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Abstract: Urban areas comprise less than 1% of the Earth’s land surface, yet they host more than
half the global population and are responsible for the majority of global energy use and related
CO2 emissions. Urbanization is increasing the speed and local intensity of water cycle exploitation,
with a large number of cities suffering from water shortage problems globally. Wastewater (used
water) contains considerable amounts of embedded energy and recoverable materials. Studies
and applications have demonstrated that recovering or re-capturing water, energy, and materials
from wastewater is a viable endeavor, with several notable examples worldwide. Reclaiming all
these resources through more widespread application of effective technological approaches could
be feasible and potentially profitable, although challenging from several points of view. This paper
reviews the possibilities and technical opportunities applicable to the mining of resources within the
urban water cycle and discusses emerging technologies and issues pertaining to resource recovery
and reuse applications. The present and future sustainability of approaches is also discussed. Since
sewage management issues are not “one size fits all”, local conditions must be carefully considered
when designing optimal local resource recovery solutions, which are influenced not just by technology
but also by multiple economic, geographical, and social factors.
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1. Introduction

Urban areas comprise less than 1% of the Earth’s land surface yet host more than half
the global population. There are already 43 megacities (i.e., those with >107 inhabitants)
worldwide, and their number is constantly growing [1]. Cities are responsible for the
majority (≈75%) of global energy use and related CO2 emissions, requiring a constant
influx of natural resources, raw materials, food, and energy to sustain the activities of
their inhabitants and generate equivalent outgoing fluxes of waste materials. It has been
estimated that continuing urbanization under unchanged paradigms could increase the
global annual consumption of raw materials by 125% within the next 40 years [2].

Cities contain huge amounts of unexploited materials such as household solid waste,
construction rubble, and electronic waste, which represent generally untapped values.
Under old paradigms, i.e., linear consumption, these are released after use, accumulating
within the city or in its close proximity, and exerting significant pressures on the natural
environment and human health, well beyond the immediate urban surroundings. Urban
resource mining, which refers to all activities and processes involved in reclaiming valuable
resource compounds, energy, and elements generated from urban catabolism, is, therefore,
becoming increasingly popular. Cities and their consumption cycles should, therefore, be
re-engineered according to this principle [3].

Urban mining has many advantages over primary mining (i.e., the transfer of materials
from below-ground resources to above-ground stock), as materials are already in a place
where they are most likely to be needed again and could thus be more easily reused. With
fossil fuels becoming more expensive and environmentally unacceptable, secondary raw
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material recycling could become competitive compared to conventional mining, eliminating
the need for long-range transportation and reducing the associated land degradation and
water pollution. Urban mining in its various forms is fully adherent to the concept of the
Circular Economy (CE), supported by current EU policy [4], with roots in the “3R” (Reduce,
Reuse, and Recycle) framework.

Among the most critical natural resources, water is a key element of the global water–
energy–food (WEF) nexus and is essential for life, environment, health, and the sustain-
ability of society. Water is the universal solvent, carrying both harmful and valuable
resources, including energy, nutrients, minerals, chemical products, etc. Its global use has
grown exponentially with the human population and economic development since the
industrial era. Estimates of aggregate water use show a 15-fold increase between 1800
and 1980 (13-fold for irrigation-related irretrievable water losses), compared to a global
population increase by a factor of just 4 [5]. Global water withdrawals are small compared
to continental areas’ runoff (for example, in 2000, the former amounted to 4000–5000 km3

against the latter’s 40,000 km3), but hydrologic analysis shows that only about one-third of
global runoff is actually accessible for anthropic use [5]. Furthermore, even if a country has
overall “statistically” sufficient resources, water stress may still occur in its drier regions
or around large cities. Urbanization, in fact, increases the speed and intensity of local
water exploitation.

Figure 1 illustrates the water stress estimates for Europe in 2030 [6]. It can be seen that
contrary to common belief, water stress is not exclusive to Mediterranean regions. Serious
challenges to the sustainability of the urban water cycle (UWC) may derive from climatic
variability, which is expected to affect water availability due to increasing temperatures,
shifting precipitation patterns and snow cover, rising sea levels, the modified frequency
and intensity of flood/drought patterns, and pollution. Evidence is already pointing to
such adverse impacts on water utilities, with studies suggesting that extreme weather
events contribute to poor water quality, floods, and damage to infrastructure [7].
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Urbanization carries, as an additional, inevitable consequence, some degree of down-
stream water quality degradation. More pollutants are produced per capita in urban
settings than in sparsely populated areas. Despite years of efforts and a global aim to
reduce untreated discharges by 50% by 2030, only a small proportion of total wastewa-
ter discharges (about 20%) is collected and treated at present, ranging from over 70% in
developed countries to less than 10% in low-income ones [8].
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Urban wastewaters (UWW) often contain emerging pollutants such as pharmaceuticals
(antibiotics, analgesics, narcotics, etc.), pesticides, heavy metals, pathogens, organics, PCBs,
PFASs, etc., which are not always removed through conventional pollution-abatement
technology [9]. Furthermore, urban watersheds lose the ability to retain water due to
their increased imperviousness; thus, pollutants are easily mobilized from urban surfaces
by high runoff [10]. Surface water quality may be negatively affected by as little as 5%
imperviousness [11,12], affecting possible resource use and requiring long-range freshwater
harvesting and transfer.

Water abstractions exceeding local availability may put socio-economic growth and
urban sustainability at risk. Typically, water stress may be assumed when water availability
drops below 1700 m3/person/year; a level of 1000 m3/person/year defines water scarcity
conditions, whereas below 500 m3/person/year, absolute scarcity ensues [13].

Water reuse is gaining momentum within the framework of the implementation of CE
concepts [14]. The mining of used water from urban areas could significantly improve its
sustainable supply and the recirculation of embedded resources, and it could substantially
accelerate the transition of urban areas’ use–consume–discharge patterns to circular ones.
For this to occur, it is essential to pay close attention to unconventional water sources, such
as urban runoff [15], municipal wastewater [16], and various industrial waste streams [17].
Studies and applications have demonstrated that recovering water, energy, and materials,
including value-added minerals, rare elements, precious metals, and industrially valuable
chemical products from wastewater and its by-products, such as biological sludge, is
possible [18–21]. For this reason, wastewater treatment plants (WWTPs) are undergoing a
paradigmatic change that foresees their transformation into water and resource recovery
facilities (WRRFs) [22].

This paper reviews, using a holistic approach, the possibilities and technical opportuni-
ties applicable to UWW mining, and discusses emerging technologies and issues pertaining
to resource recovery and reuse applications.

2. Wastewater or “Usedwater”?

Globally, approximately 380 billion m3/year of municipal wastewater is generated,
a figure expected to increase by 50% by 2050 [23]. In addition to the primary motivation
of sanitation and the safe disposal of waste-rich streams, a second purpose has recently
emerged in wastewater collection and treatment practices: to increase resource recovery
and reuse in response to the aforementioned scarcity and circularity issues. The key
to future UWC sustainability was summarized in the “one water” paradigm, implying
that water should be available for multiple reuses, up to direct potable reuse. It is not
unintentional that the United Nations [13] defined wastewater as an “untapped available
water source”; hence, “usedwater” seems to be a more appropriate definition of sewage in
WEF nexus-coherent terminology. Improved “usedwater” treatment and reuse, as called
for in Sustainable Development Goal (SDG) Target 6.3 (Clean Water and Sanitation), would
help the global transition to a Circular Economy. Figure 2 summarizes the current global
situation of used-water reuse by application sectors [8].

2.1. Usedwater Generation and Composition

Wastewater/used water generated using current sewerage technology consists of
over 99% water, the rest being solids, dissolved and particulate matter, microorganisms,
nutrients, heavy metals, and micropollutants, with composition differing widely between
locations. The current sanitation paradigm, in fact, has made little substantial progress
regarding waste collection and transport modes since early history, with large amounts of
water used as the universal carrier for small amounts of unwanted residuals and gravity
as the main driving force. Conventional gravity sewers are mainstream practice, often
exclusively associated with urban sanitation; however, as pointed out by Beder [24] over
30 years ago, the current technical paradigm is based on a consensus dating to early
20th century knowledge and technology, thereby constraining engineering education and
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practice and hindering the consideration of possible alternatives that could be better suited
to present conditions and challenges.
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The result is an extremely inefficient, water- and energy-thirsty sewerage infrastruc-
ture, with significant impacts on the environment and economy, both locally and globally.
Overall, the UWC accounts for approximately 2% of total energy use in the US, generating
over 45 million t/year of GHG emissions. At the municipal level, these systems are typically
among the largest energy consumers, often accounting for 30–40% of local energy bills [25].
Arguments in favor of decentralized water and used-water management systems abound
since they facilitate local water, energy, and nutrient recovery [26,27].

2.1.1. Centralized vs. Decentralized Used-Water Generation and Management

Decentralized UWW management consists of a variety of approaches for the collec-
tion, treatment, and disposal/reuse of used water from individual dwellings or clusters,
entire communities, or industrial/institutional settings, where wastewater is managed as
close as possible to its generation source. Decentralized systems can be managed either as
autonomous, stand-alone facilities or integrated into existing centralized systems [26]. In
either case, decentralization can be a sustainable alternative for communities considering
the implementation of new sewerage systems or revamping existing ones. Among the
competitive advantages of decentralization are the more efficient distribution of infras-
tructural investment costs by reducing pipe diameters and extensions and operational
pumping requirements; the possibility to extend UWW treatment coverage on a need-to
basis, leading to a more efficient reduction of related environmental impacts and risks
to public health; the possibility for staged planning (lower WWTP design flow), better
hydraulic operating conditions, more concentrated flows, and lower high-quality water
demand [28].

