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Abstract: The occurrence of debris flows are a significant threat to human lives and property. Estimat-
ing the debris flow scale is a crucial parameter for assessing disaster losses in such events. Currently,
the commonly used method for estimating debris flow runoff relies on fitting techniques, which
often yield low prediction accuracy and limited data representation capabilities. Addressing these
challenges, this study proposes an improved grey wolf algorithm optimized support vector machine
prediction model. The model’s effectiveness is validated using data from 72 debris flow events
in Beichuan County. The results demonstrate a prediction accuracy of 95.9% using this approach,
indicating its strong predictive capabilities for debris flow scale. Additionally, it is observed that the
basin area, the basin relative, and the main channel length are the key factors influencing debris flow
scale in Beichuan County.

Keywords: correlation analysis; debris flow scale; grey wolf optimizer algorithm; support vector machines

1. Introduction

The scale of debris flow refers to the amount of loose solid material flushed out by the
debris flow from its formation to movement. Usually, the scale of debris flows is defined as
the volume size that eventually leads to their formation [1–3]. It can be divided into four
categories according to the size of the debris flow:

1. Small debris flow refers to the amount of loose solid material flushed out if less than
10,000 cubic meters.

2. Medium-sized debris flow refers to the volume of loose solid materials flushed out
between 10,000 cubic meters and 100,000 cubic meters.

3. Large debris flow refers to the volume of loose solid materials flushed out between
100,000 cubic meters and 1 million cubic meters.

4. Giant debris flow refers to the amount of loose solid material washed out if more than
1 million cubic meters.

Generally speaking, the larger the debris flow, the more serious the disaster, which
may cause greater damage and losses to human society and the natural environment.
Therefore, accurate assessment and prediction of the scale of debris flow is crucial to taking
effective disaster prevention and mitigation measures.

De Haas et al. [4] designed a debris flow volume prediction model based on the area
of debris flow accumulation fan. However, their research did not examine the impact of
lithology and climate on the debris flow volume in the study area. The estimation of debris
flow volume based on fan area and the lack of factors may lead to errors in the estimation of
debris flow volume. Ma et al. [5] used only loose body volumes to establish a mathematical
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and statistical relationship with debris flow volumes. Although the correlation coefficient
is as high as 0.928, other factors may also be significantly related to the prediction of debris
flow. Gartner et al. [6] used multiple linear regression to predict debris flow volumes at
seven different sites. They chose different influencing factors at each location. However, a
linear regression model for one study site may not be suitable for another. Consequently,
numerous studies are necessary for estimating mudslide volumes in other areas, which
is an arduous task. Chang et al. [7] identified factors that affect debris flow volume,
including watershed area, landslide area, stream length, average stream and watershed
slope, form factor, and geological index. They constructed an empirical formula model,
with significant results, particularly when applied to areas with heavy rainfall. However, it
was demonstrated that predicting debris flow volume is a challenging undertaking, and
any empirical model should be augmented with additional approaches. Upon analysis of
the empirical formulae, it becomes apparent that the prediction models for debris flow sizes
are statistically based and acquired through mathematical fitting. The formula selection
of these prediction models is highly subjective. This leads to the selection of different
functions which have a great influence on the fitting results, and the data representation is
insufficient. Furthermore, considering the regional characteristics of mudslides, the factors
influencing the size of mudslides vary greatly across different regions. Therefore, the same
formula cannot be applied uniformly across all regions without considering their unique
features and conditions.

With the development of machine learning, more and more intelligent algorithms are
used in disaster prevention and prediction [8]. Tang and colleagues [9] utilized an artificial
neural network (ANN) to predict the volume of debris flow, and the results showed that
the model could achieve an accuracy of 78.33%. In addition, they mentioned that the
more samples and meteorological data contained in the data set, the higher the prediction
accuracy. They also found that the prediction accuracy of mesoscale and large-scale debris
flow is higher than that of small scale. Lee et al. [10] also used an ANN to predict the
volume of debris flow under extreme weather in Korea and compared the model with three
regression equations. Their model results had an R2 value of 0.822 and an MSE value of
0.022. The three regression equations had R2 values of 0.703, 0.703, and 0.691, respectively,
and none of them fitted as well as the ANN model. This also verifies our analysis that the
same equations are not characterized by regional expansion. Huang et al. [11] employed an
adaptive Boost machine learning algorithm that integrates extreme learning machine and
particle swarm optimization to forecast the volume of debris flow. The model demonstrates
high statistical validity and accuracy, yielding a MAPE of less than 0.1. The validation of
their model in other study areas also produced MAPE results ranging between 0.11 and
0.16. Above examples of the application of the machine learning algorithms show that they
can overcome the limitations of empirical formulae. Therefore, it highlights their great
potential in practical applications.

Support vector machine is an algorithm based on a statistical theory proposed to
minimize structural risks [12]. Intelligent algorithms have better promotion capabilities
and can overcome the shortcomings of traditional statistical learning theories. Therefore,
researchers widely use them in the recognition and classification texts, as well as medical
and health, vehicle traffic, failure mode recognition, and other fields [13–16]. Nonetheless,
the more rational the internal parameters of the SVM model are, the better the performance
of the model [17].

