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Abstract: Iranian water security is threatened by groundwater (GW) degradation. The excessive
use of GW for agriculture in Iran is degrading these resources. Livestock waste disposal and
sewage irrigation are also major contributors. Nitrate (NO3) contamination in GW is a growing
global concern, posing serious health and environmental risks. Soil can easily leach NO3 into
GW, causing long-term contamination. Understanding the temporal and spatial patterns of NO3

pollution is vital in protecting human health and establishing safe drinking water limits. Choosing
an appropriate interpolation method is crucial for creating a reliable spatial variability map, which
is essential for environmental research and decision-making. This study used 85 GW samples
collected over four periods to create interpolated maps and examine the spatial variability of NO3

levels. Spatial interpolation methods were performed using the geostatistical tool within ArcGIS
Software. The results showed that Empirical Bayesian Kriging (EBK) was the most effective of the
five evaluated interpolation methods, although the performance of each method varied depending on
the period sampled. Therefore, the choice of interpolation method should be tailored to the study’s
specific needs and the characteristics of the data being interpolated. The EBK method produced
interpolation maps that illustrated the spatial distribution of NO3 concentrations, both within and
exceeding the recommended guidelines. Interpolation methods can assist in creating spatial maps of
NO3 concentrations, identifying pollution sources, and developing targeted management strategies.
These maps demonstrate the potential impact of human activities on the observed patterns. A
thorough understanding of Iran’s current GW quality is very important and valuable for management
and policymakers.

Keywords: sustainable farming; groundwater pollution; Empirical Bayesian Kriging; public health

1. Introduction

Groundwater (GW) is the most reliable and accessible potable water source [1]. Many
studies show that human activities compromise GW quality and public health [2–6]. With
the intensification of agricultural and livestock farming in recent decades, there has been a
corresponding increase in anthropogenic nitrogen (N) input, significantly impacting the
global N cycle [7] and resulting in the widespread contamination of GW with nitrate (NO3).
Millions of people worldwide suffer from diseases caused by NO3 contamination [8,9],
such as colorectal cancer and thyroid disease [10–13]. NO3 contamination is well-known in
many areas, like Bangladesh, India, Algeria, Italy, and the Netherlands [14–19].

The issue of NO3 contamination is a global concern, and Iran is no exception. The
presence of more than 30 mg/L of NO3 in water has been linked to several pollution sources,
such as onsite sanitation, agricultural activities, and waste disposal [20–23]. The widespread
use of nitrogen-based fertilisers in agriculture has been singled out as a significant source
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of NO3 in the GW in agricultural regions. Livestock waste disposal and reusing sewage for
irrigation are two other major contributors. Iran’s average nitrogen fertiliser application
rate is over 200 kg Nha−1 [24]. In regions where high-yielding crops are grown, the nitrogen
fertiliser application rate often exceeds 300 kg Nha−1 [25]. Livestock waste disposal and
reusing sewage for irrigation are two other major contributors.

In Iran, the NO3 levels range from 0.1 to 428 mg/L, with the highest levels in the
Kurdistan province [26]. The Fars and Tehran provinces have also reported relatively
high levels of NO3 [26,27]. The situation in Iran may be more complex due to the unique
hydrogeological environment and increasing expansion of agricultural activities.

However, this high level of nitrogen input can lead to decreased utilisation efficiency
and contamination of GW and surface water, which can negatively impact human health
and aquatic ecosystems [28,29]. The studies highlight the potential for NO3 contamination
in both surface and GW sources in various regions of Iran and the need for continued
monitoring and management practices to ensure safe water resources for human consump-
tion and ecological health. As such, an urgent need exists to understand the composition,
source, and contribution ratio of nitrogen to effectively control NO3 pollution from the
transportation of nitrogen into GW. To address this issue, the government of Iran has
implemented various policies and regulations, including promoting sustainable agriculture
practices and developing wastewater treatment plants [30]. Nevertheless, further research
is needed to address the issue of NO3 contamination, particularly in light of increasing
agricultural intensity and its potential impact on the country’s water resources.

One way to study GW contamination is through a Geographic Information System
(GIS) used for visualising environmental contaminant spatial distribution [31–33]. However,
due to time and money constraints, fewer GW samples are collected in the field for chemical
analysis, which could impact experimental results and findings [34]. To fill gaps in the
conceptual site model, interpolating isolated well data can predict values at unsampled
locations using nearby measured values [35]. Inverse Distance Weighting (IDW), Kriging,
and Empirical Bayesian Kriging are three common interpolation methods used for mapping
GW contamination [36,37]. However, there are still differences of opinion regarding the
accuracy of contamination interpolating under different conditions for different pollutants.
For example, Saha et al. [38] compared the performance of IDW, Ordinary Kriging (OK),
and Radial Basis Functions (RBF) to map the spatial distribution of arsenic contamination.
They indicated that the RBF model was the best for interpolation prediction and could
ensure the accurate fitting of predicted data with measured data at sampling sites. Based on
the relative performance of four interpolation methods, the best methods for interpolating
GW quality parameters were Empirical Bayesian Kriging (EBK) for pH, TDS, SO4, and
NO3, and OK for nickel and hardness [39]. Previously, interpolation methods were used
to investigate the spatial distribution of NO3. Koussa and Berhail [40] examined different
interpolation methods to predict the NO3 concentration data from 305 wells in the synclinal
of Algeria. The analysis showed that the kriging methods performed better, showing
greater consistency in the predicted NO3 concentration, fewer interpolation errors, and
lower biases. Mukherjee and Singh [41] found that OK and EBK, compared to several
kriging models, performed best for high rain and low rainy seasons to interpolate the NO3
variations in India. Interpolation accuracy depends on sampling design, population size,
boundary demarcation, and data set normality, affecting applicability [42–45].

Our research compares, describes, and predicts the performance of various interpola-
tion methods in mapping regional NO3 concentrations due to the urgent need to understand
and address NO3 contamination. This method lets us see the problem’s scope. This study
will improve our understanding of spatial and temporal NO3 contamination trends and
help us choose the best interpolation method for future research and remediation. Our
ultimate goal is to strengthen pollution control and environmental protection strategies.
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2. Study Area, Hydrology and Hydrogeology Setting

The Bajestan and Yunusi basins, located south of the Khorasan Razavi province in
eastern Iran, have been studied due to the high levels of NO3 in the GW in some areas. The
study area has an arid climate, receiving only 149–155 millimetres of annual rainfall and
having an average annual temperature of 16.4–17.3 degrees Celsius. The region’s geology
is dominated by sedimentary rocks, including sandstone, shale, and limestone, deposited
during the Mesozoic and Cenozoic eras. These sedimentary rocks are generally tilted with
dips towards the east and southeast (Figure 1) [46]. The primary GW source in these basins
is the alluvial deposits of the Quaternary age, consisting of unconsolidated sediments, such
as sand, gravel, and clay [47]. The recharge rates are low, ranging from 2 to 5 mm/year,
and the aquifer parameters, such as hydraulic conductivity, transmissivity, and storativity,
have been determined through extensive hydrogeological studies [47,48]. The hydraulic
conductivity ranges from 10 to 150 m/day, indicating the sediments’ high permeability and
the aquifer’s ability to transmit water [46].
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Figure 1. The surface geology of the study area.