A comparative study in India showed that decentralized systems, configured in
large cluster subsystems, are cheaper to operate compared to centralized ones. They may,
however, require higher initial capital costs and total footprint, even though they are
distributed among several small sites rather than being located in a single large area [29].
Other studies have indicated that centralized, far-reaching sewer systems require higher
initial investments, often constituting over 80% of the entire cost of the urban sewerage
infrastructure [30].

The outcome of the ongoing debate about the costs/benefits of centralized versus
decentralized systems largely depends on the adopted technologies, as an actual cost com-
parison between possible sewerage alternatives is strongly affected by specific technical
solutions and local conditions. It has, however, been established beyond doubt that decen-
tralized approaches are closer to the Circular Economy concept compared to centralized
ones, locally bridging the gap between waste and reuse [26]. Process technology for water
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reuse should be chosen carefully and appropriately, considering that progress in monitor-
ing [31] and information control, as well as the automation (ICA) of treatment facilities [32],
have reached reliability levels that substantially improve the robustness, performance, and
economy of decentralized solutions and can significantly contribute to a reduction in their
initial investment and operating costs.

Source segregation (separation) at the household level has been defined as a “new
sanitation” paradigm to re-establish the balance of carbon, nutrient, and water cycles and
promote resource recovery [33]. By separating sources, specific used-water components
(i.e., “black water” (BW) from toilets and kitchen sinks; “grey water” (GW) from showers,
washbasins, and laundries; and “yellow water” (YW) separately collected urine) could
be optimally directed to enhance resource and water recovery according to their specific
composition [34]. Compared to GW, BW volumes are much smaller (up to approximately
one-third of total household discharged volumes using current technology), but they are
much higher in pollutant concentrations, as illustrated in Table 1.

Table 1. Characteristics of streams from domestic source separation.

Black Water (BW) Grey Water (GW) Yellow Water (YW)

COD (mg/L) 5000–93,000 200–500 4000–11,000

N (mg/L) 1500–16,000 6–25 4000–11,000

P (mg/L) 500–3000 0.4–8 200–4000

Solids High Low N/A

Pathogens High Low High

Micropollutants High High Low *
Note: * with the possible exception of pharmaceutical residues and their metabolites.

The fractions and characteristics of these streams, as well as those of “conventional”
wastewater, vary significantly depending on the location and installed fixtures; therefore,
the values indicated above are purely indicative.

Source separation could help overcome current, inefficient used-water management
paradigms, under which large volumes of valuable drinking quality water are employed
for the dilution and transport of waste materials, making it difficult to efficiently recover
embedded resources due to present technological limitations. Studies comparing the fea-
sibility of different types of source-separation approaches, considering different levels
of decentralization, over conventional centralized approaches have been conducted us-
ing common economic assessment methodologies, factoring in the estimated recovery
of resources. Simulations have proven that most source-separated alternatives can be
competitive alternatives to conventional ones, despite some possible drawbacks [35].

Source-separation approaches are not exempt from operational drawbacks if inappro-
priate technologies are used. BW segregation, combined with the use of ultra-low-flush
toilets, may induce the deposition of solids and the clogging of sub-horizontal domestic
pipes and sewers designed under conventional paradigms, since approximately one-third
of household water usage originates from toilet flushing. Furthermore, low-flush toilets
could actually increase water consumption and BW dilution due to inefficient flushing and
its repetition [36]. Segregated BW could be more efficiently collected by systems that are less
infrastructure- and energy-intensive, such as vacuum sewers, as these only require about
0.5 L/flush [37] and would provide more concentrated WWTP influents, suitable for anaer-
obic treatment. With substantial immediate energy savings through aeration avoidance and
improved resources, such as N and P, recovery possibilities would thus ensue [38–40]. Vac-
uum sewer systems, an alternative to conventional (gravity) sewerage systems, may offer
other substantial advantages for decentralized, source-separated applications. In addition
to lower-cost materials (typically polyvinyl chloride, PVC), smaller-diameter pipes, and
shallower installation depths, they require less energy (by about 30%) for operation [37].



Water 2023, 15, 3967 6 of 30

An alternative to fully decentralized solutions is so-called “sewer mining”, a lesser-
known option for introducing decentralized reuse possibilities into existing centralized
systems. Sewer mining was originally pioneered in Australia to provide non-potable
water for urban, industrial, and domestic uses [41]. It consists of tapping into existing
centralized mains to divert raw sewage aliquots and treating them on the spot for specific
local purposes. This avoids long-distance pumping to a centralized WWTP and pumps the
effluents back to users. Despite many success stories, there are challenges in the adoption
of this solution in Europe, including, but not limited to, public perception, regulatory
frameworks, and financial constraints. A prototype sewer-mining system was tested in
Athens (Greece) to assess the performance of available state-of-the-art solutions in view of
its possible implementation in a European context [42].

2.2. Residual Energy and Materials in Used Water

Used water contains considerable amounts of embedded energy and recoverable ma-
terials. According to theoretical calculations, its chemical energy content is 3.86 kWh/kg of
mineralized COD [43]. Shizas and Bagley [44] compared the actual energy consumption of
the North Toronto WWTP (6.8 MWh/day) to the energy content estimate of its influent flow
(62.8 MWh/day), highlighting a ratio greater than 9. The chemical energy content of used
water could exceed 550 TWh/year globally (>2% of global electric energy consumption); in
practice, however, this cannot be fully exploited with current technologies.

Although usually neglected in favor of the former, used water also contains large
amounts of low-grade thermal energy (1.17 kWh/m3 ◦C) as residuals from household
(bathing, laundry, and cooking) or industrial (cooling and process) activities. The sewage
temperature at discharge is usually around 30 ◦C; by the time it reaches a WWTP, it
decreases by 10–15 ◦C, depending on the local climate, season, and distance traveled.
With sewage flow rates in large cities more or less constant all year, this makes potentially
exploitable thermal energy even more abundant than chemicals, especially near discharge
points. Heat recovery by water-source heat pumps (WSHP) is already a feasible option for
heating/cooling buildings, greenhouses, and other local uses [45].

Used water is a carrier of nutrients, particularly nitrogen (N) and phosphorus (P),
which are key elements of the WEF nexus and essential for food and feed production. The
EU’s Agriculture Directorate has recently underlined the strategic role of fertilizer supply
in food security following a 70% decline in ammonia production, linked to international
political developments since 2022. At the same time, it recognized the role of nutrient recy-
cling from waste streams to improve the sector’s resilience. In March 2022, the European
Parliament adopted a resolution recommending that alternative sources of nutrients be
utilized to the fullest extent, particularly by increasing the use of organic fertilizer products
obtained from sewage sludge [46].

An Inefficient Nutrient Management Paradigm

N is the second major nutrient element in fertilizers, normally fixed as ammonia by
the conversion of natural gas (CH4) through C-N substitution via the energy-intensive
Haber–Bosch process [47], which requires 37–45 MJ/kg of atmospheric N fixed and con-
sumes up to 2% of global annual energy production [48]. Domestic used water carries
about 2 × 107 t NH4/year, about 19% of the pre-2020 global industrial production [49].
Recovery of nitrogen in (N-NH4

+) form, suitable for crop uptake, could substitute the cur-
rent inefficient mainstream wastewater treatment paradigm, where ammonium is removed
through sequential nitrification/denitrification and converted into gaseous N2. In addition,
nitrous oxide (N2O), a known obligatory intermediate in heterotrophic denitrification and
autotrophic nitrification (with a greenhouse effect 300 times greater than CO2), is generated
at an estimated 3.2% fraction of its global anthropogenic emissions [50].

Nitrification alone requires around 50% (between 42–45 MJ/kg N removed) of the
energy demand of a conventionally designed treatment facility, whereas the more efficient
Anammox process requires about half of that [51]. Therefore, the full cycle to first remove
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and then regenerate ammonium requires up to 90 MJ/kg N. The Haber–Bosch process also
causes additional CO2 emissions of about 1.6 t/t anhydrous NH3 fertilizer produced since
H2 to fix ammonia from atmospheric N2 is usually obtained from methane conversion.

Phosphorous is an irreplaceable component of fertilizers, derived from finite global
mineral deposits (phosphate rock, PR). Human excreta carried by used water contain about
16% of the mineral phosphorus consumed worldwide. Currently, P is usually removed
from wastewater for environmental protection, often in non-reusable form; recovering
and recycling it could contribute to reducing humankind’s dependence on mined PR and
extending the lifespan of ascertained mineral reserves [52].

As discussed in the following sections, the recovery of ammonia [53,54] and phospho-
rus [55] is possible at different stages of the used-water processing cycle.

3. UWW Mining: Approaches and Technologies

Additional resources are generated within the UWW processing cycle itself: microbi-
ological activity transforms the original organic compounds into biomass and fuels (e.g.,
biogas) and generates secondary recoverable resources embedded in biomass such as
lipids, polyhydroxyalkanoates (PHAs), proteins, and other products [56]. Economic and
sustainability considerations suggest that resources embedded in sludge (energy, nutrients,
raw materials, and process by-products) should also be properly exploited to consolidate a
virtuous wastewater-based Circular Economy cycle [57]. These options are discussed in the
following sections.

The mining of water resources can start immediately after their first use, even before
they are discharged into the sewer system. Stream segregation has been proposed as an
approach to improving wastewater resource management by separating domestic wastew-
ater streams at their origin to allow for effective source control and better exploitation of
waste material cycles [33]. Past studies have shown that by combining wastewater streams
of different qualities, the likelihood of achieving higher-quality water reuse decreases [58].