Therefore, the implementation of optimization algorithms is essential for SVM opti-
mization. Swarm Intelligence algorithms, also known as SI algorithms, are commonly used.
These algorithms have demonstrated remarkable efficiency in solving complex problems
within reasonable timeframes [18]. The Grey Wolf Optimization algorithm (GWO) is a
novel SI algorithm. It is inspired by the hierarchical structure and hunting behavior of grey
wolves and aims to identify the optimal solution [19]. In studies predicting landslide dis-
placement, GWO is employed to identify optimal parameters for the ELM algorithm. The
results show that the GWO-ELM model has superior generalization capability and higher
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prediction accuracy. In the shale gas geosteering discriminant model, GWO was utilized to
identify the globally optimal parameters in SVM. The GWO-SVM model has a significant
improvement in the average crossover rate and prediction accuracy. Compared with the
original model, it increased by 5.38% and 7.74%, respectively [20,21]. In addition, the GWO
exhibits exceptional competitiveness when compared to other optimization algorithms,
such as PSO, GSA, DE, EP, and ES [19].

The aforementioned examples highlight the considerable benefits of the grey wolf
algorithm in determining global parameters. Thus, the accuracy of the initial algorithm
and the generalization ability of the model are improved. Consequently, this study intro-
duces the grey wolf algorithm to identify the internal parameters of the SVM model and
ameliorate its performance.

However, during the final stage of the GWO algorithm’s operation, all grey wolves
within the population converge towards α wolves, which denote the optimal solution.
This ultimately results in a loss of population diversity, local convergence, and premature
algorithm convergence. It has been demonstrated that Levy flights effectively locate
desirable solutions through random search. This paper presents Levy flights to optimize
the Grey Wolf algorithm and address the issue of local and premature convergence in
the algorithm’s later stages [22]. Inspired by this, using Levy flights to optimize it, an
improved GWO algorithm (IGWO) is proposed. Then IGWO is utilized to optimize internal
parameters of the SVM algorithm, resulting in an improved performance of the SVM
algorithm. Finally, a debris flow volume prediction model is established based on the
improved IGWO-SVM algorithm.

In this study, three input factors are selected using correlation analysis. These factors
are then fed into the IGWO-SVR algorithm to predict the volume of 72 mudslides in
Beichuan County. Section 2 details the correlation analysis, the model construction process,
and the comparison of models. Section 3 presents the study area and model results. Lastly,
Section 4 thoroughly discusses the contents of this paper and future work that needs further
improvement. Section 5 presents the conclusions of the IGWO-SVR prediction model used
in the study area of this paper.

2. Method
2.1. Spearman Correlation Analysis

Spearman correlation coefficient [23] is also called rank correlation coefficient or order
correlation coefficient. It uses the rank of two variables for linear correlation analysis to
measure whether the two variables are monotonically correlated. The correlation coefficient
ρ of this method is defined as the Spearman correlation coefficient between the ranks of
two n-dimensional random variables X = (X1, X2, X3... Xn) and Y = (Y1, Y2, Y3... Yn).

p =

n
∑

i=1
(ri − r)(si − s)√

n
∑

i=1
(ri − r)2

√
n
∑

i=1
(si − s)2

(1)

In equations, ri and si correspond to the ranks of xi and yi, respectively, for i = 1, 2. . . , n.
The value of ρ falls within the range of [−1,1]. When there is no strong correlation between
two variables, ρ is either equal or close to 0. When one variable monotonically increases
with another, ρ = 1, and when one monotonically decreases, ρ = −1.

2.2. Grey Wolf Optimization Algorithm

The Grey Wolf Optimization algorithm (GWO) was proposed by Mirjalili and others
in 2014. The basic principle is to imitate the population system of grey wolves, and divide
them into four levels: αwolves, βwolves, δwolves, andωwolves. The above four levels
correspond to the optimal solution, the optimal solution, the suboptimal solution, and
the candidate solution of the optimization problem, respectively [24]. The optimization
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process of GWO is guided by α, β, and δ. After judging the prey position as the optimal
solution, it guides ω around the prey and finds the optimal value through continuous
iteration. The process of the Grey Wolf Optimization algorithm can be divided into three
stages: encirclement, pursuit, and attack. The specific steps are as follows:

The hunting process, the gray wolf rounding up prey behavior is defined as follows:

→
D =

∣∣∣∣→C ·→XP(t)−
→
X(t)

∣∣∣∣ (2)

→
X(t + 1) =

→
Xp(t)−

→
A·
→
D (3)

Equations (2) and (3) represent the distance between the wolf and the prey and the
update distance of the wolf position, respectively. Specifically, they are the position vector
of the grey wolf (potential solution vector) and the position vector of the prey (optimal
global solution). t is the wolf pack position iteration Times, and both are coefficient vectors.
Calculated as follows: →

A = 2
→
α ·→r 1 −

→
α (4)

→
C = 2·→r 2 (5)

The convergence factor, which linearly decreases from 2 to 0 as iterations, is a random
vector [0,1].