Due to low rainfall, high surface water salinity, and electrical conductivity, most
of the area’s water needs are met by wells and qanats. At the same time, only a small
amount comes from springs (Figure 2) [49]. However, the GW potential is decreasing due
to several factors, including the low potential precipitation, the expansion of cultivated
land, the growing population, and recent droughts. The study area has many small
farms, and farmers use nitrogenous fertilisers and manure to enhance agricultural output
(Figure 3). Furthermore, as Qasemi et al. [50] mentioned, almost all of the inhabitants in
the area use unprotected wells for their wastewater disposal, which increases the risk of
NO3 contamination.
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3. Materials and Methods
3.1. Interpolation and Spatial Analysis

This study evaluated NO3 contamination using various interpolation methods to iden-
tify spatial changes in 2022. To accomplish this, the research was divided into two stages:
data collection, processing, and analysis using ArcMap 10.8 (provided by Utrecht Univer-
sity), followed by comparing and evaluating spatial interpolation models to select the most
effective method. To carry out the analysis, IPI, IDW, OK, UK, and EBK interpolations were
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calculated and analysed using ArcMap 10.8, and NO3 interpolation maps were generated
using the ArcMap 10.8 Geostatistical Wizard. This study utilised a dataset consisting of
85 samples collected from the Bajestan and Yunusi aquifers to identify the interpolation
method that best explains the spatial changes in GW quality. The Khorasan Razavi Regional
Water Company collected datasets comprising physicochemical parameters of GW samples,
which encompassed measurements of electrical conductivity (EC), pH, and temperature, as
well as concentrations of Ca, Mg, Na, HCO3, SO4, NO3, and Cl. The data were collected
during the period spanning from January to December. The predominant hydrochemical
composition of the GW in the study area is primarily characterised as Na-Cl type [51].
The pH values exhibited a range spanning from 7 to 9.5. The mean total hardness of the
irrigation wells was approximately 10.3. The electrical conductivity (EC) values observed
in the wells exhibited a range of 602 to 17,450 µS/cm, with an average value of 5912 µS/cm.
According to the World Health Organisation (WHO) [52], the maximum permissible EC
value is 1500 µS/cm. Therefore, it can be observed that the conductivity in the majority
of the wells surpasses the permissible threshold. Table 1 shows the descriptive statistics
pertaining to the collected data. However, our primary focus is NO3 among the various
parameters presented.

Table 1. Descriptive statistics for the collected GW samples.

Minimum Maximum Mean Standard Deviation Variance

EC 602 17,450 5919 4634 21,469,697

pH 7 8.66 7.69 0.28 0.08

HCO3 0.2 8 3 1 1

Cl 1.1 148 40 39 1496

SO4 1.1 47 14 10 91

Mg 0.5 49 5 6 41

Na 0.4 145 48 38 1416

NO3 4.6 153 49 39 1504

Parameters were adjusted using the Geostatistical Analyst (GA) to verify the model
and approach the best interpolation for each technique. Finally, interpolation maps were
created, and the interpolation surfaces were transformed from GA layers into Rasters using
the Raster tool (Figure 4).
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3.2. Interpolation Methods

In our current study, we have employed the five interpolation techniques that are most
commonly used, as identified through a review of the literature [53–55]. We will briefly
overview each method in this context and highlight its most significant distinctions.

3.2.1. LPI Method

The LPI method is a powerful interpolation technique widely used in various applica-
tions, including GW-quality mapping. Unlike other interpolation methods, the LPI method
employs a linear regression model with varying regression coefficients, which allows for
assessing the dependence of the desired variable on data locations. It fits a local polynomial
using point regression coefficients only within the specified neighbourhood, resulting in
surfaces that capture short-range variation with a variable relief form [56,57]. This method
is computationally efficient and easy to implement, making it suitable for real-time applica-
tions with limited resources [58]. However, it assumes that the signal is linear and that the
noise in the data is small. The LPI interpolation method’s general Equation (1) can estimate
the signal value at any intermediate time point by linearly interpolating between adjacent
data points using the slope of the straight line that passes through them.

zi = y(si) + εi = X(si)β(s) + εi (1)

where zi is the estimated value of the unknown point at the location si. y(si) is the true
value of the dependent, εi is the residual error, X(si) is a matrix of independent variables,
and β(s) is a vector of regression coefficients at location si.

The LPI interpolation method maps regularly collected data from GW monitoring
networks, especially in heterogeneous areas.

3.2.2. IDW

The IDW interpolation method is another popular technique used for GW-quality
mapping. IDW stands for Inverse Distance Weighting, which means that the method
calculates the interpolated values based on the weighted average of the measured values
from the nearest neighbouring data points. The weight of each point is determined based
on its distance from the interpolated point, with closer points having a higher weight than
those farther away. This method is often used when the spatial distribution of data is
uneven and the data points are unevenly spaced. The IDW interpolation method is easy to
implement and computationally efficient, making it suitable for large datasets. However, it
assumes that the underlying data is continuous and no abrupt changes exist. The general
equation for the IDW interpolation method can estimate the value at any point by using
the following formula (Equation (2)).

Z(x, y) = ∑
[
Zi/(distance)p]/ ∑

[
1/(distance)p] (2)

where Z(x,y) is the estimated value at a given point, Zi is the measured value at the ith
location, and p is the power parameter used to control the influence of the distance on
the weights. The IDW interpolation method can produce surfaces that capture long-range
variation but may not be suitable for capturing short-range variation as the method needs
to consider the spatial relationships between the data points.

3.2.3. Classical Kriging Methods

Classical Kriging is a powerful geostatistical technique used to predict the value of
a regional variable at unsampled locations based on measured data. As a set of linear
regression routines, it assumes that the variable can be considered regional, meaning that it
varies continuously and has a certain degree of spatial correlation between nearby points.
The method relies on variograms, which describe the spatial correlation of the variable at
different distances. By contracting the variogram from the measured data (m̂), the predicted
value (ẑ) at an unsampled location (s0) can be estimated. The spatial trend and random
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components can be added using the semivariogram (ê). The variogram range presents the
distance at which spatial correlation vanishes, indicating the maximum distance at which
points can be considered statistically independent. Different kriging techniques, such as OK
and UK, are employed based on these variables to obtain robust predictions (Equation (3)).

ẑ(s0) = m̂(s0) + ê(s0) (3)

OK

Ordinary Kriging (OK) is a geostatistical technique commonly used for spatial pre-
diction. It computes optimal weights based on the semivariogram of the data and assigns
weights to measured points to predict values at unsampled locations [59]. OK also incor-
porates a location-dependent mean that can vary from one point to another. This makes
OK estimation robust even when the stationarity condition is violated. OK assumes a
quasi-stationarity condition, meaning the covariance is considered constant while the mean
can vary [60,61]. Therefore, OK can assume that there is mean stationarity within the
kriging search neighbourhood (2). This allows for more accurate predictions in situations
where the mean of the studied variable varies over space (Equation (4)).

ẑ(s0) = ∑n
i=1 widi (4)

where ẑ(s0) represents the estimated value at the unsampled location s0, n represents the
number of data locations available for the variable being studied, di is the known value at
location i in the study area, and wi represents the weight assigned to location i based on
the model semivariogram.

SK

According to Viswanathan et al. [62], SK differs from OK in that it employs the global
mean of the complete dataset and subsequently incorporates estimated residuals. The
equation for UK can be expressed as Equation (5).

ẑ(s0) = m + ∑n
i=1 λi[di −m] (5)

The weight assigned for location i is represented by λi, and the average value derived
from the sample variance is denoted by m.

UK

Universal Kriging (UK) is another geostatistical technique commonly used for spatial
prediction. Like Ordinary Kriging, UK also uses a location-dependent mean, but instead of
assuming a constant mean, UK calculates the mean using a multi-order polynomial [63].
The estimated residual is then added to provide a more precise result. The equation for UK
can be expressed as Equation (6).

ẑ(s0) = ∑N
i=1 λiZ(di) (6)

where λi represents the weight assigned to location i and Z(di) represents the observed
values at points di, found from the sample variance.

The main difference between UK and OK is that UK does not assume stationarity
and does not remove trends [59]. Instead, UK calculates the mean using a polynomial and
then estimates the residual to provide a more accurate result. Additionally, UK requires
prior knowledge of the covariates and parameters, while OK does not. In summary, UK
estimates the mean using a polynomial while both UK and OK use a location-dependent
mean. It estimates the residual, whereas OK assumes a constant mean and removes trends.

If a polynomial function can capture the trend component of the spatial variation,
then LPI is equivalent to Universal Kriging. However, if the spatial trend is more complex
than can be described by a polynomial, then the UK model may provide more accurate
results. A detailed discussion on the relationship between classical kriging methods and
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deterministic interpolation methods, such as LPI, can be found in the literature, including
Krivoruchko [64] and Li and Heap [65].