Domestic stream separation generates a low-dilution, organic-rich stream (BW), which
can be further separated in BW proper, yellow water (YW), and a diluted GW stream. The
typical ranges of these streams’ characteristics were summarized in Table 1. BW (without
urine) contains more than 50% of domestic wastes’ organic matter and the highest number
of pathogens. GW is the least polluted domestic water fraction and, after proper treatment,
can be returned to almost any point in the water cycle [59]. Onsite GW treatment [60,61]
could recover a resource suitable for local urban uses such as toilet flushing, building or
industrial cooling and cleaning, street washing, and landscape irrigation, among others.
Applicable approaches vary widely [62], ranging from nature-based (e.g., constructed
wetlands) [63] to advanced systems such as compact biological processes, membrane
bioreactors, and bioelectrochemical systems [64,65].

Low-quality water use typically accounts for approximately two-thirds of household
consumption, for which nature-based technologies may be appropriate due to their low
cost, low energy use, and limited technical and operational requirements. However, they
are land-intensive and cannot be easily implemented in urbanized areas. To overcome
this drawback, “vertical” solutions (i.e., green walls, living walls, and green facades) that
can be applied with similar functions in high-density urban areas have recently been
developed [66].

YW is the richest stream in terms of nutrient content; therefore, it can be exploited
for the facile recovery of fertilizers [67,68]. On average, a person excretes about 550 L
urine/year, containing approximately 0.4 kg P, 4 kg N, and 0.9 kg K. Throughout history,
the direct application of urine as a fertilizer has been common practice [69], with the
potential risk of contamination from pathogens. Nowadays, concerns also include emerging
pollutants (pharmaceuticals, hormone residue, and micropollutants) [70]. Methods for the
safe recovery of nutrients from separated YW have also been developed [68].

Wastewater segregation enables water reuse according to the desired quality and
better resource recovery in industrial settings. Often, industries discharge partially treated
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effluents to municipal sewers rather than recovering resources onsite due to specific con-
taminant issues. Streams contaminated with poorly treatable or resilient substances may
prevent water internal reuse or energy recovery, but their segregation and ad hoc treatment
could enhance process water management, [71].

The following sections address specific approaches and technologies for water reuse
and resource recovery.

3.1. Water Reuse Opportunities

Historically, the most prevalent application of treated effluent reuse has been in ir-
rigation [72]. It has been estimated that today, 12% of global freshwater withdrawals for
agricultural irrigation could be readily and safely replaced with WWTPs’ effluents that
might, in many circumstances, actually be among the best sources for this purpose [13].
Effluents could also represent a free source of nutrients in combined irrigation and fertiliza-
tion (fertigation) of urban green or agricultural crops. It has been determined that lawns
and turfgrass account for the large water demands in some US urban areas, up to 70% of
public water consumption. Fertigation with treated effluents could avoid excessive nutrient
leaching from chemical fertilizers’ application, supplying N and P in a form suitable for
rapid uptake by root systems, thereby reducing groundwater contamination [73]. Tailoring
effluents to the desired nutrient composition for the receiving crops could enhance the
economic sustainability of fertigation reuse [18].

The reuse of water resources requires more intense processing compared to raw
water sources, as natural attenuation barriers are removed. In water-stressed areas, the
implementation of fit-for-purpose (FfP) used-water treatment could provide a local supply
for almost any required reuse, from processes to drinking water, as proven by long-running
schemes implemented in Windhoek (Namibia), Singapore, and several other locations
worldwide [74]. FfP is implemented through multiple barrier-treatment (MBT) schemes,
which treat raw or used water to specific quality standards through subsequent increasingly
selective contaminant-removing steps.

In areas of high water stress, dual distribution systems for “drinking water substitu-
tion” have been designed to separate high-quality water for drinking from lower-quality
reclaimed water targeted for other purposes. Centralized reclaimed water distribution
maintains the supply of potable water from scarce sources through existing networks,
offering an alternative, controlled supply of treated used water aimed at less demanding
uses. Dual systems, known as “purple networks” in the US, allocate additional water
resources under supply stress conditions. While not reducing the delivery cost of potable
water, they may reduce the overall burden of water supply at the community level: even
compounding the investment needed for infrastructure replication, economies may occur
when raw water sources have insufficient capacity, poor initial quality, or are remotely
located, making delivery of locally reclaimed water more efficient [75].

Although technically feasible in most circumstances, the economics of water reuse
strongly depend on local conditions. On average, the cost of supply from traditional water
sources is increasing, and at the same time, the differential cost of providing reusable
sources is narrowing. The average cost of conventional WWTP effluents is between 0.15
and 0.30 US$/m3, and the production of reclaimed water to satisfy most non-potable
reuses costs 0.25–0.50 USD/m3 [76]. Long-term (48 years) operation of the Windhoek
facility in Namibia required an average cost of sewage reclaimed for direct potable reuse of
0.72 EUR/m3 [77].

The cost of reclaimed resources must be compared with the price of local freshwater
supplies. In the western US, for example, this ranges from 0.02 to 1.18 US$/m3, with an
average value of 0.64 US$/m3 [78]. Given the indispensable and highly strategic nature of
water, the pressures of increasing scarcity and growing demand will make the additional
cost of producing reusable quality water less relevant compared to other factors. Figure 3
summarizes the possible options for urban used-water mining.
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Local measures aimed at the reuse of relatively clean rainwater from urban impervious
areas (roofs, parking areas) can result in significant environmental and financial advantages
to property owners and communities at large, as well as increased resilience to stressed
supplies and disposal networks. In segregated collection systems, stormwater could be
collected separately from other flows and sent to temporary storage for reuse, with or
without partial treatment, or sent for infiltration [79,80]. Low-Impact Development (LID),
as well as “Sponge City” approaches, provide cost-effective and resilient solutions that
integrate land development, stormwater management, and water quality sustainability in
urban water bodies. Managed aquifer recharge (MAR), designed to infiltrate urban runoff
and treated municipal effluents into aquifers, is also considered an appropriate water reuse
technique for potable supply augmentation and for countering saline intrusion in coastal
areas. MAR is becoming popular due to its low implementation costs, low evaporation
losses, and the possibility of infiltration of large flows from different sources [79].

Table 2 summarizes the pros and cons of the possible reuses for treated water. The
greatest challenges in the water reuse domain concern public acceptance, criteria establish-
ment, and economic and energy management aspects rather than pure technological ones.
An appropriate techno-economical approach cannot ignore essential public communication
and stakeholder involvement.

3.2. UWW Energy-Mining Technologies
3.2.1. Thermal Energy

A great deal of thermal energy is contained in used water. Upon discharge, it may
even induce detrimental ecological effects by modifying receiving streams’ thermal profiles.
Harvesting this energy through heat pump technology is an established and widely used
practice. It has been estimated that heat recovery from large sewage collectors could meet
between 7 and 18% of the domestic heat demand in an urban catchment of 80,000 P.E. [81].
A detailed example of urban mains’ heat exploitation for the heating and cooling of a new
commercial building was reported by Cecconet et al. [19]. WWTP’s effluent-recovered heat
could be a renewable heat source for low-intensity uses such as nearby produce or solar
sludge-drying greenhouses [82,83] and anaerobic digester heating [84]. High-grade heat
from biogas combustion could then be directed to other uses beyond a treatment facility’s
premises. However, technical limitations exist, including corrosion and circuit fouling
in sewage heat exchanger applications, as well as the feasible distance, limited to a few
(3–5) km, for district heating [85].

Alternative heat-recovery possibilities consist of direct harvesting at the point of
discharge of large-scale users, such as schools, military barracks, hospitals, sports facilities,
and swimming pools, upstream of sewer connections, where segregated, relatively “clean”
GW streams (e.g., showers and sinks) can be exploited [86]. The efficient utilization of
thermal energy in UWW depends on the appropriate design, selection, and maintenance
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of heat exchangers since they operate with dirty water, fouling, blocking, and corrosion
problems may arise [87].

Table 2. Summary of the pros and cons of possible treated water reuses.

Type of
Reuse Pros Cons Comments Ref.

Irrigation

Treated water reused for
irrigation can reduce
freshwater consumption.
Irrigation with treated
effluents can contribute N
and P, necessary for crops.

Possibility of crop
contamination by various
contaminants, including
emerging substances and
pathogens.

Fertigation contributes
water and nutrients to
crops. Soil and crop types
should be compatible with
effluent characteristics.
Stakeholders’ (farmers,
consumers) perception and
acceptance of this practice
are essential.

[13,18,72,73]

Urban and
industrial uses

Treated effluents are
suitable for several types of
non-potable reuse,
allowing the use of
high-quality freshwater for
potable use.

Infrastructure is usually
absent for dual water
distribution.

Dual-distribution networks
present in water-scarce
areas.
Fit-for-purpose treatment
can provide reused water
at competitive costs.
Industrial, non-contact
uses are usually well
accepted.

[8,14,17,27,74–76,80]

Domestic uses

Onsite treated used water
could provide about 2/3 of
current domestic uses that
do not require drinking
water quality.

Dual piping in
households required.

Acceptance of domestic
reuse practices depends on
water availability
situations (scarcity
conditions and cost of
drinking water). Proper
public communication is
highly important.

[34,59–61,63,65,66]

Aquifer
recharge and

Indirect potable
reuse

Replenishment of aquifers
increases future availability
of water and supply
resilience. Low-cost
practice. Impurities are
naturally filtered by
subsoil formations.