In the optimization problem decision space, to better search for the position of the prey,
it is usually guided by α, β, and δ. At the same time, other grey wolf individuals (including
ω) update their positions according to the role of the optimal grey wolf individual. They
gradually approach the prey. The mechanism of individual wolves tracking the location of
their prey is shown in Figure 1.
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The grey wolf individual tracking prey position model is as follows:

→
Dα =

∣∣∣∣→C1·
→
Xα −

→
X
∣∣∣∣

→
Dβ =

∣∣∣∣→C1·
→
Xβ −

→
X
∣∣∣∣

→
Dδ =

∣∣∣∣→C1·
→
Xδ −

→
X
∣∣∣∣

(6)
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→
Da,

→
Dβ, and

→
Dδ represent the distance between α, β, and δ, and other individuals,

respectively.
→
Xa,

→
Xβ, and

→
Xδ represent the current positions of α, β, and δ, respectively, and

are random vectors, which are the existing positions of grey wolves.
→
X1 =

→
Xα − A1·

→
Dα

→
X2 =

→
Xβ − A1·

→
Dβ

→
X3 =

→
Xδ − A1·

→
Dδ

(7)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(8)

Attacking means catching the prey, that is, finding the optimal solution. To simulate
approaching the prey, it is mainly realized by the gradual decrease in the ground value
in Equation (5). When the value linearly decreases from 2 to 0, the corresponding value
changes in the interval [−2α, 2α]. At that time, the wolves can focus their attacks on their
prey. At this time, the wolves will disperse from the position of the prey and enter the
process of finding other local optimal solutions. This makes the grey wolf algorithm fall
into the optimal local solution.

2.3. Levi Flight Improved Grey Wolf Optimization Algorithm

In the Grey Wolf Optimization algorithm, the position of α represents the optimal
solution. The grey wolves in the later population all approached the αwolves, resulting
in the loss of population diversity. Thus, they fall into local convergence and premature
convergence. Aiming to address these shortcomings, this paper uses Levi flight to perform
a global search on the group’s grey wolf individual α wolves. Levy flight is a random
walk, which can expand the search range. Its flight step size satisfies a stable heavy-tailed
distribution [19]. The new generation α wolf calculation formula improved by Levi’s flight
is as follows: →

Xα(t + 1) =
→
Xα(t)− α⊕ levy(β) (9)

Levy(β) = 0.01
µ

|v|1/β

(→
Xα(t)−

→
Xαbest

)
(10)

u = N
(

0, σ2
u

)
; v = N

(
0, σ2

v

)
(11)

σu =

{
Γ(1+β) sin( πβ

2 )

Γ
[(

1+β
2

)]
β2(β−1)/2

}1/β

σv = 1

(12)

The parameter β is a random number of [0,3].

2.4. Debris Flow Outburst Scale Prediction Model Based on IGWO-SVM

Support vector machine shows great advantages in solving small sample, nonlin-ear,
and high-dimensional identification. Therefore, this paper chooses this model as the basic
prediction model. The core parameters of the SVM model are the penalty factor (c) and
the kernel function parameter (g). Using default parameters may lead to overfitting or
underfitting issues. Therefore, the proposed IGWO algorithm is employed to optimize
these two parameters for SVM, resulting in a debris flow scale prediction model based
on IGWO-SVM. The process of the IGWO-SVM debris flow outflow model is shown in
Figure 2.
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Specific steps are as follows:

• Step 1: Set the parameters of IGWO and SVM algorithms and initialize the grey wolf
population.

• Step 2: Use the minimum recognition error rate of SVM for training set samples as
the fitness function, calculate the fitness of all individuals in the population, and sort
according to the size of the fitness value to determine the top three grey wolves.

• Step 3: Update the current position of the grey wolf individual according to
Equations (10) and (12).

• Step 4: Update the value of the nonlinear convergence factor a according to Equation (13),
and update the parameter vectors A and C according to Equations (8) and (9).

• Step 5: Introduce the Levy flight strategy to the grey wolf population according to
Equation (14) and adjust the position of the grey wolf.

• Step 6: Determine whether the algorithm has reached the maximum number of
iterations. If it is reached, the position of wolf a is returned as the optimal parameter
value of SVM. If it is not reached, skip to step 2.

• Step 7: Use the optimal penalty factor c and kernel function parameter g to train and
learn the training set samples to obtain the IGWO-SVM fault diagnosis model.

• Step 8: Input the test set samples into the trained IGWO-SVM model to predict the
scale of debris flow outburst.

Firstly, Spearman correlation analysis is utilized to select input factors and eliminate
poorly correlated factors to enhance model accuracy. After correlation analysis, 50 data
are randomly used as the training set, and the remaining data are used for the prediction
set. Subsequently, Levy flights are employed to optimize the GWO algorithm, resulting in
the development of the Improved GWO algorithm (IGWO). The IGWO was then utilized
to optimize the SVM algorithm to obtain the final prediction model for mudslide volume.
The final model incorporates the training set for training, followed by validation with the
prediction set. Figure 3 illustrates the complete workflow.



Water 2023, 15, 4161 7 of 20

Water 2023, 15, x FOR PEER REVIEW 7 of 20 
 

 

• Step 5: Introduce the Levy flight strategy to the grey wolf population according to 
Equation (14) and adjust the position of the grey wolf. 

• Step 6: Determine whether the algorithm has reached the maximum number of iter-
ations. If it is reached, the position of wolf a is returned as the optimal parameter 
value of SVM. If it is not reached, skip to step 2. 