3.2.4. EBK

The EBK interpolation method stands out from other classical kriging approaches
because it uses a system that automatically optimises several semivariogram models rather
than relying on a single semivariogram [66,67] and manual parameter adjustments [58,66].
By assuming variations at location i, (z) are statistically homogeneous across the surface,
and EBK predicts values at specified locations using a limited number of nearest observa-
tions. To generate these semivariograms automatically, EBK uses a process of subsetting
and simulations. This allows the algorithm to create a regression kriging model that bends
to prior local trends when the data coverage is insufficient [68,69]. Multiple data subsets,
including those with different trends, can contribute to the prediction results. The final
distribution map is created by combining the results of the local models [67,70]. Overall,
EBK is a solid non-stationary algorithm for spatiotemporal interpolation and is often the
best of all geostatistical models for interpolating GW data. The general equation for EBK is
(Equation (7)):

Z(u) = ∑(i = 1 to n)λi(u)Zi (7)

where Z(u) is the estimated value at location u, Zi is the known value at sample location i,
n is the number of sample points, and λi(u) is the kriging weight assigned to each sample
point i at location u.

The kriging weight λi(u) is calculated using (Equation (8)):

λi(u) = wi(u)/ ∑(j = 1 to n)wj(u) (8)

where wi(u) is the weight assigned to sample point i at location u and is calculated using
(Equation (9)):

wi(u) = 1/(vi(u) + τ2) (9)

where vi(u) is the estimated local variance at location u, and τ is the estimation er-
ror variance.

3.3. Interpolation and Validation

In this study, ArcMap 10.8 was used to apply various tasks to the data. The geostatisti-
cal wizard within ArcMap was utilised to adjust the parameter configurations for optimal
interpolation methods. NO3 concentrations decreased first-order across the study site. To
adhere to kriging’s assumption that there should be no global trends in the dataset, the
first-order trend was removed from the three interpolation methods [59,71,72]. Further-
more, NO3 concentrations were not normally distributed, were corrected in the OK and
EBK interpolation models using a log transformation [73,74], and were confirmed using
the Geostatistical Wizard’s Quantile–Quantile (QQ) Plots. We used the exponential kernel
function and the semivariogram function type in the OK interpolation method. All other
variables were kept at their standard values while optimising the interpolation model for
fit and accuracy. For EBK interpolation, log empirical transformation and the exponen-
tial semivariogram model were used; all other settings were kept as default. Improved
operational efficiency and accuracy were gained by keeping the semivariogram power at
100 simulations [75]. For IDW interpolation, the weighting power was set to one because it
showed the lowest RMSE. This means that, for the NO3 data, points farther away can still
have a significant effect on the predictions [76].

The leave-one-out cross-validation (LOOCV) technique is well-established for eval-
uating interpolation accuracy in hydrogeological studies [77,78]. LOOCV systematically
removes each point in the interpolation, predicts its value by interpolating the remaining
points, and compares the expected value to the measured value [76,78]. This method pro-
vides reliable and widely accepted results by providing Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE) values. The lowest value of RMSE determines the most
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appropriate interpolation method [60,79]. The mean value is also employed to detect any
bias or smoothing effects introduced by cross-validation errors. In addition, Nash–Sutcliffe
Efficiency (NSE) is a statistical measure used to evaluate the accuracy of a hydrological
model’s predictions. It is based on comparing modelled discharge with observed data, and
the resulting efficiency values can range from negative infinity to 1. An efficiency value of
1 indicates a perfect match between the model’s predictions and the observed data [76,80].
In contrast, a value of 0 suggests that the model predictions are as accurate as the mean of
the observed data. However, when the efficiency value is less than zero, it indicates that
the observed mean is a better predictor than the model, implying that the model’s residual
variance is larger than the data variance. In essence, the closer the efficiency value is to 1,
the more accurate the model’s predictions are, and the closer it is to 0, the less accurate the
model becomes. As a result, the RMSE, MAE, and NSE were calculated with the following
Equation (10) to (13) to assess the performance of different interpolation methods.

RMSE =

√
1
n ∑n

i=1[Z(xi)− Z∗(xi)]
2 (10)

MAE =
∑n

i=1|Z∗(xi)− Z(xi)|
n

(11)

NSE = 1−
∑n

i=1

[
(z(xi)− Z∗(xi)]

2

∑n
i=1

[
(z(xi)−O]2

(12)

where z(xi), and Z∗(xi) are the observed and interpolated values of the NO3 concentration
of the ith well, n is the number of observations, and O is the mean of these values.

4. Results and Discussion
4.1. Measured NO3 Concentrations

NO3 is a common contaminant found in GW that can pose health risks to humans
and animals if present in excessive amounts. To ensure safe drinking water, different
countries and organisations have established various classifications and limits for NO3
levels. The Environmental Protection Agency has set a maximum contaminant level of
10 mg/L for NO3 in drinking water in the United States [81]. In comparison, the WHO
recommends a limit of 50 mg/L for NO3 in drinking water [52]. Similarly, in Europe, the
European Union has set a limit of 50 mg/L for NO3 in drinking water and has established
GW quality standards for NO3 levels that vary by country [82]. Per Iranian guidelines, NO3
concentration should not surpass 50 mg/L. Additionally, nitrite (NO2) is recognised as
another crucial indicator. When compared to their respective standard values, the sum ratio
of each of these elements should not exceed one [83]. These classifications and limits ensure
that NO3 levels in GW remain within safe and acceptable levels for human consumption
and environmental protection. Table 2 presents the common implementation strategy for
NO3 in drinking water based on WHO’s recommendations [52].

Table 2. Common implementation strategy for NO3 in drinking water.

Purpose Proper (mg/L) Good (mg/L) Fair (mg/L) Poor

Drinking Water Quality <10 10–20 20–50 >50

Table 3 presents the temporal patterns observed among the NO3 concentrations across
the study area (cf. Table 1). The table shows the number of wells in each category and the
minimum, mean ± SD, and maximum NO3 concentration (mg/L) for each category.
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Table 3. NO3 concentration and WHO classification across sampling periods.

Sampling
Periods

WHO
Classification Count

NO3 Concentration (mg/L)

Minimum Mean ± SD Maximum

Spring

Good 1 15 15.3 15

Fair 7 23 25.6 ± 2.6 31

Poor 7 80 111 ± 26 153

Summer
Fair 11 24 34 ± 9 49

Poor 8 75 105.2 ± 24.9 148

Autumn

Excellent 1 5 4.6 5

Good 4 12 15.7 ± 2.9 19

Fair 15 22 27.8 ± 6.5 47

Poor 7 55 101.9 ± 27.5 140

Winter

Good 2 15 16 ± 1.1 17

Fair 12 21 29.9 ± 7.1 41

Poor 6 57 107.8 ± 28.5 142

In the Spring sampling period, only one well had a Good water quality classification
with an NO3 concentration of 15 mg/L. Seven wells were classified as Fair, with a mean
NO3 concentration of 25.6 mg/L and a maximum concentration of 31 mg/L. The Poor
category had the highest count of wells (80), with a mean NO3 concentration of 111 mg/L
and a maximum concentration of 153 mg/L. During the summer, 11 wells were classified as
Fair, with a mean NO3 concentration of 34 mg/L and a maximum concentration of 49 mg/L.
Eight wells were classified as Poor, with a mean NO3 concentration of 105.2 mg/L and a
maximum concentration of 148 mg/L.

In the Autumn sampling period, one well was classified as Excellent, with a NO3
concentration of 4.6 mg/L. Four wells were classified as Good, with a mean NO3 con-
centration of 15.7 mg/L and a maximum concentration of 19 mg/L. Fifteen wells were
classified as Fair, with a mean NO3 concentration of 27.8 mg/L and a maximum concen-
tration of 47 mg/L. Seven wells were classified as Poor, with a mean NO3 concentration
of 101.9 mg/L and a maximum concentration of 140 mg/L. During the Winter sampling
period, two wells were classified as Good, with a mean NO3 concentration of 16 mg/L and
a maximum concentration of 17 mg/L. Twelve wells were classified as Fair, with a mean
NO3 concentration of 29.9 mg/L and a maximum concentration of 41 mg/L. Six wells
were classified as Poor, with a mean NO3 concentration of 107.8 mg/L and a maximum
concentration of 142 mg/L.