Hydrogeological
conditions should be
verified to avoid
preferential contaminant
transport. Excessive
recharge may affect
underground
infrastructure.

Urbanization reduces
aquifer recharge. MAR and
similar approaches can
restore hydrological
groundwater balance.
Aquifer recharge is part of
many indirect potable
reuse schemes. IPR
schemes are often accepted
as they “blend” with the
natural water cycle.

[8,13–16,74,79,80]

Direct Potable
reuse

Can provide drinking
water to areas with critical
water scarcity. This practice
is a consolidated
technology with many
application
examples globally.

Treatment can be
energy-intensive.
Citizens’ acceptance may
initially be low.

Treatment technology can
provide drinking water
directly from WWTP
effluents.
DPR acceptance increases
with water shortage and
can be boosted by proper
communication strategies.

[13,14,74,77,78]

Importantly, it should also be remembered that biochemical reactions are temperature-
dependent. Excessive heat extraction from sewage prior to biological treatment may
decrease process rates and treatment efficiency [88].

Current technology does not allow direct electricity generation from low-grade heat;
however, thermoelectric generators (TEGs) could soon be applied in this field. By virtue
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of the Seebeck Effect, TEGs can directly transform thermal energy into electricity in the
presence of hot sources and cold sinks [89]. This technology has been successfully applied
for the exploitation of large heat gradients, but in wastewater applications, it is constrained
by the low temperature of the hot source (T normally ≤ 30 ◦C) and the low ∆T between
the heat source and sink (usually, ambient air). Large inflows (e.g., 1000s of m3/day) in
big facilities could, however, compensate for these limitations. Lab-scale tests showed
an energy recovery of 4.5 × 10−4 kWh/m3 under limited (2.8 ◦C) temperature gradients.
With the introduction of new materials, TEG generation from used-water heat could soon
become efficiently exploitable [90].

3.2.2. Chemical Energy

Traditionally, used water’s embedded chemical energy, i.e., the energy contained
in organic matter, is recovered through anaerobic fermentation (digestion) of biological
sludge. Anaerobic sludge digestion (ASD) is perhaps the most common processing method
for WWTPs’ organic residuals since it stabilizes and converts volatile compounds into
biogas (60–70% methane) at a yield of ≈1 m3 biogas/kg of degraded organics. Biogas is an
important aspect of European and global renewable energy strategies, together with liquid
biofuels, since it provides storable energy [91]. Using prevalent technologies, however,
only up to 30% of sludge’s organic matter is mineralized, and as much as 70% remains
unexploited after treatment [92]. Several optimization strategies can increase specific ASD
methane yields. These include cell disruption for hydrolysis enhancement, methanation
efficiency improvements through direct interspecies electron transfer (DIET) augmentation,
and a combination of ASD and bioelectrochemical systems [93,94].

Paradigmatic changes in used-water management could improve the sector’s sustain-
ability and the recovery of residual resources [95]. Due to the high dilution inherent in
mainstream sewerage design, aerobic processes have established themselves as an efficient
way to process these flows; however, aeration alone can absorb up to 50–70% of the over-
all energy requirements of conventional WWTPs [51]. Processes operating with electron
acceptors other than oxygen (i.e., anaerobic) could dispose of aeration requirements alto-
gether, with substantial immediate energy savings, in addition to energy recovery. Initial
limitations related to low sewage concentrations and slower anaerobic kinetics that hin-
dered the generalized adoption of fermentation for sewage treatment were removed by the
breakthrough development of upflow anaerobic sludge blanket (UASB) reactor technology.

UASB reactors are based on anaerobic biomass developed in granular form, kept in
dynamic suspension within a thick sludge blanket [96]. Since the operating temperature has
a primary impact on process kinetics, UASBs were initially applied mostly in tropical coun-
tries; however, due to low construction and operating costs, UASB-based sanitation has
been adapted to cold and moderate climatic settings upon the proper modification of the
operating parameters. At an operating temperature of 25 ◦C, well below the optimal anaer-
obic mesophilic range, COD conversion to CH4 can reach 25–30% [97,98]. The combination
of UASB and ASD can further improve process performance at low temperatures [99].

Improvements in UASB technology include high-rate expanded granular sludge beds
(EGSBs), static granular bed reactors (SGBRs), internal circulation (IC) and internal circula-
tion experience (ICX) reactors [100]. These optimize the capacity, operational stability, and
methane recovery. Compared to traditional UASBs, high-rate reactors increase the organic
loading capacity by three times or more. In addition, UASB technology is applicable in de-
centralized settings due to its low initial costs and operational simplicity. Source-segregated
BW would be an ideal UASB influent due to its high organic and solid content [101].

In the renewable fuel realm, H2 is a clean, carbon-free fossil fuel substitute, which is ex-
pected to play a main role in future energy scenarios since it contains more energy (122 kJ/g)
on a mass basis than CH4. Anaerobic fermentation generates hydrogen as an intermedi-
ate product of acidogenesis via acetate, butyrate, and caproate metabolic pathways [102].
However, such “biohydrogen” (bio-H2) production occurs at low rates [103]. Operating
conditions play a major role in bio-H2 yield: at pH 5.0–5.5, fermentation intermediates
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approach optimal ratios, stimulating the microbial metabolism responsible for its synthe-
sis. Several studies on bio-H2 generation from food industry wastewater exist; however,
few concern domestic wastewater. Fernandes et al. [104] reported H2 yields of 200 mL/g
COD from domestic sewage. Paudel et al. [105] observed yields of 1.014 mol H2/mol of
glucose using synthetic domestic wastewater at a loading rate of 3 g COD/L-d. Mu and
Yu [106] demonstrated continuous bio-H2 generation from sucrose-rich synthetic wastewa-
ter at substrate concentrations in the range of 5.33–28.07 g COD/L and HRTs of 3–30 hrs.
Food industry wastewater is a suitable substrate for bio-H2 production since it usually
contains easily hydrolyzable carbohydrates and sufficient nutrients and requires mild
pretreatment. Economic analysis of UASB reactors fed with biscuit wastewater showed
that amounts of 414 mL H2/g COD were removed, with a calculated payback period of
5.7 years [107]. According to recent research, bio-H2 generation from industry wastewater
can be economically and environmentally sustainable and efficiently applicable in multiple
contexts [108].

Hydrogen can also be produced from wastewater through electrohydrogenesis in
microbial electrolytic cells (MECs) [109]. MECs and microbial fuel cells (MFCs) are variants
of bioelectrochemical (BE) technology, which is based on the potential of electro-active
bacteria (EABs) catalysis to directly convert chemical energy within organic substrates
into electrical energy [110]. In MFCs, EABs catalyze oxidation and reduction reactions,
each occurring in a separate compartment (anode and cathode), externally connected by
electric circuitry [111]. MFCs can produce energy from complex domestic and industrial
wastewater. Although they show a high capacity in terms of pollutant removal, they are still
characterized by several drawbacks, including limited electric production, which effectively
hinders their practical appeal [110]. On the other hand, MECs can trigger otherwise
unspontaneous chemical reactions through the application of external potential, making
it possible to conveniently generate hydrogen from used water through the hydrogen–
evolution reaction (HER):

2H+ + 2e− → H2 (1)

Since EABs produce a voltage of approximately −0.3 V from organics’ degradation,
an additional 0.11 V would theoretically be required to induce the reaction. In practice,
inputs of 0.25–0.8 V are required to trigger the HER due to MECs’ internal losses [112]. This
equates to an energy advantage of up to 86% compared to pure water electrolysis, which
requires 1.8 V to split H2O molecules.

Therefore, used-water bio-electrolysis could be implemented with significantly lower
energy to produce bio-H2 while serving a needed purpose, i.e., used-water treatment. This
technology is still hindered by internal efficiency issues common to all bioelectrochemical
systems, which generally still show low technology readiness (TRL ≤ 4) [113].

A part of the chemical energy component in used water, NH3, represents roughly
43% of the embedded energy carried by human excreta [114] and could play an important
role in future “usedwater-to-energy” strategies. In the energy sector, NH3 is viewed as a
next-generation carbon-free fuel. It contains 22.5 kJ/g (11.5 MJ/L), about half of the typical
hydrocarbon fuels, and about 20% of H2 by weight; however, its volumetric energy density
is higher than the latter (8.49 MJ/L in liquid and 4.5 MJ/L in compressed form) [115]. The
energy associated with used-water NH3 equals about 0.1 TWh/year in a typical sewage
flow of 106 m3/day, approximately 10 TWh/year for the total sewage discharges in the
EU [116].

As a fuel in thermal engines, NH3 does not release CO2 but generates NOx, which can
be abated with postprocessing. While H2 remains the cleanest energy vector, its storage
remains a big challenge. NH3 is more economical to produce, store, and deliver compared to
compressed and/or cryogenic hydrogen. The industrial infrastructure for NH3 distribution
already exists, whereas that of H2 still needs widespread implementation. The economic
and carbon emission aspects of ammonia recovery and its use as an energy source were
recently discussed by Davey et al. [117]. Technologies allowing mainstream ammonium
recovery from wastewater are available, and an ‘ammonia-to-energy’ approach could create
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a triple carbon benefit for the water sector’s transition toward energy neutrality and “net
zero” goals.