• Step 7: Use the optimal penalty factor c and kernel function parameter g to train and 
learn the training set samples to obtain the IGWO-SVM fault diagnosis model. 

• Step 8: Input the test set samples into the trained IGWO-SVM model to predict the 
scale of debris flow outburst. 
Firstly, Spearman correlation analysis is utilized to select input factors and eliminate 

poorly correlated factors to enhance model accuracy. After correlation analysis, 50 data 
are randomly used as the training set, and the remaining data are used for the prediction 
set. Subsequently, Levy flights are employed to optimize the GWO algorithm, resulting in 
the development of the Improved GWO algorithm (IGWO). The IGWO was then utilized 
to optimize the SVM algorithm to obtain the final prediction model for mudslide volume. 
The final model incorporates the training set for training, followed by validation with the 
prediction set. Figure 3 illustrates the complete workflow. 

Initialize IGWO 
parameters and 

determine fitness 
function

IGWO algorithm 
optimizationOptimal parameters

IGWO optimization

IGWO-SVM 
debris flow scale 
prediction model

Output debris 
flow scale original 

data

Debris flow 
scale

Impact 
factor

Data 
normalization

Feature extractionOutflow forecast  
Figure 3. Debris flow outburst scale based on IGWO-SVM. 

2.5. Back Propagation Neural Network 
Back Propagation Neural Network (BPNN) [25,26], the most extensively applied and 

sophisticated neural network model, sees widespread use across various civil engineering 
domains. The network comprises an input layer, an implicit layer, and an output layer. 
Weight values between the layers are obtained via signal forward propagation and error 
backpropagation, culminating in the construction of the prediction model. BPNN serves 
as the comparison model in this study, facilitating performance comparisons with SVM, 
GWO-SVM, and IGWO-SVM models. 

In this paper, the minimum error for training has been established as 0.001, with the 
number of training sessions set to 1000 and the learning rate set to 0.1. 

  

Figure 3. Debris flow outburst scale based on IGWO-SVM.

2.5. Back Propagation Neural Network

Back Propagation Neural Network (BPNN) [25,26], the most extensively applied and
sophisticated neural network model, sees widespread use across various civil engineering
domains. The network comprises an input layer, an implicit layer, and an output layer.
Weight values between the layers are obtained via signal forward propagation and error
backpropagation, culminating in the construction of the prediction model. BPNN serves
as the comparison model in this study, facilitating performance comparisons with SVM,
GWO-SVM, and IGWO-SVM models.

In this paper, the minimum error for training has been established as 0.001, with the
number of training sessions set to 1000 and the learning rate set to 0.1.

3. Application Research and Method Comparison
3.1. Introduction to Geology and Hydrology of Study Area

Beichuan County is predominantly hilly, featuring high terrain in the western part of
the north, moderate slopes in the central region, and lower mountains in the eastern portion
of the southern area. The topography is primarily a result of erosion and dissolution. The
county is located on the southeastern margin of the tectonic erosion feature known as
Zhongshan. At the same time, it acts as the junction of the mountains in the geological
area of Longmen Mountain. The range extends towards the northeast in a southwesterly
direction. The topography of the county exhibits substantial variation, with high terrain
in the northwest and low terrain in the southeast. The difference in altitude exceeds
1000 m. Gully valley slopes usually exceed 25 degrees, while some slope angles reach 40
to 50 degrees or even steeper. In the study area, the Paleozoic eras of Cambrian, Silurian,
Devonian, and Carboniferous, along with the loose stacked strata of the Cenozoic era of
Quaternary, are present. Figure 4 shows the geology of Beichuan County.
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Beichuan County boasts plentiful water resources, sourced mainly from the Wai, Subao,
Pingtong, and Duba rivers; the Waijiang River takes precedence in Beichuan County, serving
as a premier tributary of the Fuling River. It originates in the northwest mountainous
region of the county, flows through the area, exits via the southeast corner, and eventually
empties into the Fuling River. The Waijiang River has a length of 47.9 kilometers and
flows through Beichuan Qiang Autonomous County, with a watershed area covering
455.80 square kilometers. It has a natural drop of 203 m and an average specific drop
of 4.2 per thousand. The multi-year average runoff measures 102.7 cubic meters per
second, with a total annual average runoff of 3.257 billion cubic meters. Furthermore, the
Waijiang River annually transports 4–5 million tons of sand. The study area boasts ample
groundwater resources.

