state of the Wanjiawan slope, and the overall safety reserve of the slope
was greatly reduced. Under continuous rainfall in September and October, the cumulative
displacement growth trend became larger, and the cumulative displacement increased
significantly after the groundwater level rose. During the monitoring cycle, almost all
displacement acceleration stages occurred after rainfall events and during groundwater
level fluctuations, indicating that changes in the groundwater level and rainfall have a
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significant impact on landslide deformation. Under the action of rainfall, rainwater seeped
down along surface cracks to the relatively impermeable sliding zone interface, and the
soft, plastic, powdery clay at the bottom was soaked and softened, resulting in a continuous
decrease in the physical and mechanical strength of the sliding zone. At the same time, as
the soil’s moisture content increased, the sliding mass’s gravity increased. When the sliding
force exceeds the anti-sliding force, soil sliding will occur. Therefore, the acceleration stage
of landslide displacement often occurs after rainfall events. As rainfall events continue,
groundwater is replenished by atmospheric rainfall, leading to a sharp rise in the water
level. The stress and seepage fields inside the slope undergo significant changes in a short
period, thereby accelerating landslide events. Therefore, the fluctuation of groundwater
levels also leads to the acceleration of landslides.

4. Results
4.1. Data Decomposition

By processing and analyzing all monitoring data, the D1 monitoring point data located
in the central area of the landslide showed a clear displacement trend. The integrity of
the monitoring data at this point was good, so this article uses this displacement sequence
to establish a prediction model for the Wanjiawan landslide. We selected 52 monitoring
data sets as training samples from 7 August 2022, to 27 September 2022. The test samples
were the following 13 data sets from 28 September 2022 to 10 October 2022. This work
developed the ICEEMDAN algorithm in the MATLAB 2022a environment and utilized it
to deconstruct the chosen displacement sequence samples, as shown in Equations (3)–(6)
above. The parameter settings for this process are as follows: 200 iterations were the
maximum, and the standard deviation ratio was 0.15.

The decomposed data are shown in Figure 9. The original displacement sequence
sample was divided into four sets of displacement sequence components, with component
IMF1 having the highest fluctuation frequency, followed by elements IMF2 and IMF3,
and residual component R being relatively smooth with almost no fluctuation. Therefore,
the residual component R was considered the trend term displacement, and the sum of
components IMF1–IMF3 with significant fluctuations was regarded as the fluctuation term
displacement. The combined data are shown in Figure 10.
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4.2. Determining Influencing Factors

The reasonable selection of influencing factors determines the upper limit of the
accuracy of the prediction model [54–56]. Du et al. [57] have shown that the past state
of landslides can, to some extent, affect the development trend of landslides. Therefore,
this article takes displacement monitoring values as one of the influencing factors of
landslides. Rainfall and the reservoir water level are often considered the main factors
affecting landslide displacement when studying riverbank slopes [58,59]. The study area of
this article is located between the Datong River and the Xiaotong River, and the landslide
area is far from the river surface. Therefore, the impact of the reservoir water level on
the landslide was not considered. Based on existing engineering monitoring data and
careful consideration, rainfall, groundwater level, and historical displacement are the main
influencing factors of the Wanjiawan landslide.

Figure 11 shows the relationship between the groundwater level, daily rainfall, and
fluctuation term displacement. From the graph, it can be observed that, during periods
of frequent rainfall, the displacement of the fluctuation term in the landslide area changes
significantly. In weather environments without or with light rain, the displacement of the
fluctuation term changes relatively smoothly. Considering that historical rainfall has a
significant impact on the future state of landslides, this article takes the cumulative rainfall
of the same day, the previous day, and two days as the critical factor affecting landslide
displacement (Input 4–6). Furthermore, there was a positive correlation between the
changes in the groundwater level in the landslide area and rainfall, and the displacement of
the fluctuation term showed a rapid increase when the groundwater level rose. When the
groundwater level changed slightly or remained within a certain range, the displacement
of the fluctuation term changed less. And the displacement of the fluctuation term often
occurred after the groundwater level rose, and the impact of changes in the groundwater
level on the displacement of the fluctuation term had a lag effect. Therefore, this article takes
the elevation value of the groundwater level on that day, the changes in groundwater level
during and after the previous day, and the decrease in groundwater level changes compared
to the previous day (Inputs 7–10) as the key influencing factors for the displacement of
the fluctuation term. Finally, this article takes the displacement of the previous day, the
displacement of the previous two days, and the cumulative displacement of the previous
day as the influencing parameters of the fluctuation term displacement (Inputs 1–3).