3.2.3. Potential Energy

Flowing water carries kinetic and potential energy. Small-jump, micro-hydropower
installations, with minimal construction, diversion, and storage requirements, have gained
popularity in irrigation and drainage canals, allowing electricity supplies in remote lo-
cations. Recent studies have indicated that the specific power generation costs of these
small-scale hydrosystems are comparable to those of large-scale facilities [118]. Tapping
sewer flows for power generation could also offer an efficient energy-harvesting solution.
Hydropower generation from sewage is affected by several issues since used water con-
tains solids (toilet paper, tissues, hair, Q-tips, organics, food/vegetable waste, etc.) which
may clog microturbines. “Pico-hydraulic” turbines with improved performance for the
passage of foreign matter have been studied and developed for this specific purpose [119].
Additionally, grey water discharges could be a potentially ideal source for hydropower
generation in high-rise buildings (HRB), with internal source segregation, due to their
low solid load. In cities with large numbers of HRBs (i.e., >13 floors), distributed power
generation could be substantial. It has been estimated that in Hong Kong (≈8000 HRBs),
about 220 MWh/day (80 GWh/year) could be generated from GW hydropower (≈2% of
the city’s overall consumption). In Mumbai (≈2300 HRBs), generation could amount to
64 MWh or 9% of the city’s total power consumption. It was estimated that in a 20-story,
2000-resident HRB fitted with a dual BW/GW segregated system, the investment for GW
hydropower generation would have a break-even period of about 7.7 years [120], similar to
the one required by modern solar photovoltaic systems. Figure 4 summarizes the possible
options for energy mining from UWW.
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Table 3 summarizes the pros and cons of possible used-water energy-mining ap-
proaches. Their actual applicability should be considered after a detailed case-by-case
evaluation of all the contributing factors based on LCA or techno-economic analysis, as
well as environmental and social considerations.

3.3. UWW Nutrient Mining

Used water contains large amounts of nutrients. Human metabolism generates
10–12 g N/person per day and 2–4 g P/person per day, resulting in concentrations of 20–85
mg N/L and 4–15 mg P/L in “traditional” urban used water. As seen in Table 1, source seg-
regation could dramatically increase these concentrations to up to 11,000–16,000 mg/L N
and 3000–4000 mg/L P in separated yellow- and black-water streams. According to current
WWTP design paradigms, nutrient removal, achievable through conventional aerobic
processes, ranges from 6 to 20 mg N/L and 1 to 4 mg P/L due to biomass stoichiometry
(metabolic uptake). Most often, this is not sufficient to fulfill applicable discharge limits,
and additional removal is needed. This adds a significant energy and economic burden
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to treatment operations. The traditional removal of N and P is not targeted at their recov-
ery [121], which, if implemented, could make UWW treatment more sustainable, reduce its
costs, provide supplementary fertilizers to the WEF nexus, and generate value-added by-
products for a used water-based CE. Recovery can be achieved from the liquid (anaerobic
digestion supernatant, reject water, and sludge dewatering filtrate) or sludge phase (excess
biosolids) [122,123].

3.3.1. Ammonia Recovery

Due to the usually low concentration of ammonia in sewage, the inherent challenge
consists of retrieving ammonium in economically sustainable ways. Three main recovery
processes are applied today: stripping (coupled with adsorption); membrane concentration
(sometimes coupled with hydrothermal liquefaction); and struvite precipitation. The
latter, however, contains only 6% of ammonium, and in practice, it is mainly effective in
recovering phosphates. Recovery efficiency is higher for streams with a high (>2 g/L)
NH4-N concentration (digestate, source-separated urine, and industrial wastewater) [124].

Gas stripping, based on its conversion to a volatile form at a high temperature and/or
pH, is widely used for ammonia recovery. The stripping mechanism can be described
as follows:

NH3 + H2O 
 NH4
+ + OH− (2)

where the reaction’s equilibrium is shifted toward the right side by raising the process’s
pH with alkaline reagents (“Alkali Stripping”) and increasing its temperature. A turbulent
air stream is insufflated in the reaction vessel, and the stripped ammonia is subsequently
recovered in the form of ammonium salts ((NH4)2SO4, (NH4NO3), or (NH4Cl)) or as
condensate. Highly acidic solutions require significant pH buffering, while an increased
temperature and air supply imply energy consumption, making highly performant alkali
stripping costly.

Vacuum thermal stripping (VTS) has emerged as an alternative to the former. With a
vacuum maintained inside the reactor, stripping is achieved by boiling the solution at a
lower temperature [125]. Improved stripping with a low energy input can also occur by
exploiting molecular kinetic energy. Low-intensity electric fields (≈15 V/cm at 50 MHz)
will cause polar ammonia and water molecules to align and increase their rotational and
translational motion, accelerating stripping at a low temperature and airflow. This process
saves both chemicals and energy, showing enhanced removal efficiency up to 94.3% at
22 ◦C, compared to 90.6% for conventional stripping at 36.8 ◦C [126].

Membrane concentration through forward osmosis (FO), reverse osmosis (RO), mem-
brane distillation (MD), and electrodialysis (ED) can generate ammonia-enriched retentates,
by separating undesired substances (e.g., heavy metals and pathogens). In FO, the osmotic
pressure forces water to move from the feed to the draw side, with ammonium concentrat-
ing upstream [127]; however, the draw solute is gradually diluted, decreasing the osmotic
pressure gradient, which negatively affects the concentration on the feed side. RO, on the
other hand, works against the osmotic pressure between the feed and draw solutions and
requires more energy than FO [128]. In MD, ammonium is volatilized in the heated feed
solution and transferred across a microporous hydrophobic membrane as an effect of the
temperature gradient [129].

Several studies have investigated ammonium removal through electrodialysis. In
this case, ions driven by the electrical current move across selectively permeable mem-
branes. Ammonium is retained in a cathodic chamber by a cation-exchange membrane
(CEM). The higher the current, the higher the retained ammonium concentration and the
energy consumption [130]. Ammonia recovery through electrodialysis was shown to be
50% more energy-efficient compared to other technologies, including stripping [131]. Selec-
tive electrodialysis (selectrodialysis, SED) combines ED with monovalent anion-exchange
membranes (MVAs) and concentrates both phosphorus and ammonium by separating
mono- and di-valent ions. MVA and CEM membranes recover phosphate and ammonia at
the same concentrations [132,133]. Multi-compartment SED can concentrate phosphorus
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and ammonia separately, generating two separate, high-purity recovered streams free of
heavy metals and pathogens, with a larger market potential [134]. In order to upgrade SED
technology for large-scale applications, however, further investigations into the long-term
performance and development of cost-effective membranes are needed [132].

In BESs, N recovery is mainly in the form of ammonia. MFCs can achieve 100%
ammonia recovery with a positive energy balance and efficiency improvement over strip-
ping. The high pH of catholytes driving ammonium conversion to ammonia gas can affect
MFC ammonia [131]. Integrated BES/photobioreactor technology can recover nitrogen
by concentrating it in algal biomass, which can be further converted into biochar [134] or
processed by a biorefinery into various fuels and products [135].

Zeolite adsorption has been demonstrated as a simple technology to achieve excellent
ammonium removal and recovery (>98%), even at initial concentrations below 1 mg NH4-
N/L. In full-scale applications, however, it suffers from fouling and a high chemical (NaCl)
demand for regeneration. New polymer-based engineered adsorbents exhibit improved
mechanisms and cost-effective regeneration without heavy chemical dosing [136]. Tradi-
tional zeolites show an adsorption capacity in the range of 11–54 mg NH4-N/g, whereas
new C-based adsorbents (e.g., Carboxymethyl chitosan-gpoly(acrylic acid)/palygorskite)
can reach over four times that capacity [114].

3.3.2. Phosphorous Recovery

Globally, P recovery is a critical emerging issue since PR reserves are limited and
concentrated in a few countries far away from the main users [52]. It has been estimated
that 15–20% of global PR demand could be substituted with P recovered from municipal
wastewater close to its utilization sites [137].

Struvite (MgNH4PO4·6H2O or MAP, magnesium ammonium phosphate hexahydrate)
is a slow-release source of P, NH4

+, and Mg2
+ that is suitable for agricultural fertiliza-

tion. Spontaneous struvite precipitation represents a known, serious scaling problem in
WWTPs since wastewater can spontaneously generate approximately 10 g of struvite/m3

treated [138]. In a medium-sized WWTP (≈100,000 m3/day capacity), struvite scaling
remediation costs can exceed 100,000 USD/year [139]. Controlled struvite crystallization,
in addition to solving this issue, can be a profitable alternative to chemical P removal due
to savings in chemical additives and subsequent chemical sludge disposal.

MAP production from sewage varies from 0.89 to 13.7 kg/kg of influent P. Some of the
currently adopted technologies are associated with shortcomings such as high operational
costs (energy and chemicals) and large footprints [140]. Magnesium addition is usually
required and could contribute to up to 75% of struvite’s production costs. Other useful
Mg-less P forms can be efficiently precipitated, including hydroxyapatite (Ca5(PO4)3OH,
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influenced by the orthophosphate concentration in the solution. Estimates indicate that
the cost of struvite production would drop from ≈2800 to 520 EUR/t of MAP if influent
PO4

3− concentrations were increased from 50 to 800 mg/L [142]. Incidentally, this could be
another strong argument in favor of the implementation of used-water source segregation
and low-dilution collection strategies, as discussed in Section 2.1.1.

ASD supernatant is a highly suitable stream for struvite recovery due to its con-
centrated P and NH3 contents. P recovery can also occur from the aerobic liquid phase
operated during the Enhanced Biological Phosphorus Removal (EBPR) process, which can
temporarily concentrate phosphates into biological solids [143]. Struvite recovery technolo-
gies are commercially used in various proprietary processes such as OSTARA, PHOSPAQ,
ANPHOS, MULTIFORM, PHOSNIX, PHOSTRIP, etc. They can accomplish 80% or more
of P-recovery efficiencies, with variable normalized production rates (kg struvite/kg of P
influent), and specific costs ranging between 3 and 10 USD/kg of P recovered [140,141].
Struvite precipitation could be improved by combining SED with a precipitation reactor.
In one such study, phosphorus and ammonia were recovered in ranges of 86–94% and
96–100%, respectively [129].
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Table 3. Summary of the pros and cons of possible used-water energy-mining approaches.