The hydrogeological conditions in Beichuan County prove intricate, influenced by the
stratigraphic lithology, topography, and tectonics present in the region. The hydrogeological
conditions in Beichuan County are quite intricate. Groundwater in the region is classified
into loose rock-type pore water, clastic rock-type pore and fissure water, carbonate rock-
type fissure cave water, and bedrock fissure water. The storage patterns of the distinct
groundwater types vary, influenced by topography, lithology, tectonic part, and the spatial
combination of tectonics. The pore water of loose rock is mainly deposited in the sand,
pebble, and gravel layers of the fourth system. It is mainly distributed in the floodplains and
low terraces of Waijiang River, Baicao River, Qingpian River, and its tributaries. The water
level in the floodplain or first-class terrace of Waijiang, Baicao River, and Qingpian River
ranges from 1–6 m deep, indicating a high-water content. Pore and fissure water contained
in clastic rock are preserved in the fine sandstone, quartz sandstone, mud shale, dark grey
and grey-green fine sandstone, and muddy sandstone within the Qingping Formation of
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the Lower Cambrian System and the Lower Devonian System. The argillaceous sandstone
of the formation is relatively aquifuge, and the formation is typically a thick to extremely
thick layer. The formation fissures are not well developed, resulting in less groundwater.
Carbonate fracture cave water exists in the eastern part of the work area. The water-bearing
zone is mainly distributed in the northeast direction. The fissure caves of Middle Devonian,
Carboniferous, and Permian carbonate rocks are enriched in the two flanks of the dorsal
incline and the core of the dorsal incline. The area is characterized by surface dissolution
depressions, drop holes, funnels, caves, and even dark rivers. Bedrock fissure water
includes tectonic fissure water and metamorphic fissure water. It is widely distributed in
the western part of the work area and occurs in the Silurian Maoxian Group (Smx) strata.
Tectonic fissure water is situated in high mountains, resulting in limited visible spring
outcrops on the surface. Objective evaluation indicates that fewer outflows are present due
to the location of the water source.

3.2. Parameter Selection

After the 5.12 Wenchuan earthquake, most of the loose sediments on the hillside
produced many loose materials. These loose sediments provide favorable conditions for
the development and occurrence of debris flow. After the torrential rain on 24 September,
214 geological disasters occurred, including 72 mudslides. The distribution is shown in
Figure 5. It has brought great challenges to the resettlement and reconstruction work of
residents in the disaster area. This article is based on a survey of debris flow information
in 72 valleys in Beichuan County, Sichuan Province [27]. In Table 1, five factors that can
comprehensively reflect the material and energy sources of debris flows, namely basin area,
main channel length, basin relative relief, basin relative relief, and bed shifting ratio, are
selected as influencing factors of the scale of debris flow outburst.
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Table 1. The Basic Data Statistics Table of 72 Debris Flows.

The Basic Data Statistics Table of 72 Debris Flows.

Samples
Loose Source

Material Reserves
(103 m3)

Basin
Area
(km2)

Drainage
Density
(km−1)

Basin Relative
Relief
(km)

Shifting Bed
Proportion

(%)

Main Channel
Length

(km)

Chaimazigou#1 0.04 2.5 8.24 1.6 0.48 2.06
Shuxuegou 39.04 13.9 2.90 1.4 0.50 4.03

Yingtaogou#1 43.65 10.3 3.78 1.4 0.72 3.89
Miaobagou 728.20 7.8 5.26 1.46 0.85 4.10
Jinlongcun 79.50 4.5 7.44 0.98 0.64 3.35
Hualingou 385.95 12.2 4.82 1.36 0.85 5.88

Wangjiashangou 104.50 1.8 7.67 1.04 0.86 1.38
Xinzhigou#1 240.45 10 5.39 1.56 0.76 5.39

Chenjiabaogou 50.20 1.9 7.16 1.1 0.48 1.36
Pijialianggou 2.40 2.4 7.42 1.14 0.23 1.78
Xishanpogou 1500 1.6 20.75 1.12 0.61 3.32

Renjiapinggou 242 0.5 14.6 0.46 0.84 0.73
Mofanggou 160.70 0.8 13.63 0.66 0.72 1.09
Miaobagou 6.60 7.5 3.81 1.38 0.39 2.86

Piankoxianggou#2 4.80 4.6 4.33 0.86 0.54 1.99
Xinzhigou#2 73.20 21.8 3.59 2.04 0.42 7.82
Honglingou 2.85 5.7 5.35 1.92 0.37 3.05

Chaimazigou#2 14.70 6.8 3.75 1.8 0.40 2.55
Qinglingou 109.30 23.2 3.23 2.3 0.61 7.49

Baishuihegou 35 10.6 4.01 1.68 0.47 4.25
Piankoxianggou#3 160.34 16 3.68125 1.04 0.51 5.89

Subaohegou 60 3.5 6.43 1.24 0.65 2.25
Shuligou 70.60 0.7 20.43 0.96 0.61 1.43
Xinigou 40.53 0.7 19.43 1 0.81 1.36

Tianbaigou 163.32 18.7 3.16 1.68 0.76 5.91
Piankoxianggou 0.89 0.9 15.11 0.72 0.43 1.36

Lijiawangou 60 1.2 12.08 0.86 0.41 1.45
Kaipingzhigou 26.20 1 13.20 0.6 0.62 1.32

Yuxuegou 1016.40 0.8 14.38 0.88 0.86 1.15
Xiatongbaogou 1967.90 15.7 3.80 1.22 0.84 5.97

Sibapinggou 378.24 21.4 3.47 1.5 0.76 7.42
Zhibeigou 199 8.7 3.25 1.36 0.60 2.83
Yangliucun 101.63 9.9 4.64 1.7 0.58 4.59

Yanghuziwangou 40.20 1.2 12.08 0.82 0.81 1.45
Zhifanggou 74 1.1 9.55 0.75 0.69 1.05

Yingtaogou#2 119.30 17.6 4.33 1.66 0.56 7.62
Sunjiagou 15.55 2.7 10.70 1.22 0.45 2.89