The data show that the NO3 concentrations in the study area varied widely across
the sampling periods. The presence of a significant temporal pattern in our study area
compounds the importance of spatial patterns. High NO3 concentration levels consistently
exceed 40 mg/L, posing an ongoing threat to human health and the environment. Interpo-
lation methods play a critical role in generating spatial maps that pinpoint the areas most
affected by agricultural activities and identify the sources of NO3 pollution. Armed with
this crucial information, we can develop targeted management strategies to reduce the
harmful effects of NO3 pollution and mitigate its impact over time.

Moreover, by highlighting farming activities, such as fertiliser use and animal waste
management, as the primary contributors to high NO3 levels in water sources, interpolation
can raise awareness among stakeholders and farmers about the severity of NO3 pollution.
Encouraging behavioural changes towards more sustainable farming practices, like adopt-
ing improved fertiliser application techniques and better animal waste management, is
crucial to addressing the problem.
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The interpolation of NO3 concentration in water sources is essential for protecting
human health and the environment. By creating spatial maps of NO3 concentration, we
can identify high-risk areas and implement effective management strategies to reduce NO3
pollution in our study area. A combination of public education campaigns and targeted
management strategies can also promote behavioural changes among stakeholders and
farmers, leading to sustainable agriculture practices that safeguard the environment and
human health.

4.2. Visualisation of Prediction

NO3 is a prevalent form of groundwater contamination on a global scale [84]. Its
transfer from surface waters can exacerbate water quality issues and harm ecosystems [85].
The spatial distribution of NO3 in the analysed area was demonstrated using the IDW, LPI,
UK, OK, and EBK methodologies and displayed significant variations in overall accuracy
due to over or underestimation. The parameters’ values obtained in this study exhibit
spatial variability, as reported by previous researchers [86]. Nevertheless, all five techniques
predicted that the highest NO3 values would be concentrated in the northeast and central
regions (Figure 5). The observed outcome could be attributed to applying mineral fertilisers
and the local topography, which enables the movement of nitrate-contaminated water
across the surface and subsurface. The significant reduction in nitrates in the grassland can
be attributed to the extensive uptake of nitrate forms, mainly due to plants’ high solubility
and easy absorption of nitrates. The diminished presence of nitrogen in the grassland may
have been attributed to the decrease in nitrification processes, which can be attributed to
elevated groundwater levels and a reduced thickness of the aeration zone in the lower
regions. At the same time, lower levels (around or below 20 mg/L) were mainly found in
the southern part of the study area. Several potential factors may have exerted influence in
this context. One possible explanation for this phenomenon is the absence of vegetation in
the field, which may lead to heightened mineralisation processes of organic matter in plant
remnants and residues after mineral fertilisation.

Second, in desert regions, the NO3 concentration in GW can vary significantly, par-
ticularly during autumn. This variation can be attributed to a multitude of factors. One
of the critical factors is the scarcity of nitrate sources in these areas, especially during
the summer when these sources are not utilised. Moreover, human activities such as
agriculture, which often involve nitrate-rich fertilisers, are typically reduced during this
period. This reduction, coupled with the low levels of rainfall—a primary vehicle for nitrate
transport into groundwater—results in a significant decrease in nitrate infiltration [87]. The
physical properties of desert soils, which are predominantly sandy and exhibit low water
retention, further impede the transport of nitrates into the groundwater. Notably, nitrate
transport from surface water to groundwater is not instantaneous but instead is dictated
by the hydraulic flow, which requires time [88,89]. This time-dependent process could
explain why the lowest nitrate concentrations are observed in the autumn, as the process
commences in the summer but takes time to manifest in the groundwater nitrate levels.
Therefore, the nitrate concentration in the groundwater reflects the cumulative effects of
these seasonal and environmental factors.

Examining the spatial distribution of NO3 in groundwater or soil has garnered con-
siderable interest within environmental studies in recent times. Although the research
literature has extensively examined various aspects of the subject, there has been a lack
of focus on comparing prediction accuracy. In their study, Hong et al. [90] employed
two methodologies, OK and IDW interpolation, to illustrate groundwater NO3’s spatial
distribution effectively. Bernard-Jannin et al. [91] employed the Inverse IDW method to
assess the spatial and temporal fluctuations of denitrification rates within a floodplain
region. A limited number of scholarly articles have addressed the quantitative evaluation
of the precision of various spatial interpolation methods. Prominent instances encompass
the works of Kazemi et al. [92] and Bronowicka et al. [93]. The research conducted by
Kazemi et al. [92] holds significant relevance in this context. The present study assessed
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the performance of four geostatistical methods, namely IDW, spline, natural neighbour,
and OK, in estimating nitrate concentration levels in groundwater. The evaluation of the
accuracy of each method was conducted using MRE, RMSE, and %RMSE (percentage root
mean square error) as the criteria. The study’s results indicated that the spline and natural
neighbour methods yielded more precise estimations than the IDW and OK methods. In
summary, using geostatistical methods demonstrated superior fitting performance com-
pared to deterministic methods. Although no universally superior method was identified,
the most precise outcomes were obtained using the Co-OK approach.
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4.3. Cross-Validation Analyses

The given table provides a comparison of different interpolation methods based on
their statistical indices for four different seasons. To evaluate the overall performance
of each method, the mean and standard deviation of the three statistical indices, namely
RMSE, Mean CV, and NSE, were calculated (Table 4). The LPI method has a mean RMSE of
36.55 and a standard deviation of 7.93, a mean Mean CV of 2.93 and a standard deviation
of 2.21, and a mean NSE of 0.118 with a standard deviation of 0.106. The IDW method has
a mean RMSE of 34.28 with a standard deviation of 4.05, a mean Mean CV of −0.9 and a
standard deviation of 2.52, and a mean NSE of 0.08 with a standard deviation of 0.032. The
OK method has a mean RMSE of 33.25 and a standard deviation of 3.37, a mean Mean CV
of 0.4 and a standard deviation of 1.26, and a mean NSE of 0.06 with a standard deviation
of 0.058. The SK method has a mean RMSE of 39.6 and a standard deviation of 2.49, a mean
Mean CV of 0.47 and a standard deviation of 1.2, and a mean NSE of 0.182 with a standard
deviation of 0.008. The UK method has a mean RMSE of 31.56 and a standard deviation of
38.37, a mean Mean CV of 0.78 and a standard deviation of 1.47, and a mean NSE of 0.071
with a standard deviation of 0.032. Finally, the EBK method has a mean RMSE of 28.72 with
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a standard deviation of 1.62, a mean Mean CV of 0.03 and a standard deviation of 1.01, and
a mean NSE of 0.193 with a standard deviation of 0.023.

Table 4. Statistical results of each interpolation method for each sampling period in the study.
Interpolation methods used. RMSE, MAE, NSE, and Mean CV are shown.

Interpolation Method Statistical Indices Spring Summer Autumn Winter

LPI

RMSE 47.3 31.6 30.5 38.8

Mean CV 5.1 3 0.68 0.94

NSE 0.017 0.098 0.282 0.076

IDW

RMSE 37.6 36.9 28.2 35.4

Mean CV −1.9 3.43 −2.54 −2.41

NSE 0.117 0.093 0.081 0.028

OK

RMSE 37.6 34.3 28.05 33.05

Mean CV 1.19 −1.03 −0.44 1.89

NSE 0.015 0.043 0.032 0.148

SK

RMSE 43.1 39.7 35.5 40.1

Mean CV −0.93 0.55 2.1 0.137

NSE 0.186 0.173 0.193 0.185

UK

RMSE −0.93 44.3 37.8 42.9

Mean CV 2.15 −1.03 −0.66 1.68

NSE 0.085 0.093 0.091 0.014

EBK

RMSE 28.6 26.5 28.1 30.63

Mean CV 1.4 −0.76 −0.72 0.1

NSE 0.223 0.166 0.189 0.192

Looking at the RMSE values, we can see that EBK had the lowest error for all four sea-
sons, followed by IDW and OK. LPI had the highest RMSE values for all seasons, indicating
it had the poorest performance among the methods. The IDW method had negative Mean
CV values for all seasons, suggesting that it tended to underestimate the values. LPI had
positive Mean CV values for all seasons, indicating that it tended to overestimate them.
SK had positive Mean CV values for Spring and Winter and negative Mean CV values for
Summer and Autumn, indicating that it overestimated values in the former and underesti-
mated them in the latter. UK had positive Mean CV values for spring and negative values
for the other three seasons. EBK had negative Mean CV values for Summer, Autumn, and
Winter, indicating that it tended to underestimate the values.