Technology Pros Cons Comments Ref.

Heat pumps

Mature technology.
High, steady sewage
flows allow consistent
recovery. Can be applied
in many situations,
including segregated
GW streams.

Issues with exchangers’
corrosion and fouling
can develop in
raw sewage
applications.
Low-grade heat
transfer is most efficient
in proximity uses.

Applicable both in large
sewer networks and WWTPs.
Excessive heat extraction
may impair biological
treatment efficiency.
High potential in densely
populated areas.

[19,81–88]

Thermoelectric
generators (TEGs)

Direct electricity
generation from
fluid-embedded heat
possible through the
Seebeck effect.

Most efficient at high
thermal gradients (low
in UWW applications).
Expensive technology.

Not mature in the water
sector. Efforts to exploit
low-gradient, high-flow
conditions are ongoing.
Present potential is low.

[89,90]

Anaerobic
Digestion

(fermentation)

Mature, most common
technology for energy
recovery from organic
wastes.
UASB version applicable
to diluted UWW. Energy
recovered as biogas or,
with process
modification, hydrogen.

Lower efficiency at low
temperatures.
Biogas contains up to
40% CO2 and must be
upgraded for general
use as a natural gas
substitute.

Can be used as the first step
in complex sludge
biorefinery schemes, with
sequential materials recovery.
Could completely replace
aerobic biodegradation
processes in the presence of
high concentrations
of sewage.
Very high potential for
improvement.

[51,91–108]

Bioelectrochemical
systems

Direct electricity
generation from UWW
organics. Possible to
achieve hydrogen
production at lower costs
than pure water
electrolysis.

Expensive technology,
not yet applied on a
large scale. Limited
electrical recovery
compared to theoretical
potential.

TRL still low. More research
is needed for successful
full-scale applications.
Presently, it has
low potential.

[109–113,137]

Ammonia-fuel
recovery

NH4 can be used as
C-free fuel, with
modification of
existing engine
technology. More
economical to produce
than H2, at a higher
volumetric
energy density.

High combustion
temperature needed.
Could generate NOx
emissions if not
properly controlled.

Ammonia-to-energy
approach possible on a large
scale and in heavy transport
vehicles/ships.
Good medium-term
potential.

[114–117,124–132]

Picoturbine
hydropower

Electricity generation
from liquid streams’
potential energy in
high-rise buildings.

Picoturbines can be
affected by solids and
impurities in the flow.
Needs buildings’
internal plumbing
adaptation.

New picoturbine types
developed to allow use with
BW. Application to less
contaminated GW could be
an efficient solution.
Good potential in highly
dense, vertically developed
urban areas.

[119,120]

Membrane processes are used to recover P by pre-concentration via RO, FO, micro-
filtration (MF), or nanofiltration (NF), and subsequent precipitation as MAP or HAP. The
integration of FO and biological processes is referred to as an osmotic membrane bioreactor
(OMBR), where P is predominantly precipitated as amorphous CAP, with recovery higher
than 95% [144]. The process, however, is adversely impacted by salinity that can foul
membrane media and deteriorate permeate quality [145]. Combined hybrid FO-MD (mem-
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brane distillation) systems were shown to be effective in concentrating P from high-load
sidestreams, achieving 90% phosphate recovery [146]. NF membranes that can effectively
reject a variety of heavy metal ions are considered promising for P recycling. Newly devel-
oped NF media were shown to be effective in recovering up to 90% of influent P and the
integration of FO-NF achieved up to 99% phosphate recovery [147].

Finally, P recovery is also possible from incinerated excess sewage sludge ashes
(ISSA) via chemical extraction. In this case, care must be taken to avoid the possibility
of heavy metal leaching (Zn, Cu, Pb, As), which can limit recovered P use in fertilizer
production [123].

3.3.3. Other Nutrient Recovery Approaches

Algal-based sewage treatment has become popular in recent times due to its single-step
removal of carbon and nutrients. Microalgae, including eukaryotic algae and cyanobacte-
ria, have emerged as an environmentally friendly and sustainable alternative to energy-
intensive and conventional biological treatment processes in use today. When incorporated
into biological used-water treatment, they generate O2 through photosynthesis, helping het-
erotrophic bacteria aerobically degrade organic matter and perform CO2 bio-fixation [148].
As a renewable biomass source, excess microalgae can be fermented for biogas production
after harvesting [149], and the embedded nutrients can be recovered through subsequent
downstream processing. Various reactor types can be used for microalgal wastewater
treatment [150] Harvesting via solid–liquid separation steps and subsequent drying should
be carried out [151]. The latter step may be energy-intensive. Figure 5 summarizes the
possible options for nutrient mining from used water.
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Table 4 summarizes the available opportunities for nutrient recovery from used water.

3.4. UWW Chemicals and Materials Mining

In addition to energy and nutrients, wastewater contains many other valuable com-
ponents. Several technologies developed to pursue resource recovery challenges must
account for the diluted nature of waste streams. Biological processes concentrate solute
and suspended chemicals into biomass through uptake or adsorption, but the preliminary
recovery of suspended materials could be attempted.

3.4.1. Cellulose, a Used Water-Embedded Resource

As a common industrial raw material, cellulose is a valuable resource present in used
water, which originates mostly from toilet paper, although small amounts could also derive
from kitchen waste, especially where sink comminutors are used, or street runoff in areas
where combined sewers are present. In North America and Western Europe, the cellulose
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content in used water has been estimated to be about 157–178 mg SS/L, or 40–50% of total
suspended solids (TSS). In Latin America, Africa, and Asia, the concentrations are generally
lower [152]. Cellulose is one of the most abundant polysaccharides on Earth; however,
notwithstanding its organic origin, it is poorly biodegradable. In typical AS systems,
only about 30% of cellulose COD is degraded, and the rest accumulates in the excess
sludge. Preliminary recovery would significantly reduce the organic load and aeration
demand [153]. The aerobic degradation efficiency of cellulose increases significantly with
the process temperature (values of 6.7% below 13 ◦C and 87% at 23 ◦C have been reported)
and SRT (increasing from 13% at 5 days to 83% at 40 days) [154]. Sludge-accumulated
cellulose represents 50–60% of its residual COD load, undergoing further degradation in
ASD [154].

Table 4. Summary of possible nutrient recovery options from used water.

Element/
Technology Pros Cons Comments Ref.

Ammonia/
stripping

Easy implementation.
Various process forms
exist with different
recovery yields.

pH buffering and high
temperatures may be
required.

Vacuum thermal stripping
reduces the required process
temperature.

[124–126]

Ammonia/
adsorption

Zeolite adsorption easy
to implement. High
recovery (>98%) even
at low initial
concentrations.

High chemical demand for
regeneration. Filter suffers
from fouling problems.

New polymer-based
adsorbents may enhance
recovery and
cost-effectiveness.

[114,136]

Ammonia/
concentration

Membrane-based
processes can recover
pure ammonia (no
metal, pathogen
contamination).

Relatively energy
intensive.

Forward and reverse
osmosis, membrane
distillation, and
electrodialysis, alone or in
combination, available at
intermediate TRLs.

[127–134]

Ammonia/
others

Bioelectrochemical
systems can achieve
100% ammonia
recovery with a
positive energy
balance.

Technology more complex
and costly than stripping/
adsorption. Low TRL (pilot
scale only).

Material issues hinder BESs’
industrial development.
Promising technology for
the future.

[131,133]

Phosphorous/
precipitation

P precipitation occurs
naturally in WWTPs.
Controlled
precipitation can avoid
serious scaling
problems. High TRL.

Efficient precipitation
requires costly chemical
addition and controlled
conditions. A
P-concentrated solution
is needed.

Can be implemented from
the liquid or solids line.
Struvite or other
fertilizer-value minerals can
be obtained. Many
proprietary commercial
processes are available.
Can be combined with P
pre-concentration by
membranes or
electrochemical technologies.

[129,137,139–147]

Phosphorous/
leaching

Incinerated sludge
waste is an available P
source. Chemical
extraction technologies
available.

Chemical extraction may
cause heavy metal leaching,
in addition to P. This could
create subsequent
reuse problems.

Pre-treatment agents (e.g.,
EDTA) can achieve
high-purity P leaching
from ISSA.

[123]

Toilet paper in sewers disintegrates into cellulose fibers of about 1 mm in size, which
can be removed in WWTPs by grit chambers (≈20% efficiency) or primary clarifiers (up to
80% efficiency). Physical separation is highly effective; therefore, the mainstream technical
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solution currently adopted for cellulose recovery consists of replacing or supplementing
primary clarifiers with rotating belt filters (RBFs). An RBF with a mesh size of 350 µm can
retain 40% of influent SS or more. The benefits extend beyond mere cellulose recovery.
In fact, by removing most solids, considerable energy savings (ranging from 22 to 28%)
could be obtained by operating biological processes at reduced aeration. Pre-recovery of
cellulose could also mitigate membrane fouling in membrane bioreactor (MBR) processes.
Cellulose post-recovery with RBFs installed in secondary clarifiers’ sludge extraction lines
requires smaller equipment (with lower costs) due to lower flows, achieving lower cellulose
recovery as a consequence of its degradation in biological units. Furthermore, in this case,
no aeration requirement savings are achieved.