Chayuanlianggou 54 2.6 12.04 1.26 0.41 3.13
Hanjiashangou 67.44 0.8 15.25 0.82 0.82 1.22
Baiguoshugou 107.30 0.6 16.50 0.67 0.73 0.99

Weigou 33.54 2.2 9.50 0.74 0.57 2.09
Weigou#2 106.50 0.3 22.00 0.52 0.76 0.66

Madiwangou 3.36 0.7 29.86 0.55 0.47 2.09
Huangjiawangou 4.13 2.8 8.39 1 0.47 2.35
Jingzhuyuangou 51.80 1.1 9.00 0.59 0.46 0.99

Jiangjiagou 12.14 0.5 23.00 0.92 0.52 1.15
Maoershi 10.80 1.4 7.57 0.98 0.47 1.06
Subaogou 507 1.1 10.45 0.58 0.79 1.15
Liujiagou 120.08 1.8 7.50 1.04 0.89 1.35

Daokaimengou 15.98 3.1 8.19 0.84 0.51 2.54
Qingtangwangou 30 3.5 5.14 0.82 0.75 1.80
Huangtulianggou 114 24.6 3.29 1.22 0.64 8.10

Guanmenzigou 14.26 2.8 5.57 1.12 0.70 1.56
Shupinggou 33 4.1 8.88 1.09 0.46 3.64

Dengjiacungou 900.03 22.2 5.12 1.7 0.44 11.36
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Table 1. Cont.

The Basic Data Statistics Table of 72 Debris Flows.

Samples
Loose Source

Material Reserves
(103 m3)

Basin
Area
(km2)

Drainage
Density
(km−1)

Basin Relative
Relief
(km)

Shifting Bed
Proportion

(%)

Main Channel
Length

(km)

Qushanzhenggou 210 3.6 8.67 1.2 0.96 3.12
Guzhubagou 1000.10 7 5.74 1.22 0.87 4.02

Wangjiayangou 485 2.5 7.88 1 0.81 1.97
Chenjiabagou 931.24 23.1 4.28 1.2 0.66 9.88
Tudilianggou 12.21 4 6.40 1.03 0.53 2.56
Tudimiaogou 34.08 16 3.69 1.28 0.39 5.91
Guaitangou 0.08 11.7 4.05 1.08 0.21 4.74

Dapingdigou 16.80 5.4 5.59 1.46 0.40 3.02
Xiatongbaogou 98.50 22.7 3.37 1.86 0.76 7.66
Chanzipinggou 67.20 2.5 5.28 1.02 0.83 1.32
Shangyantaigou 17.50 1.5 11.67 1.24 0.9 1.75

Shuangyigou 93.30 2.8 9.82 1.3 0.78 2.75
Shilonggou 50.80 7.3 5.36 1.2 0.84 3.91

Yangjiawangou 135.57 26.4 3.20 1.8 0.67 8.46
Zhaojiawangou 14.66 2.8 8.18 1.34 0.82 2.29

Dongxigou 8.95 10.9 3.78 1.5 0.57 4.12
Maliuwangou 97.82 17.1 3.76 1.28 0.70 6.43

3.3. Data Presentation and Evaluation

The selected training data source is Wang’s thesis on the debris flow in Beichuan
County following the fifth. This study analyses the data from 72 debris flow samples
following a 2012 earthquake. Each sample included six parameters, including Loose source
material reserves, Basin area, Drainage density, Basin relative relief, Shifting bed proportion,
and Main channel length. These variables are the most common factors impacting the scale
of mudslide outflow, the output parameter. Results of the parameter statistical analysis
can be found in Table 2, and Figure 6 displays the frequency distribution graphs for each
parameter. Where ‘n’ represents the frequency number, indicating the count of samples
in each sub-interval of the variable, the frequency ratio of each sub-interval to the total
sub-frequency of the variable is referred to as the frequency. Furthermore, ‘F’ denotes the
cumulative frequency achieved through the incremental addition of frequencies of each
sub-interval.

Table 2. Parameter statistics.

Data Type
Loose Source

Material Reserves
(103 m3)

Basin
Area
(km2)

Drainage
Density
(km−1)

Basin Relative
Relief
(km)

Shifting Bed
Proportion

(%)

Main Channel
Length

(km)

Debris Flow
Scale

minimum value 0.04 0.3 10.68 0.46 0.21 0.66 6.3

maximum value 1966.9 26.4 44.06 2.3 0.96 11.36 152.83

average value 195.93 7.10 22.18 1.18 0.63 3.40 62.85

Considering each factor and the debris flow scale, respectively, the correlation results
are shown in Table 3 and Figure 7. The single factor correlation analysis shows that the
basin area, the relative channel of the basin, and the length of the main channel have a
high correlation with the scale of debris flow. Therefore, these three are selected as the
influencing factors of the debris flow scale to construct a prediction model of the debris
flow scale.
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Table 3. Correlation Analysis.

Correlation Analysis

Correlation Factor Debris Flow Scale (103 m3)

Basin area/km2 0.920 **
Drainage density/1/km 0.136
Basin relative relief/km 0.778 **

Shifting bed proportion/% −0.154
Main channel length/km 0.766 **

Note: ** p < 0.01.
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3.4. Forecast of the Debris Flow Scale

Fifty debris flow data are randomly selected for model training, and the remaining
data are used as prediction samples to test the prediction effect of debris flow scale. The
results are shown in Figure 8. It can be seen from Figure 8 that the training and prediction
of the model have good accuracy.
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3.5. Model Performance Evaluation

To further evaluate the predictive performance of the method, this paper selects
two traditional fitting methods (linear fitting and power function fitting) and the three
intelligent algorithms (SVM, GWO-SVM, and BPNN) as comparisons.