Looking at the NSE values, we can see that SK had the highest NSE values for all
seasons except for Winter, where EBK had the highest value. LPI had the lowest NSE values
for all seasons, indicating the poorest performance among the methods. The table shows
that SK and EBK performed better than the other methods, while LPI performed poorly.
However, it is important to note that the performance of each method varied depending on
the season, with some methods performing better in certain seasons than others.

5. Conclusions

This research aimed to assess different interpolation methods and identify the most
accurate one for point estimations. This is crucial for understanding NO3 concentrations in
groundwater and ensuring the safety of drinking water. The study emphasises the impor-
tance of understanding the temporal and spatial patterns of NO3 pollution. Interpolation
methods are vital in creating spatial maps to locate pollution sources and develop targeted
management strategies. These methods can also raise awareness among stakeholders and
farmers about the severity of NO3 pollution, encouraging a move towards more sustainable
farming practices.
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The Empirical Bayesian Kriging (EBK) method is the most effective overall among
the five interpolation methods evaluated, according to the statistical indices presented.
However, it is important to remember that the effectiveness of each method changes with
the season, and no single method consistently performs the best throughout the year. As a
result, the choice of an interpolation method should be customised to the study’s specific
needs and the characteristics of the data being interpolated.

There is not a one-size-fits-all approach to choosing an interpolation type. Creating
the most accurate representation of spatial variability for a given characteristic should
always start with selecting an interpolation method. The initial selection of interpolation
method should consider sample sizes, sampling types, and data distribution. After per-
forming specific interpolations, the best method can be selected based on relevant statistical
error measures.

Author Contributions: M.Z.: Investigation, Methodology, Visualisation, Resources, Formal analysis,
Validation, Writing–original draft, Review and editing, Data curation, Conceptualisation. S.H. and
M.A.R.: Project administration, Supervision, Review and editing. All authors have read and agreed
to the published version of the manuscript.

Funding: Mojtaba Zaresefat would like to sincerely thank the Ministry of Science, Research, and
Technology (MSRT) for their financial support through the Islamic Republic of Iran government’s
scholarship program.

Data Availability Statement: The data compiled in this study can be obtained upon request from
the corresponding author. They are not publicly accessible due to privacy considerations for the third
party, Khorasan Razavi Regional Water Company.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zaresefat, M.; Derakhshani, R. Revolutionizing Groundwater Management with Hybrid AI Models: A Practical Review. Water

2023, 15, 1750. [CrossRef]
2. Rezaei, A.; Hassani, H.; Hassani, S.; Jabbari, N.; Fard Mousavi, S.B.; Rezaei, S. Evaluation of Groundwater Quality and Heavy

Metal Pollution Indices in Bazman Basin, Southeastern Iran. Groundw. Sustain. Dev. 2019, 9, 100245. [CrossRef]
3. Rezaei, A.; Hassani, H.; Jabbari, N. Evaluation of Groundwater Quality and Assessment of Pollution Indices for Heavy Metals in

North of Isfahan Province, Iran. Sustain. Water Resour. Manag. 2019, 5, 491–512. [CrossRef]
4. Mammeri, A.; Tiri, A.; Belkhiri, L.; Salhi, H.; Brella, D.; Lakouas, E.; Tahraoui, H.; Amrane, A.; Mouni, L. Assessment of Surface

Water Quality Using Water Quality Index and Discriminant Analysis Method. Water 2023, 15, 680. [CrossRef]
5. Tiri, A.; Lahbari, N.; Boudoukha, A. Hydrochemical Characterization of Surface Water in the Timgad Watershed, East Algeria.

Desalination Water Treat. 2016, 57, 562–571. [CrossRef]
6. Zaresefat, M.; Derakhshani, R.; Nikpeyman, V.; GhasemiNejad, A.; Raoof, A. Using Artificial Intelligence to Identify Suitable

Artificial Groundwater Recharge Areas for the Iranshahr Basin. Water 2023, 15, 1182. [CrossRef]
7. Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A.

Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [CrossRef]
8. Wu, J.; Sun, Z. Evaluation of Shallow Groundwater Contamination and Associated Human Health Risk in an Alluvial Plain

Impacted by Agricultural and Industrial Activities, Mid-West China. Expo Health 2016, 8, 311–329. [CrossRef]
9. He, S.; Wu, J. Hydrogeochemical Characteristics, Groundwater Quality, and Health Risks from Hexavalent Chromium and Nitrate

in Groundwater of Huanhe Formation in Wuqi County, Northwest China. Expo. Health 2019, 11, 311–329. [CrossRef]
10. Childs, D.B. Water Source and Thyroid Disease Mortality in Georgia. ABNF J. 2020, 31, 127–131.
11. Ward, M.H.; Jones, R.R.; Brender, J.D.; de Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; van Breda, S.G. Drinking Water

Nitrate and Human Health: An Updated Review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [CrossRef]
12. World Health Organization. WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011;

Volume 216, pp. 303–304.
13. Xi, Y.; Xu, P. Global Colorectal Cancer Burden in 2020 and Projections to 2040. Transl. Oncol. 2021, 14, 101174. [CrossRef]
14. Ahmed, N.; Bodrud-Doza, M.; Towfiqul Islam, A.R.M.; Hossain, S.; Moniruzzaman, M.; Deb, N.; Bhuiyan, M.A.Q. Appraising

Spatial Variations of As, Fe, Mn and NO3 Contaminations Associated Health Risks of Drinking Water from Surma Basin,
Bangladesh. Chemosphere 2019, 218, 726–740. [CrossRef]

15. Busico, G.; Kazakis, N.; Colombani, N.; Mastrocicco, M.; Voudouris, K.; Tedesco, D. A Modified SINTACS Method for Groundwa-
ter Vulnerability and Pollution Risk Assessment in Highly Anthropised Regions Based on NO3

− and SO4
2− Concentrations. Sci.

Total Environ. 2017, 609, 1512–1523. [CrossRef] [PubMed]

https://doi.org/10.3390/w15091750
https://doi.org/10.1016/j.gsd.2019.100245
https://doi.org/10.1007/s40899-017-0209-1
https://doi.org/10.3390/w15040680
https://doi.org/10.1080/19443994.2014.972983
https://doi.org/10.3390/w15061182
https://doi.org/10.1126/science.1136674
https://doi.org/10.1007/s12403-015-0170-x
https://doi.org/10.1007/s12403-018-0289-7
https://doi.org/10.3390/ijerph15071557
https://doi.org/10.1016/j.tranon.2021.101174
https://doi.org/10.1016/j.chemosphere.2018.11.104
https://doi.org/10.1016/j.scitotenv.2017.07.257
https://www.ncbi.nlm.nih.gov/pubmed/28800693


Water 2023, 15, 4220 15 of 17

16. Nejatijahromi, Z.; Nassery, H.R.; Hosono, T.; Nakhaei, M.; Alijani, F.; Okumura, A. Groundwater Nitrate Contamination in an
Area Using Urban Wastewaters for Agricultural Irrigation under Arid Climate Condition, Southeast of Tehran, Iran. Agric. Water
Manag. 2019, 221, 397–414. [CrossRef]