Unlike conventional clarification units, RBFs can efficiently handle wide flow tran-
sients and solids peaks [155,156]. Recently, an ionic liquid method was proposed to recover
cellulose from a paper mill’s sludge [157]. However, this requires substantial energy
and chemical inputs and may not be applicable to municipal facilities. At present, RBFs
are a consolidated technology for cellulose recovery, and more than 700 such large-scale
installations exist in Europe and North America [158].

Recovered cellulose can be directly valorized as raw polymeric material in the con-
struction and paper industries as a substrate for ASD (for biogas or volatile fatty acid
production), producing higher yields compared to primary sludge, or in the production of
chemicals, such as bioethanol and bioplastics [159]. Nanocellulose (an emerging material
with exponentially growing industrial applications) recovered from used water is cheaper
than the one derived from wood or agricultural residuals and can be combined with extra-
cellular polymeric substances (EPSs) extracted from excess sludge to form entirely used
water-derived biological nanocomposites. An extended analysis of cellulose recovery and
valorization was recently presented by Liu et al. [152].

3.4.2. Protein Recovery

Animal proteins play a crucial role in the human diet and the WEF nexus since they are
responsible for a considerable fraction of water consumption both in direct animal farming
and the production of animal feed. Globally, the per capita consumption of animal products
has more than doubled in the past 50 years, increasing pressure on both the environment
and water resources.

Microbial protein (MP) consists of protein-rich (10–80% d.w.) biomass with an amino
acid profile comparable to standard animal protein, and it has attracted strong interest as
a possible substitute for conventional, highly impacting animal feeds, such as corn and
soybean meals. Methane-oxidizing bacteria are MP-rich microorganisms that use methane
as carbon and energy sources to assimilate N into proteins.

Ammonium nitrogen from N-rich effluents, such as anaerobic digestate or segre-
gated urine, can, therefore, be exploited for further valorization by integrating wastewater
treatment with MP production. A study at the Avedøre (Denmark) WWTP showed that
integrated WWTP/MP systems can produce protein sources with a lower environmen-
tal impact compared to traditional soybean meal. The codigestion of used water, urban
biowaste, and an organic fraction of municipal solid waste could enhance biogas produc-
tion and the nutrient content of digestates, allowing for efficient MP cultivation and the
substitution of chemical additives used in commercial MP fermentation [160].

3.4.3. UWW-Based Biorefineries

WWTP biomass ends up including most soluble and suspended molecules present in
influent UWW through metabolic uptake into cells or adsorption/incorporation into flocs.
The role of biosolids is highly relevant in the general economy and the sustainability of
UWW processing. They are a non-negligible passive cost factor in its processing cycle and
can considerably influence the effectiveness of a successful mining strategy. Exploitation of
the full recovery potential of used water-embedded compounds can be achieved through
sludge biorefineries. Biosolid biorefinery chains consist of preliminary separation (e.g.,



Water 2023, 15, 3967 20 of 30

harvesting and drying), pre-treatment, and the processing of biomass (bacteria and/or
microalgae) through a multitude of technological processes for subsequent conversion into
value-added products. Figure 6 summarizes the possible biorefinery process applications
and some of the resulting products.
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Some of the traditional processes in WWTPs (e.g., ASD) can already be considered
part of a biorefinery scheme according to its definition. Recent approaches in sludge
biorefineries have aimed at the direct recovery of specific biomass components, such as
organic acids and/or alcohols, as well as other industrially relevant molecules (such as
polyhydroxyalcanoates (PHAs), EPSs, VFAs, proteins, biopesticides, enzymes, and solvents)
and biofuels considered more industrially valuable than biogas normally obtained from ASD.
A state-of-the-art review of biorefinery possibilities was recently presented by Cecconet and
Capodaglio [56]. Appropriately sequenced biorefinery processes can maximize the recovery
of value-added products and facilitate the subsequent processing steps. For example, EPS
and protein extraction may require the destruction of microbial cells, resulting in increased
sludge dewaterability; this would improve its final disposal by thermochemical methods,
with possible further product recovery opportunities [123,161,162].

3.4.4. Recovery of Metals from UWW

A considerable fraction of the anthropogenic discharges of metals ends up in wastew-
ater. Apart from industrial discharges, UWW can be affected by heavy metal sources such
as runoff from roofs, roads, or open-air deposits; wear from car tires and brakes; commer-
cial and small industrial activities; car washes; etc. [163]. Heavy metal concentrations in
wastewater are usually in the µg (less than one) to mg/L range [164]. Biological wastewater
treatment processes are designed for the removal of organic matter by microorganisms,
and the removal of heavy metals occurs as a side benefit, mostly through concentration (ad-
sorption) onto excess biological sludge, where metal concentrations can reach µg/g levels
(about 3 orders of magnitude higher than in wastewater) [164]. Metal pre-concentration
from the liquid phase is essential for their recovery. Abiotic methods such as nanofiltration,
electrodialysis, or reverse osmosis are efficient but costly for high flows and practically
ineffective for low flows.

The presence of trace elements, including antimony, bismuth, and rare earth elements
(REEs), has also been reported in wastewater (and biological sludges) at very low concentra-
tions [165]. In such cases, adsorbent nanomaterials offer a promising recovery technology
because of their potential high adsorption efficiency. However, the rather low REE con-
centrations suggest that recovery should be focused on the development of zero-waste
processes. Factors such as the cost and reusability of nanomaterials influence the future
potential of REE recovery [166].
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Recovery technologies for metals are primarily aimed at biosolids as a concentrated
repository. Several process alternatives exist, exploiting the thermal processes and chemical
leaching of metals [162]. Two main obstacles hinder this practice: first, the relatively low
concentrations that reduce the quantities of recoverable materials (and thus the processes’
economic sustainability); and second, the fact that some methods, like acid leaching, may
generate hazardous waste that will increase treatment and disposal costs and issues [162].
Westerhoff et al. determined that metals contained in excess biosolids could be valued at
more than USD 13 per person per year in an urban area of 1 million people and that the
most valuable elements (Ag, Cu, Au, P, Fe, Pd, Mn, Zn, Ir, Al, Cd, Ti, Ga, and Cr) in sewage
sludge could yield a potential economic value of more than 280 USD/t of sludge [167]. The
appropriate integration of metal recovery into the sludge processing end of the UWW cycle
could contribute to reducing specific process costs while improving its CE footprint [168].

Table 5 summarizes the available approaches for chemical and material mining from
used water. The evolution of the respective TRLs and the variability of international
commodities markets are factors that strongly affect the sustainability of recovery.

Table 5. Summary of possible chemical and material mining opportunities from used water.

Material/
Chemical Pros Cons Comments Ref.

Cellulose

Valuable raw industrial
material. Easily
recovered through
physical means.
Removal of cellulose
from WWTP influent
could decrease aeration
requirements by up
to 30%.

Requires additional
equipment. Some
recovery processes may
require substantial
energy and
chemical input.

Cellulose can be
valorized as raw
polymeric material in
industrial applications or
as substrate for AD, the
production of
chemicals, etc.

[152–159]

Protein

Protein-rich biomass has
an amino acid profile
comparable to standard
animal protein and could
be a substitute for
soybean meal. Has less of
an environmental impact
than conventional animal
protein sources.

Requires dedicated
processes.

Methane-oxidizing
bacteria are MP-rich
microorganisms that use
methane as carbon and
energy sources to
assimilate nitrogen into
proteins. Integrated
WWTP/microbial
protein systems have
been demonstrated.

[160]

Biorefinery-derived
Products (PHAs, EPSs,

VFAs, biopesticides,
enzymes, etc.)

Molecules, more
industrially valuable
than biogas, are
produced through
microbial metabolism
and immobilized in
biomass during
wastewater treatment.

Bioferinery processes
are generally complex,
and TRL is generally
too low for commercial
adoption.

Appropriate sequencing
of biorefinery processes
could maximize recovery
of value-added products
and facilitate subsequent
biosolid processing steps

[56,57,135,160,161]

Metals, REEs

WWTPs concentrate
metals and REEs from
wastewater into biosolids.
Metal content in
wastewater could be
highly valuable.

Low concentrations
limit the quantities of
recoverable materials
from the liquid phase.
Some recovery
methods from the
sludge phase may
generate hazardous
residues, increasing
waste treatment and
disposal costs.

Integration of metal
recovery into the sludge
processing end of
wastewater treatment
could contribute to
improving its
CE footprint.

[21,162–168]
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4. Discussion

The (re)engineering of urban water systems will play an important role in providing
water and WEF-related resources to growing urban populations globally, and in achieving
sustainability and resilience in the face of predicted increasing demand and erratic climate
patterns [169]. Organically implementing the short-cycled reuse of secondary water re-
sources, such as used water, is an important aspect of UWC development planning, as it can
permanently expand the original pool of resources essential to their continued performance
and improve their response to temporary shocks.

In order for this to occur, a paradigmatic shift in UWW management seems necessary.
The centralized management of water systems has been a common standard practice since
the mid-1800s. However, it is increasingly evident that such an approach may not be optimal
in view of renewed needs and technology. Both decentralized (independent water systems
serving limited conurbation areas) and satellite (distributed throughout metropolitan areas
but with functional connections with the main system) solutions can be considered efficient
alternatives to centralized ones. It should be noted that there is no consensus on the
definition of the size of a decentralized system. Some researchers define decentralized
systems as those serving up to 5000 people. At the regulatory level, the US EPA extends this
threshold to up to 10,000 people, and others (e.g., the Institute of Hydrology, Meteorology,
and Environmental Studies, IDEAM) extend it to up to 30,000 people [28]. The definition
should be instead related to the engineering context and environmental perspectives of
planned interventions, remembering that water supply and sewage management are not
“one size fits all”. Local conditions must be carefully considered when designing local
solutions, which are influenced by multiple economic, geographical, and social factors.