3.5.1. Linear Regression Fitting

The basin area, the relative height difference, and the main channel length are used as
independent variables, and the debris flow scale is used as the dependent variable. Linear
regression is used. The results are as follows:

V = 14.818 + 10.334 ∗ S
+39.329 ∗ H − 21.377 ∗ L

(13)

The R2 = 0.904 is pretty good in terms of model accuracy alone. However, in this result,
the relationship between the length of the main gully and the scale of the debris flow is a
negative growth relationship. That is, the longer the length of the main ditch, the smaller
the scale of the debris flow. This contradicts the results of correlation analysis. After testing
the model, the results are shown in Table 4. The VIF of the basin area and the length of the
main river channel are 11.354 and 11.396, respectively, both of which are greater than 10.
This shows that there is a more obvious collinearity relationship. This is the main reason
for the negative main groove length in the line fitting.
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Table 4. Linear Regression Analysis Results.

Linear Regression Analysis Results

Unstandardized
Coefficients

Standardized
Coefficient

t p VIF R2 Adjust R2 F
B Standard

Error Beta

constant 14.818 7.171 - 2.066 0.044 * -

0.904 0.898
F (3,46) = 144.282

p = 0.000

Basin area 10.334 1.035 1.538 9.988 0.000 ** 11.354
Basin relative

relief 39.329 7.251 0.385 5.424 0.000 ** 2.414

Main channel
length −21.377 3.322 −0.993 −6.436 0.000 ** 11.396

Note: Dependent variable: debris flow scale; D-W: 2.149; * p < 0.05, ** p < 0.01.

3.5.2. Power Function Fitting

When using the power function fitting, the three correlation factors are artificially
taken as positive values to obtain the correct correlation relationship. The least-square
regression is used to fit the parameters to be sought. The relevant results are as follows:

V = a× Sb × Hc × Ld (14)

In the above equation a = 29.275040548; b = 0.416174002; c = 0.382748483; and
d = 0.000000029.

The results show that R2 = 0.823, and the power function can predict the scale of debris
flow. However, it is a pity that this formula is easy to mislead the analysis of debris flow
impact factors. Because it is not difficult to conclude from the fitting that the length of the
main ditch is not critical to the scale of the debris flow. However, the correlation analysis
shows that the length of the main gully is highly correlated with the scale of debris flow.

It can be seen from the above two traditional fitting methods that these methods
have good accuracy in fitting the debris flow scale. However, these methods often lead to
misunderstandings about the factors determining the magnitude of debris flows. These
methods make it difficult to find the key factors. To sum up, compared with the intelligent
algorithm, the traditional fitting method that can intuitively reflect the influence factors
of the debris flow scale does not seem to have any advantages. In summary, this paper
is more inclined to use correlation analysis to determine the main influencing factors of
debris flow scale, and then build a debris flow scale prediction model through support
vector machine.

3.5.3. Comparison with Other Common Optimization Algorithms

To highlight the advantages of this method, this paper selects three intelligent algo-
rithms for comparison. And the comparison results are shown in Figure 8.

In general, the four models can predict the debris flow scale, and the effect is good,
but the overall IGWO-SVR is the closest to the actual value of the debris flow scale. To
evaluate the impact of the prediction model more intuitively for the debris flow scale, this
paper will evaluate the prediction model from accuracy and efficiency. The prediction
error distribution of the BPNN prediction model is more discrete, and the distribution
range of prediction error is more significant than that of SVR and its improved model. This
shows that the prediction effect of the BPNN model is poor. Compared with the SVR and
GWO-SVR, the IGWO-SVR error distribution is more inferior. It is concentrated near zero,
and the error range is lower than the other three methods, which has better stability.
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To analyze the overall performance of the prediction model, this paper selects root
mean square error (RMSE), average absolute error (MAE), and coefficient of determination
(R2) to evaluate the above four prediction models [28].

RMSE =

√√√√ 1
n

n

∑
i=1

(ŷi − yi)
2

(15)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (16)

R2 = 1− ∑(ŷi − yi)
2

∑(ŷi − yi)
2 (17)

In Equations (15)–(17): n is the size of the sample, i is the i-th data sample among n
samples, ŷi is the predicted debris flow scale, and yi is the accurate debris flow scale. The
results are shown in Table 5.

Table 5. Prediction Error Analysis of Different Prediction Models.

Prediction Error Analysis of Different Prediction Models

Name RMSE MAE R2

IGOW-SVR 7.75 7.0 0.95
GOW-SVR 7.80 7.6 0.94

SVR 10.99 8.79 0.92
BPNN 13.70 14.47 0.83

It can be seen from Table 5 that all four methods can be used as a prediction model
for the debris flow scale. The IGWO-SVR model has RMSE = 7.75, MAE = 7.00, R2 = 0.95,
which is better than the other three models. It is worth noting that the prediction accuracy
of the BPNN is significantly lower than that of the other three. This is due to the significant
data demand for BPNN training, which is not suitable for debris flow scales with a small
number of statistical samples.