17. Griffioen, J.; Vermooten, S.; Janssen, G. Geochemical and Palaeohydrological Controls on the Composition of Shallow Groundwa-
ter in the Netherlands. Appl. Geochem. 2013, 39, 129–149. [CrossRef]

18. Severini, E.; Bartoli, M.; Pinardi, M.; Celico, F. Reactive Silica Traces Manure Spreading in Alluvial Aquifers Affected by Nitrate
Contamination: A Case Study in a High Plain of Northern Italy. Water 2020, 12, 2511. [CrossRef]

19. Brella, D.; Belkhiri, L.; Tiri, A.; Salhi, H.; Lakouas, F.E.; Nouibet, R.; Amrane, A.; Merdoud, R.; Mouni, L. Identification of the
Groundwater Quality and Potential Noncarcinogenic Health Risk Assessment of Nitrate in the Groundwater of El Milia Plain,
Kebir Rhumel Basin, Algeria. Hydrology 2023, 10, 171. [CrossRef]

20. He, X.; Wu, J.; He, S. Hydrochemical Characteristics and Quality Evaluation of Groundwater in Terms of Health Risks in Luohe
Aquifer in Wuqi County of the Chinese Loess Plateau, Northwest. Hum. Ecol. Risk Assess. Int. J. 2018, 25, 32–51. [CrossRef]

21. Yu, L.; Zheng, T.; Zheng, X.; Hao, Y.; Yuan, R. Nitrate Source Apportionment in Groundwater Using Bayesian Isotope Mixing
Model Based on Nitrogen Isotope Fractionation. Sci. Total Environ. 2020, 718, 137242. [CrossRef]

22. Kazakis, N.; Matiatos, I.; Ntona, M.M.; Bannenberg, M.; Kalaitzidou, K.; Kaprara, E.; Mitrakas, M.; Ioannidou, A.; Vargemezis, G.;
Voudouris, K. Origin, Implications and Management Strategies for Nitrate Pollution in Surface and Ground Waters of Anthe-
mountas Basin Based on a δ15N -NO3− and δ18O- -NO3− Isotope Approach. Sci. Total Environ. 2020, 724, 138211. [CrossRef]
[PubMed]

23. Ahada, C.P.S.; Suthar, S. Groundwater Nitrate Contamination and Associated Human Health Risk Assessment in Southern
Districts of Punjab, India. Environ. Sci. Pollut. Res. 2018, 25, 25336–25347. [CrossRef] [PubMed]

24. Jalali, M. Nitrates Leaching from Agricultural Land in Hamadan, Western Iran. Agric. Ecosyst. Environ. 2005, 110, 210–218.
[CrossRef]

25. Solgi, E.; Jalili, M. Zoning and Human Health Risk Assessment of Arsenic and Nitrate Contamination in Groundwater of
Agricultural Areas of the Twenty Two Village with Geostatistics (Case Study: Chahardoli Plain of Qorveh, Kurdistan Province,
Iran). Agric. Water Manag. 2021, 255, 107023. [CrossRef]

26. Bahrami, M.; Zarei, A.R.; Rostami, F. Temporal and Spatial Assessment of Groundwater Contamination with Nitrate by Nitrate
Pollution Index (NPI) and GIS (Case Study: Fasarud Plain, Southern Iran). Environ. Geochem. Health 2020, 42, 3119–3130.
[CrossRef] [PubMed]

27. Ghahremanzadeh, H.; Noori, R.; Baghvand, A.; Nasrabadi, T. Evaluating the Main Sources of Groundwater Pollution in the
Southern Tehran Aquifer Using Principal Component Factor Analysis. Environ. Geochem. Health 2017, 40, 1317–1328. [CrossRef]

28. Badrzadeh, N.; Samani, J.M.V.; Mazaheri, M.; Kuriqi, A. Evaluation of Management Practices on Agricultural Nonpoint Source
Pollution Discharges into the Rivers under Climate Change Effects. Sci. Total Environ. 2022, 838, 156643. [CrossRef]

29. Karavidas, I.; Ntatsi, G.; Vougeleka, V.; Karkanis, A.; Ntanasi, T.; Saitanis, C.; Agathokleous, E.; Ropokis, A.; Sabatino, L.;
Tran, F.; et al. Agronomic Practices to Increase the Yield and Quality of Common Bean (Phaseolus vulgaris L.): A Systematic Review.
Agronomy 2022, 12, 271. [CrossRef]

30. Foroushani, T.S.; Balali, H.; Movahedi, R.; Kurban, A.; Värnik, R.; Stamenkovska, I.J.; Azadi, H. Importance of Good Groundwater
Governance in Economic Development: The Case of Western Iran. Groundw. Sustain. Dev. 2023, 21, 100892. [CrossRef]

31. Ehteshami, M.; Salari, M.; Zaresefat, M. Sustainable Development Analyses to Evaluate Groundwater Quality and Quantity
Management. Model. Earth Syst. Environ. 2016, 2, 133. [CrossRef]

32. Zaresefat, M.; Kalantari, N.; Aram, E.; Rouhi, H. Potential for Natural Feeding of Groundwater Using FAHP Method and GIS
Software. In Proceedings of the Thirtieth Meeting of Earth Sciences, Tehran, Iran, 16 May 2011; pp. 1–5.

33. Zaresefat, M.; Ahrari, M.; Reza Shoaei, G.; Etemadifar, M.; Aghamolaie, I.; Derakhshani, R. Identification of Suitable Site-Specific
Recharge Areas Using Fuzzy Analytic Hierarchy Process (FAHP) Technique: A Case Study of Iranshahr Basin (Iran). Air Soil
Water Res. 2022, 15, 1–12. [CrossRef]

34. Liu, C.W.; Jang, C.S.; Liao, C.M. Evaluation of Arsenic Contamination Potential Using Indicator Kriging in the Yun-Lin Aquifer
(Taiwan). Sci. Total Environ. 2004, 321, 173–188. [CrossRef]

35. Freitag, P.; Martac, E.; Reichenauer, T. On the Effectiveness of Site Investigation in Regard to Project Costs—A Case Study.
Ce/papers 2018, 2, 439–444. [CrossRef]

36. Bhunia, G.S.; Shit, P.K.; Maiti, R. Comparison of GIS-Based Interpolation Methods for Spatial Distribution of Soil Organic Carbon
(SOC). J. Saudi Soc. Agric. Sci. 2018, 17, 114–126. [CrossRef]

37. Murphy, R.R.; Curriero, F.C.; Ball, W.P. Comparison of Spatial Interpolation Methods for Water Quality Evaluation in the
Chesapeake Bay. J. Environ. Eng. 2010, 136, 160–171. [CrossRef]

38. Saha, A.; Gupta, B.S.; Patidar, S.; Martínez-Villegas, N. Spatial Distribution Based on Optimal Interpolation Techniques and
Assessment of Contamination Risk for Toxic Metals in the Surface Soil. J. S. Am. Earth Sci. 2022, 115, 103763. [CrossRef]

39. Amah, V.E.; Agu, F.A. Geostatistical Modelling of Groundwater Quality at Rumuola Community, Port Harcourt, Nigeria. Asian
J. Environ. Ecol. 2020, 12, 37–47. [CrossRef]

40. Koussa, M.; Berhail, S. Evaluation of Spatial Interpolation Techniques for Mapping Groundwater Nitrates Concentrations—Case
Study of Ain Elbel-Sidi Makhlouf Syncline in The Djelfa Region (Algeria). LARHYSS 2021, 45, 119–140.