Based on the above analysis results, this article preliminarily selects ten potential
candidate factors, as shown in Table 1. Figure 12 shows the GRG and MIC values between
various factors. The gray relational grade analysis results indicate that rainfall and the
groundwater level had a relatively large impact on the displacement of the fluctuation
term. In contrast, historical displacement factors had a relatively small effect on the
displacement of the fluctuation term. The results of the maximal information coefficient
analysis indicate that the displacement over the past day, the daily groundwater level
elevation, and the decrease in groundwater level changes compared to the previous day
had a low correlation with the displacement of the fluctuation term. The other candidate
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factor terms correlated well with the displacement of the fluctuation term; among them, the
cumulative displacement of the previous day was highly correlated with the displacement
of the fluctuation term. To ensure the accuracy of the prediction results, this article selects
candidate factors that meet the conditions of a GRG value greater than 0.80 and an MIC
value greater than 0.25 as the main influencing factors of the prediction model. Therefore,
this article excludes three candidate factors, Inputs 1, 7, and 10, and identifies the remaining
seven as critical factors affecting the displacement of the landslide fluctuation term.
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ment changes.

Table 1. Candidate factors.

Category Candidate Triggering Factors

Displacement
Input 1: Displacement over the past one day

Input 2: Displacement over the past two days
Input 3: Cumulative displacement of the previous day

Precipitation
Input 4: Cumulative rainfall of the day

Input 5: Cumulative rainfall within two days
Input 6: Cumulative rainfall of the previous day

Groundwater level

Input 7: Daily groundwater level elevation
Input 8: Change in groundwater level elevation in the past day

Input 9: Change in groundwater level elevation today
Input 10: Decrease in groundwater level changes compared to the previous day
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4.3. Displacement Prediction
4.3.1. Trend Item Displacement Prediction

The trend term displacement was fitted using polynomial regression equations. To
ensure the prediction accuracy of the data as much as possible and avoid overfitting with
higher-order polynomials, in this article, multiple experimental analyses were conducted,
and it was finally determined to use a cubic polynomial to fit the data. The fitted formula is
as follows, with a goodness of fit R2 of 0.999, indicating an excellent fitting effect.

y = 0.000678115x3 − 0.07863x2 + 5.41786x− 7.59532 (11)

In the equation, y represents the displacement of the trend term, and x represents time.
The above equation served as the prediction formula for the trend term in the predic-

tion model, and Figure 13 displays the displacement prediction results of the trend term.
The MAPE was 0.002, the RMSE was 0.425, and the R2 was 0.999. The calculation results of
the evaluation indicators show that using the cubic polynomial fitting method for trend
displacement prediction can achieve good prediction results.
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4.3.2. Prediction of Fluctuation Term Displacement

In the TCN model, the expansion factor was set to 4, the convolution kernel size was 3,
and the number of hidden layers was set to 4. The hidden layer neurons of the LSTM and
BiLSTM models were taken as 64. During training, the input features were the seven most
relevant features after correlation filtering, and the first five sets of historical data were
used as input items for the model to predict the future two sets of data. The model adopted
a Bayesian optimization algorithm for hyperparameter optimization. The combined model
also followed the parameter settings of a single model.

Figure 14 displays the prediction results of different neural networks. The LSTM neural
network had the worst prediction results for fluctuation term displacement, followed by
the TCN neural network and the BiLSTM neural network. The prediction error calculated
based on the prediction results is shown in Table 2. The specific analysis was as follows:

1. Due to the limited landslide monitoring data provided in the engineering project, the
generalization performance of the trained LSTM model was poor, resulting in an R2

of 0.915 and unsatisfactory prediction performance.
2. Due to their unique bidirectional processing structure, BiLSTM neural networks

typically provide richer feature representations, which means they can better capture
patterns and relationships in input sequences. From the overall error distribution,
the prediction error of BiLSTM was slightly lower than LSTM’s. The final calculation
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result of LSTM neural network R2 was 0.945, and the prediction effect was better than
that of LSTM.

3. The TCN evolved from convolutional neural networks requires fewer parameters
than LSTM, making it easier to train and adjust. Therefore, TCN neural networks
can achieve more accurate displacement prediction even with limited training data
support. The final TCN neural network R2 calculation result was 0.945, and the
prediction effect was better than that of LSTM.
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Table 2. Prediction errors of different neural network models.

Evaluating Indicator LSTM BiLSTM TCN TCN–LSTM TCN–BiLSTM

RMSE (mm) 0.725 0.586 0.551 0.274 0.129
MAPE (%) 0.433 0.354 0.305 0.120 0.033

R2 0.915 0.945 0.951 0.988 0.997

Overall, the above three types of neural networks achieved good predictive perfor-
mance in the monotonic increase or decrease stage of the fluctuation term displacement
curve. Still, there would be significant errors at the turning points of the fluctuation term
displacement curve, which cannot achieve the goal of accurate prediction.

The combination of a single neural network to predict fluctuation term displacement
is shown in Figure 15. From the perspective of overall prediction error, the combined
two neural network models improved the problem of inaccurate prediction at the turning
point of the fluctuation term displacement curve, and the overall prediction accuracy of the
model was higher. Among them, TCN–BiLSTM achieved better prediction performance
than TCN–LSTM. The specific analysis was as follows.