The running time of each debris flow prediction model is calculated on the Intel(R)
Core (TM) i5-9300H CPU 2.40 GHz Win10. The results are shown in Table 6. The running
time of IGWO-SVR is 1.7876 s. Compared with BP neural network, SVR, and GWO-SVR,
the efficiency is increased by 204.88%, 102.66%, and 29.46%, respectively. It shows that the
prediction model proposed in this paper has high efficiency in predicting the debris flow
scale and is more conducive to practical engineering applications.

Table 6. Prediction Model Consumption Time Comparison.

Prediction Model Consumption Time Comparison

SVR BPNN GWO-SVR IGWO-SVR SVR

Time/s 3.6226 5.4500 2.3141 1.7876

4. Discussion
Sobol Method for Sensitivity Analysis

The Sobol method is a quantitative global sensitivity analysis algorithm based on
variance decomposition [29]. This method decomposes the total variance of the objective
function into individual parameter variances and multi-parameter interaction variances. It
finds wide applications in sensitivity analysis. The results of first-order sensitivity indices
and global sensitivity indices are shown in Figure 9.
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From Figure 10, we can observe that the global sensitivities of “Basin area”, “Basin
relative relief”, and “Main channel length” with respect to “the debris flow scale” are
all greater than 0.2. The “Basin relative relief”, which directly represents the potential
energy source for debris flows, has the highest first-order sensitivity and global sensitivity
indices, which are 0.370 and 0.372, respectively. On the other hand, “Basin area” and
“Main channel length”, as the most direct indicators of debris flow material sources, are
closely related to debris flow discharge. In contrast, the sensitivity indices for “Drainage
density” and “Shifting bed proportion” are relatively low, with first-order sensitivity
indices of [0.012, 0.013] and global sensitivity indices of [0.080, 0.085]. This is because these
two factors typically indirectly influence debris flow material sources, thus affecting the
maximum debris flow discharge. It’s worth noting that these findings align with the results
obtained from the correlation analysis of debris flow influencing factors. Through the
sensitivity analysis, the main factors affecting the debris flow scale in Beichuan County are
the basin area, the basin relative relief, and the main channel length. Among the above
three influencing factors, the relative height difference has an apparent positive relationship
with the debris flow scale. This is due to the large amounts of loose deposits produced
after the Wenchuan earthquake on 12 May, and the above two influencing factors are the
most closely related to loose deposits. Therefore, the debris flow in Beichuan County can
be controlled from three aspects: drainage area, relative relief of the drainage basin, and
the length of the main river channel. For example, the slope can be cut to reduce the load,
reduce the height and slope of the slope, and reduce the risk of deformation and damage
of the slope. Or use retaining structures, such as retaining walls, anti-slide piles, etc., to
support and reinforce the slope and improve the stability of the slope.
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It is worth noting that the above three factors are not the main factors for the debris
flow in each region. For example, trench length and slope were chosen as dominant factors
when Ikeya fitted the debris flow scale in the Pacific region [30]. Therefore, the debris flow
scale has a strong regionality. So, it is necessary to carry out correlation analysis when
calculating debris flow. At the same time, it is worth noting that although only five slope
factors are selected for analysis, the scale of debris flow is affected by various internal and
external factors. Lithology, weathering degree of rock, and plant distribution characteristics
will all affect the debris flow scale. Therefore, this paper only provides a feasible method to
predict the size of debris flow. To further improve the accuracy of the debris flow scale, the
number of influencing factors of the debris flow scale should be increased, and quantitative
theory should be used to analyze related factors further. And the analysis method in this
paper is only for what has occurred or determines the debris flow scale that will happen.
Therefore, it should be used in the actual debris flow detection, and it is recommended to
be used in conjunction with the prediction of debris flow occurrence.

5. Conclusions

This study takes the 72 debris flow in Beichuan County as the research object. Through
the correlation analysis, the main influencing factors of the debris flow scale are found, and
the improved Grey Wolf Algorithm is used to optimize the support vector regression to
train and predict the debris flow scale. By comparing two traditional methods and three
machine learning methods, the following conclusions are obtained:

1. The leading factors of the debris flow scale in Beichuan County are the basin area, the
basin relative relief, and the main channel length.

2. Aiming to address the shortcomings of support vector machines such as slow conver-
gence speed and ease to fall into local extremes, the improved Grey Wolf Algorithm
can improve the prediction speed and accuracy of debris flow scale.

3. With regard to the regional characteristics of Beichuan County, since the three influ-
encing factors of basin area, relative height difference and main ditch length have a
greater impact on debris flow, when designing the debris flow prevention and control
programme, the focus should be on these three factors for consideration.

4. The enhanced Grey Wolf Algorithm outlined in this paper lessens the impact of
personal opinions and biases on the Debris Flow Scale Prediction process, and the
evaluation outcomes give a degree of confidence, thereby offering technological aid
for the scientific assessment of Debris Flow danger.

5. In the next study, it may be considered to add more data sets using numerical simula-
tion to improve the predictive accuracy of the model. However, increasing the data set
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will also increase the model run time. Finding a balance between increasing the data
set and controlling the model run time is a future direction.
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