Many successful examples of used-water reuse exist worldwide. Over 3000 ascer-
tained projects in Japan (>1800), the USA (>800), Australia (>450), Europe (>200), the
Mediterranean and Middle East (>100), Latin America (>50), and sub-Saharan Africa (>20),
including direct potable reuse (DPR), have been identified in previous surveys [170]. Nowa-
days, the number is most likely significantly higher, given the rapid development of such
practices in rapidly developing countries such as China and India [171,172]. In Europe,
about 109 m3/year of treated UWW is reused, i.e., approximately 2.4% of WWTP effluents,
but comprises less than 0.5% of annual freshwater withdrawals; however, the immediate
reuse potential has been estimated to be at least six times the current volume. Most reuse
in the EU is for irrigation purposes and, as of today, there are no known instances of
DPR there, although cases of indirect potable reuse (IPR) via groundwater recharge and
surface water body augmentation have been reported [163]. An essential prerequisite for
the greater diffusion of water reuse is the development of guidelines addressing potential
uses. Such regulations are gradually being introduced in the EU, the USA, and other
countries [173,174].

The implementation of used-water mining will strongly impact the design and oper-
ation of water supplies and collection in the future. Over 60 countries around the world
are already using centralized, recycled used-water systems for non-potable purposes. In
some cases, these uses have extended to drinking water in the form of IPR or DPR [175,176].
When considering the introduction of water reuse schemes, it is important to examine and
compare all possible benefits and drawbacks in the decision-making process. Assessments
of NPR diffusion indicate that this practice is expanding, although the scale of individual
projects will likely become smaller, with increasing popularity at the neighborhood scale.
Decentralized reuse systems have, in fact, been proven to be economically advantageous
in small, densely populated areas or new development projects, while centralized dual-
distribution systems often turn out to be less cost-effective compared to the former through
retrospective analyses, although they are technically successful [177]. DPR systems are usu-
ally implemented at a larger scale due to strict quality control and monitoring requirements
and the pre-existence of distribution networks [176].

The WEF nexus approach is becoming more central to water sector sustainability in
view of global efforts to implement the SDGs. The recovery of nutrients, renewable fuels,
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and materials is not only considered a paramount objective but will also add sustainability
and resilience to UWW systems, relieving some of their operational costs. Examples of
reuse/recovery technologies addressed in this review include several biological and non-
biological routes. Possible combinations of these technologies are practically endless, but
several non-technical issues may hinder the successful implementation of such schemes.

Different categories of hindrances include, in order of perceived relevance, economics
and value-chain issues, policies, and societal factors. Among the former are process
costs and the market value of recovered resources, as well as their quantity, quality, and
final distribution. In particular, coherent regulations concerning standardization and
quality assurance in recycled materials markets (including the “end-of-waste” concept)
are needed. Process competitiveness can be initially boosted through direct economic or
fiscal incentives to reduce the inherent economic advantage of traditionally established
production cycles. These considerations also overlap with the policy realm; urban planning,
building regulations, and regulatory loopholes can affect the implementation of reuse
solutions, especially at the municipal scale.

Users’ acceptance of UWW-recovered resources should not be taken for granted due
to fear, psychological barriers, or misconceptions about the related risks and quality. Both
water reuse and resource recovery and reuse projects cannot be successfully implemented
without ample social acceptance or in the absence of clear legislation and shared polit-
ical will. Social acceptance is usually higher when the public has a clear perception of
the benefits and ineluctability of the adopted options, as seen, for example, in Windhoek
and Singapore. Economic incentives and legislative updates could help speed up circular
approaches to UWC management, as well as actions aimed at enabling the transfer of re-
covered resources to markets, thereby reducing legal barriers, and improving stakeholders’
attitudes toward their acceptance [178].

A focus on optimizing the interactions of system components must be pursued in
order to maximize the beneficial impacts of resource recovery. Thus, original site-specific
solutions should be properly developed, considering the retrofitting of existing facilities
and integration with new technologies. Given the number and complexities of the possible
options, comparative LCA, TEA, and CE cycle analyses of alternative solutions should be
desirable approaches to address all these issues [179].

5. Conclusions

Water availability constitutes one of the single, most significant factors that limit
human development and is an impending threat to the continuing viability of many large
cities. Reuse is recommended as a necessary solution to widen the pool of available water
resources for urban populations and agriculture, and embedded resource recovery is seen as
an opportunity to obtain essential materials deriving from unsustainable primary mining.

Many practical challenges related to policy and economics, as well as inertial thinking
upholding a long tradition of linear consumption patterns, however, hinder the develop-
ment of a UWC-based CE. Over time, intensive infrastructures and a prevalent mindset
focused on a linear approach to UWW management have become established and persist
to this day. Existing infrastructure is generally not adequate to support the full exploitation
of water and embedded resources and will need to be optimized with new conceptual
approaches and technological refurbishments based on a renewed understanding of re-
source flows through cities and the relationships between water, waste cycles, and the
WEF nexus. In order to address the sustainability and circularity of water and embedded
resource management, fundamental changes are needed in the way UWW is managed.

This review focused on approaches and technologies that could enable resource re-
covery from UWW by incorporating them into a UWC Circular Economy. Available and
developing technologies, as well as opportunities for value-added UWW extractable prod-
ucts, have been discussed in this paper. The utilization of a systemic approach that takes
into account local conditions and properly recovered product outlets is essential and will
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better enable the identification of opportunities and evaluation of the impacts and benefits
of implementing UWW mining.
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157. Glińska, K.; Aqlan, M.; Giralt, J.; Torrens, E.; Fortuny, A.; Montané, D.; Stüber, F.; Fabregat, A.; Font, J.; Olkiewicz, M.; et al.
Separation of cellulose from industrial paper mill wastewater dried sludge using a commercial and cheap ionic liquid. Water Sci.
Technol. 2019, 79, 1897–1904. [CrossRef]

158. Global Recycling. Recovery of Cellulose from Waste Water. Available online: https://global-recycling.info/archives/1665
(accessed on 18 July 2023).

159. Zhou, Y.; Stanchev, P.; Katsou, E.; Awad, S.; Fan, M. A circular economy use of recovered sludge cellulose in wood plastic
composite production: Recycling and eco-efficiency assessment. Waste Manag. 2019, 99, 42–48. [CrossRef]

160. Marami, H.; He, L.; Rafiee, S.; Khoshnevisan, B.; Tsapekos, P.; Mobli, H.; Elyasi, S.N.; Liu, H.; Angelidaki, I. Bridging to circular
bioeconomy through a novel biorefinery platform on a wastewater treatment plant. Ren. Sustain. Energy Rev. 2022, 154, 111895.
[CrossRef]

161. Callegari, A.; Hlavinek, P.; Capodaglio, A.G. Production of energy (biodiesel) and recovery of materials (biochar) from pyrolysis
of urban waste sludge. Rev. Ambiente Agua 2018, 13, e2128. [CrossRef]

https://doi.org/10.3390/w15061195
https://doi.org/10.1016/j.jes.2017.09.009
https://doi.org/10.1016/j.chemosphere.2011.02.046
https://www.ncbi.nlm.nih.gov/pubmed/21429554
https://doi.org/10.2175/193864702784248025
https://doi.org/10.1016/S0043-1354(02)00126-4
https://doi.org/10.1007/s11356-019-05378-6
https://www.ncbi.nlm.nih.gov/pubmed/31102218
https://doi.org/10.1016/j.scitotenv.2019.03.055
https://doi.org/10.1016/j.resconrec.2017.11.002
https://doi.org/10.1016/j.biortech.2014.07.103
https://doi.org/10.1016/j.biortech.2014.03.058
https://doi.org/10.1021/es405266d
https://doi.org/10.1039/D1SE01701B
https://doi.org/10.1016/j.biortech.2021.125552
https://www.ncbi.nlm.nih.gov/pubmed/34352641
https://doi.org/10.1016/j.biortech.2019.121934
https://www.ncbi.nlm.nih.gov/pubmed/31395401
https://doi.org/10.1016/j.jenvman.2018.04.010
https://doi.org/10.1016/j.resconrec.2022.106354
https://doi.org/10.1016/j.watres.2012.08.023
https://doi.org/10.1016/j.chemosphere.2019.03.097
https://doi.org/10.2175/193864715819540847
https://doi.org/10.2166/wst.1993.0292
https://doi.org/10.2166/wst.2019.189
https://global-recycling.info/archives/1665
https://doi.org/10.1016/j.wasman.2019.08.037
https://doi.org/10.1016/j.rser.2021.111895
https://doi.org/10.4136/ambi-agua.2128


Water 2023, 15, 3967 30 of 30

162. Mulchandani, A.; Westerhoff, P. Recovery opportunities for metals and energy from sewage sludges. Bioresour. Technol. 2016, 215,
215–226. [CrossRef]

163. Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total
Environ. 2020, 709, 136125. [CrossRef]

164. Karvelas, M.; Katsoyiannis, A.; Samara, C. Occurrence and fate of heavy metals in the wastewater treatment process. Chemosphere
2003, 53, 1201–1210. [CrossRef] [PubMed]

165. Kawasaki, A.; Kimura, R.; Arai, S. Rare earth elements and other trace elements in wastewater treatment sludges. Soil Sci. Plant
Nutr. 1998, 44, 433–441. [CrossRef]
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