https://doi.org/10.1016/j.agwat.2019.04.015
https://doi.org/10.1016/j.apgeochem.2013.10.005
https://doi.org/10.3390/w12092511
https://doi.org/10.3390/hydrology10080171
https://doi.org/10.1080/10807039.2018.1531693
https://doi.org/10.1016/j.scitotenv.2020.137242
https://doi.org/10.1016/j.scitotenv.2020.138211
https://www.ncbi.nlm.nih.gov/pubmed/32272406
https://doi.org/10.1007/s11356-018-2581-2
https://www.ncbi.nlm.nih.gov/pubmed/29946843
https://doi.org/10.1016/j.agee.2005.04.011
https://doi.org/10.1016/j.agwat.2021.107023
https://doi.org/10.1007/s10653-020-00546-x
https://www.ncbi.nlm.nih.gov/pubmed/32146561
https://doi.org/10.1007/s10653-017-0058-8
https://doi.org/10.1016/j.scitotenv.2022.156643
https://doi.org/10.3390/agronomy12020271
https://doi.org/10.1016/j.gsd.2022.100892
https://doi.org/10.1007/s40808-016-0196-5
https://doi.org/10.1177/11786221211063849
https://doi.org/10.1016/j.scitotenv.2003.09.002
https://doi.org/10.1002/cepa.710
https://doi.org/10.1016/j.jssas.2016.02.001
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000121
https://doi.org/10.1016/j.jsames.2022.103763
https://doi.org/10.9734/ajee/2020/v12i130152


Water 2023, 15, 4220 16 of 17

41. Mukherjee, I.; Singh, U.K. Characterization of Groundwater Nitrate Exposure Using Monte Carlo and Sobol Sensitivity Ap-
proaches in the Diverse Aquifer Systems of an Agricultural Semiarid Region of Lower Ganga Basin, India. Sci. Total Environ. 2021,
787, 147657. [CrossRef]

42. Güler, M.; Kara, T. Comparison of Different Interpolation Techniques for Modelling Temperatures in Middle Black Sea Region.
J. Agric. Fac. Gaziosmanpasa Univ. 2014, 31, 61–71. [CrossRef]

43. Hengl, T. A Practical Guide to Geostatistical Mapping, 2nd ed.; EUR 22904 EN Scientific and Technical Research Series; Office for
Official Publications of the European Communities: Luxembourg, 2009.

44. Stahl, K.; Moore, R.D.; Floyer, J.A.; Asplin, M.G.; McKendry, I.G. Comparison of Approaches for Spatial Interpolation of Daily Air
Temperature in a Large Region with Complex Topography and Highly Variable Station Density. Agric. For. Meteorol. 2006, 139,
224–236. [CrossRef]

45. Wu, W.; Tang, X.-P.; Ma, X.-Q.; Liu, H.-B. A Comparison of Spatial Interpolation Methods for Soil Temperature over a Complex
Topographical Region. Theor. Appl. Climatol. 2016, 125, 657–667. [CrossRef]

46. Majid Padashi, S.; Büdel, C.; Ullmann, T.; Tintrup, A.; Baumhauer, R.; Majid Padashi, S.; Büdel, C.; Ullmann, T.; Tintrup, A.;
Baumhauer, R. Preliminary Results on Quaternary Studies from Bajestan Basin (Kavir-e Namak), Iran. EGUGA 2017, 19, 16532.

47. Nematollahi, M.J.; Ebrahimi, P.; Ebrahimi, M. Evaluating Hydrogeochemical Processes Regulating Groundwater Quality in an
Unconfined Aquifer. Environ. Process. 2016, 3, 1021–1043. [CrossRef]

48. Dehghani, M.H.; Zarei, A.; Yousefi, M.; Asgharia, F.B.; Haghighat, G.A. Fluoride Contamination in Groundwater Resources in the
Southern Iran and Its Related Human Health Risks. Desalination Water Treat. 2019, 153, 95–104. [CrossRef]

49. Mohammadzadeh, F.; Ekhtesasi, M.R.; Hosseini, S.Z.; Negaresh, A.; Hashemi, H.; Allaee, M. Investigating the Effect of Drinking
and Sanitary Water Separation on the Quality of Drinking Water and Preparing a Groundwater Quality Map (Case Study: Bajestan
Watershed). J. Watershed Manag. Res. 2022, 13, 215–229. [CrossRef]

50. Qasemi, M.; Afsharnia, M.; Farhang, M.; Bakhshizadeh, A.; Allahdadi, M.; Zarei, A. Health Risk Assessment of Nitrate Exposure
in Groundwater of Rural Areas of Gonabad and Bajestan, Iran. Environ. Earth Sci. 2018, 77, 551. [CrossRef]

51. Mohammadzadeh, F.; Ekhtesasi, M.R.; Hosseini, S.Z. The Effects of Geological Formations on Groundwater Quality with the
Application of Boolean Logic, Case Study: Bajestan Watershed Plain. Watershed Eng. Manag. 2017, 9, 11–21.

52. WHO. Nitrate and Nitrite in Drinking-Water Background Document for Development of WHO Guidelines for Drinking-Water Quality;
WHO/FWC/WSH/16.52; World Health Organization: Geneva, Switzerland, 2016.

53. de Smith, M.J.; Goodchild, M.F.; Longley, P. Geospatial Analysis: A Comprehensive Guide to Principles, Techniques and Software Tools,
6th ed.; Troubador Publishing Ltd.: Market Harborough, UK, 2021; ISBN 9781912556038.

54. Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; John Wiley & Sons: Hoboken, NJ, USA, 2007; ISBN 0470517263.
55. Smith, J.E.; von Winterfeldt, D. Decision Analysis in Management Science. Manag. Sci. 2004, 50, 561–574. [CrossRef]
56. Hani, A.; Abari, S.A.H. Determination of Cd, Zn, K, PH, TNV, Organic Material and Electrical Conductivity (EC) Distribution in

Agricultural Soils Using Geostatistics and GIS (Case Study: South–Western of Natanz–Iran). Int. J. Biol. Life Agric. Sci. 2011, 12,
852–855. [CrossRef]

57. Gribov, A.; Krivoruchko, K. Local Polynomials for Data Detrending and Interpolation in the Presence of Barriers. Stoch. Environ.
Res. Risk Assess. 2011, 25, 1057–1063. [CrossRef]

58. Esri. ArcGIS Geostatistical Analyst—Model Spatial Data & Uncertainty. Available online: https://www.esri.com/en-us/arcgis/
products/geostatistical-analyst/overview (accessed on 9 November 2021).

59. Paramasivam, C.R.; Venkatramanan, S. An Introduction to Various Spatial Analysis Techniques. In GIS and Geostatistical Techniques
for Groundwater Science; Elsevier: Amsterdam, The Netherlands, 2019; pp. 23–30, ISBN 9780128154137.

60. Lange, J.; Krause, E. Spatial Interpolation with ArcGIS Pro—Esri Training Seminar. 2019. Available online: https://www.esri.
com/training/catalog/5c92b940fa73df28264fb8ed/spatial-interpolation-with-arcgis-pro (accessed on 22 June 2022).

61. Esri. ArcMap—Documentation. Available online: https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/
conditional-evaluation-with-con.htm (accessed on 27 November 2021).

62. Viswanathan, R.; Jagan, J.; Samui, P.; Porchelvan, P. Spatial Variability of Rock Depth Using Simple Kriging, Ordinary Kriging,
RVM and MPMR. Geotech. Geol. Eng. 2015, 33, 69–78. [CrossRef]

63. Abdulmanov, R.; Miftakhov, I.; Ishbulatov, M.; Galeev, E.; Shafeeva, E. Comparison of the Effectiveness of GIS-Based Interpolation
Methods for Estimating the Spatial Distribution of Agrochemical Soil Properties. Environ. Technol. Innov. 2021, 24, 101970.
[CrossRef]

64. Krivoruchko, K. Spatial Statistical Data Analysis for GIS Users, 1st ed.; Esri Press: Redlands, CA, USA, 2011; ISBN 978-1-58948-161-9.
65. Li, J.; Heap, A.D. Spatial Interpolation Methods Applied in the Environmental Sciences: A Review. Environ. Model. Softw. 2014,

53, 173–189. [CrossRef]
66. Krivoruchko, K. Empirical Bayesian Kriging. ArcUser Fall 2012, 6, 1145.
67. Gribov, A.; Krivoruchko, K. Empirical Bayesian Kriging Implementation and Usage. Sci. Total Environ. 2020, 722, 137290.