TCN has a causal dilated convolutional structure and outstanding feature extraction
ability. It can fuse original features to obtain high-dimensional abstract features, enhancing
the mining of feature information. LSTM and BiLSTM time series networks have strong
temporal prediction capabilities, which can better capture patterns and relationships in
input sequences. LSTM-type networks can be combined with TCN networks in fluctuation
term displacement prediction. By extracting feature variables through TCN and inputting
them into the time series network, the processing efficiency of memory units in the time
series network is greatly improved. Therefore, the combined prediction model is more
effective in learning the complex interaction relationships of the time series.
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Figure 15. The displacement prediction results of different combination neural networks with
fluctuation terms.

From the absolute error distribution histogram, the overall error distribution of
TCN–BiLSTM was lower than TCN-LSTM’s. Through calculations, the prediction error
indicators for the displacement prediction of landslide fluctuation terms using two
combination networks were obtained. Compared with TCN–LSTM, the combination
of TCN and BiLSTM reduced MAPE by an average of 71.955%, resulting in the higher
prediction accuracy of the TCN–BiLSTM combined network.

4.3.3. Total Displacement Prediction

As shown in Figure 16, the trend displacement predicted via polynomial fitting was
overlaid with the fluctuation displacement predicted using the TCN–BiLSTM combined
neural network to obtain the total predicted displacement of the landslide. By comparing
the total predicted displacement of the landslide with the actual value, it was found that
the predicted total cumulative displacement of the landslide was highly consistent with the
actual value. Among the total predicted displacement, MAPE was 0.002, RMSE was 0.406,
and R2 was 0.999, indicating a good prediction effect.
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The experimental results show that the proposed model is more accurate than the other
five models in predicting the displacement of landslide fluctuation terms. For nonlinear
wave term displacement curves, the accurate prediction of data points at curve turning
points is crucial. The model’s feature extraction and learning ability determine the accuracy
of displacement predictions. TCN and BiLSTM achieved lower prediction errors in a single
neural network than LSTM. This was due to the excellent feature extraction ability of the
TCN model, which can deeply mine nonlinear features. The bidirectional LSTM network
structure can fully utilize input feature information to obtain richer feature representations
for learning. Combining TCN with BiLSTM can achieve the accurate prediction of nonlinear
features. The displacement of the fluctuation term of the Wanjiawan landslide is related to
rainfall and groundwater level height, and these characteristic changes are often nonlinear
during rainy periods. Therefore, constructing a TCN–BiLSTM combination model can
more accurately grasp the movement trend of the landslide.

On the other hand, the TCN–BiLSTM combination model has a high level of complexity
and requires more computational resources and time for training. Therefore, selecting key
input features is particularly important during the training process.

5. Conclusions

This article has focused on the high-precision displacement prediction problem of
rainfall-induced landslides, deeply analyzed the relationship between influencing factors
and the cumulative displacement of landslides, and combined the advantages of BiLSTM
and TCN to propose a rainfall-induced landslide displacement prediction model based on a
TCN–BiLSTM combined structural neural network. And this prediction model was applied
to the displacement prediction of the Wanjiawan landslide, and its prediction results were
compared with the prediction results of the LSTM, TCN, BiLSTM, and TCN–LSTM models.
The following conclusions were drawn:

(1) The ICEEMDAN algorithm has strong adaptability to decomposing landslide dis-
placement sequences. By selecting a reasonable signal-to-noise ratio decomposition,
the cumulative displacement of landslides can be effectively decomposed into rela-
tively stable, high-frequency fluctuation terms and low-frequency residual terms, and
the resulting displacement components have practical physical significance.

(2) In the selection of characteristic data for predicting landslide displacement fluctu-
ation terms, precipitation, the groundwater level, and the historical displacement
of landslides are highly correlated with the displacement components of landslide
fluctuation terms. This article used the GRG–MCI combination screening method
to process the processed parameter data, and the influencing factors identified were
highly correlated with the displacement component of the landslide fluctuation term.

(3) For landslide trend displacement prediction, using the polynomial fitting method
can achieve good prediction results, with a predicted value of R2 of 0.999, which
indicates high prediction accuracy and can accurately reflect the trend changes of
landslide displacement. In predicting the displacement of landslide fluctuation
terms, the TCN–BiLSTM combined structural neural network model can accurately
capture the fluctuation changes of landslide displacement, with a predicted value
of R2 of 0.997, which performs better than the conventional LSTM, TCN, BiLSTM,
and TCN–LSTM models.

(4) This article used the ICEEMDAN–TCN–BiLSTM model to predict the displacement
of the D1 monitoring point of the Wanjiawan landslide. The various evaluation
indicators of the predicted results prove that the model has high applicability for
landslide displacement prediction. Based on this, it was inferred that this method can
be effectively used to predict displacement at other landslide locations. However, its
applicability in predicting the displacement of other types of landslides still needs
further verification.
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