[CrossRef] [PubMed]
68. Knotters, M.; Heuvelink, G.B.M. A Disposition of Interpolation Techniques; Wettelijke Onderzoekstaken Natuur & Milieu:

Wageningen, The Netherlands, 2010.
69. Krivoruchko, K.; Butler, K. Unequal Probability-Based Spatial Mapping; Esri: Redlands, CA, USA, 2013.

https://doi.org/10.1016/j.scitotenv.2021.147657
https://doi.org/10.13002/jafag714
https://doi.org/10.1016/j.agrformet.2006.07.004
https://doi.org/10.1007/s00704-015-1531-x
https://doi.org/10.1007/s40710-016-0192-9
https://doi.org/10.5004/dwt.2019.23993
https://doi.org/10.52547/jwmr.13.26.215
https://doi.org/10.1007/s12665-018-7732-8
https://doi.org/10.1287/mnsc.1040.0243
https://doi.org/10.5281/ZENODO.1328007
https://doi.org/10.1007/s00477-011-0488-2
https://www.esri.com/en-us/arcgis/products/geostatistical-analyst/overview
https://www.esri.com/en-us/arcgis/products/geostatistical-analyst/overview
https://www.esri.com/training/catalog/5c92b940fa73df28264fb8ed/spatial-interpolation-with-arcgis-pro
https://www.esri.com/training/catalog/5c92b940fa73df28264fb8ed/spatial-interpolation-with-arcgis-pro
https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/conditional-evaluation-with-con.htm
https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/conditional-evaluation-with-con.htm
https://doi.org/10.1007/s10706-014-9823-y
https://doi.org/10.1016/j.eti.2021.101970
https://doi.org/10.1016/j.envsoft.2013.12.008
https://doi.org/10.1016/j.scitotenv.2020.137290
https://www.ncbi.nlm.nih.gov/pubmed/32208233


Water 2023, 15, 4220 17 of 17

70. Krivoruchko, K.; Gribov, A. Distance Metrics for Data Interpolation over Large Areas on Earth’s Surface. Spat. Stat. 2020,
35, 100396. [CrossRef]

71. de Gans, W.; Wong, T.E.; Batjes, D.A.J.; de Jager, J. Geology of the Netherlands; Royal Netherlands Academy of Arts and Sciences:
Amsterdam, The Netherlands, 2007.

72. Jarmołowski, W.; Wielgosz, P.; Ren, X.; Krypiak-Gregorczyk, A. On the Drawback of Local Detrending in Universal Kriging in
Conditions of Heterogeneously Spaced Regional TEC Data, Low-Order Trends and Outlier Occurrences. J. Geod. 2021, 95, 2.
[CrossRef]

73. Gong, G.; Mattevada, S.; O’Bryant, S.E. Comparison of the Accuracy of Kriging and IDW Interpolations in Estimating Groundwater
Arsenic Concentrations in Texas; Elsevier: Amsterdam, The Netherlands, 2014.

74. Singh, P.; Verma, P. A Comparative Study of Spatial Interpolation Technique (IDW and Kriging) for Determining Groundwater
Quality. GIS Geostat. Tech. Groundw. Sci. 2019, 43–56. [CrossRef]

75. Tomlinson, K.M. A Spatial Evaluation of Groundwater Quality Salinity and Underground Injection Controlled Wells Activity in
Texas. Ph.D. Thesis, The University of Texas at Dallas, Richardson, TX, USA, 2019.

76. Xie, Y.; Chen, T.; Lei, M.; Yang, J.; Guo, Q.; Song, B.; Zhou, X. Spatial Distribution of Soil Heavy Metal Pollution Estimated by
Different Interpolation Methods: Accuracy and Uncertainty Analysis. Chemosphere 2011, 82, 468–476. [CrossRef]

77. Ahmad, A.Y.; Saleh, I.A.; Balakrishnan, P.; Al-Ghouti, M.A. Comparison GIS-Based Interpolation Methods for Mapping Ground-
water Quality in the State of Qatar. Groundw. Sustain. Dev. 2021, 13, 100573. [CrossRef]

78. Mirzaei, R.; Sakizadeh, M. Comparison of Interpolation Methods for the Estimation of Groundwater Contamination in Andimeshk-
Shush Plain, Southwest of Iran. Environ. Sci. Pollut. Res. 2016, 23, 2758–2769. [CrossRef]

79. Krause, E. Model Water Quality Using Interpolation. Available online: https://learn.arcgis.com/en/projects/model-water-
quality-using-interpolation (accessed on 15 February 2023).

80. Wagner, P.D.; Fiener, P.; Wilken, F.; Kumar, S.; Schneider, K. Comparison and Evaluation of Spatial Interpolation Schemes for
Daily Rainfall in Data Scarce Regions. J. Hydrol. 2012, 464–465, 388–400. [CrossRef]

81. EPA. Drinking Water Requirements for States and Public Water Systems. Available online: https://www.epa.gov/dwreginfo/
drinking-water-regulations (accessed on 4 April 2023).

82. EU Guidance Common Implementation Strategy for the Water Framework Directive (2000/60/EC); European Environment Agency:
Copenhagen, Denmark, 2003; Volume 7.

83. Institute of Standards and Industrial Research of Iran. Drinking Water—Physical and Chemical Specifications; Institute of Standards
and Industrial Research of Iran: Tehran, Iran, 2010.

84. Spalding, R.F.; Exner, M.E. Occurrence of Nitrate in Groundwater—A Review. J. Environ. Qual. 1993, 22, 392–402. [CrossRef]
85. Boesch, D.F.; Brinsfield, R.B.; Magnien, R.E. Chesapeake Bay Eutrophication: Scientific Understanding, Ecosystem Restoration,

and Challenges for Agriculture. J. Environ. Qual. 2001, 30, 303–320. [CrossRef] [PubMed]
86. Kennedy, C.D.; Genereux, D.P.; Corbett, D.R.; Mitasova, H. Spatial and Temporal Dynamics of Coupled Groundwater and

Nitrogen Fluxes through a Streambed in an Agricultural Watershed. Water Resour. Res. 2009, 45, W09401. [CrossRef]
87. Ki, M.-G.; Koh, D.-C.; Yoon, H.; Kim, H. Temporal Variability of Nitrate Concentration in Groundwater Affected by Intensive

Agricultural Activities in a Rural Area of Hongseong, South Korea. Environ. Earth Sci. 2015, 74, 6147–6161. [CrossRef]
88. Wells, M.J.; Gilmore, T.E.; Nelson, N.; Mittelstet, A.; Böhlke, J.K. Determination of Vadose Zone and Saturated Zone Nitrate

Lag Times Using Long-Term Groundwater Monitoring Data and Statistical Machine Learning. Hydrol. Earth Syst. Sci. 2021, 25,
811–829. [CrossRef]

89. Turkeltaub, T.; Kurtzman, D.; Dahan, O. Real-Time Monitoring of Nitrate Transport in the Deep Vadose Zone under a Crop
Field—Implications for Groundwater Protection. Hydrol. Earth Syst. Sci. 2016, 20, 3099–3108. [CrossRef]

90. Hong, N.; White, J.G.; Weisz, R.; Gumpertz, M.L.; Duffera, M.G.; Cassel, D.K. Groundwater Nitrate Spatial and Temporal Patterns
and Correlations: Influence of Natural Controls and Nitrogen Management. Vadose Zone J. 2007, 6, 53–66. [CrossRef]

91. Bernard-Jannin, L.; Sun, X.; Teissier, S.; Sauvage, S.; Sánchez-Pérez, J.M. Spatio-Temporal Analysis of Factors Controlling Nitrate
Dynamics and Potential Denitrification Hot Spots and Hot Moments in Groundwater of an Alluvial Floodplain. Ecol. Eng. 2017,
103, 372–384. [CrossRef]

92. Kazemi, E.; Karyab, H.; Emamjome, M.-M. Optimisation of Interpolation Method for Nitrate Pollution in Groundwater and
Assessing Vulnerability with IPNOA and IPNOC Method in Qazvin Plain. J. Environ. Health Sci. Eng. 2017, 15, 23. [CrossRef]
[PubMed]
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