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Abstract: Leakages in water distribution systems (WDSs) profoundly affect their operations, elevating
water production demand and treatment and pumping costs. Moreover, they strain the energy system
by increasing power requirements at pumping stations. In regions heavily reliant on hydropower,
such as Brazil, there is a nuanced implication: diminishing reservoir water levels due to increased
WDS flow withdrawal. This not only immediately affects hydropower generation by reducing
available head but, over time, may lead to interruptions in hydropower generation. This paper
investigates the water–energy nexus, specifically focusing on WDS leakages in Brazil. It begins with
an overview of the current situation and future outlook, considering evolving policies to enhance
WDS efficiency and also the evaluation of different climate change scenarios. A more in-depth
case study explores a reservoir utilized for both energy and water production. In this context,
leakage management assumes critical importance, given the various water uses within the reservoir
that impact the available energy and water resources. Overall, this study offers a comprehensive
perspective on the water–energy nexus within WDSs, underscoring the critical importance of leakage
control and its direct and indirect consequences, particularly on energy generation capacity, the
environment, and the economy.

Keywords: water–energy nexus; hydropower; water supply; leakages

1. Introduction

Water and energy are both extremely important resources for social and economic
development. From the consumer perspective, if asked which one they would prefer, at
first, energy looks more attractive, as it is often related to comfort (use of the internet,
watching television, and heating/cooling the environment). However, when confronted
with a long-term shortage, water gains great relevance, as it is critical for sanitation and
health. In reality, both resources are intrinsically related: electric energy requires a large
amount of water to be produced, directly as in hydropower or in auxiliary thermoelectric
systems, especially in cooling systems; on the other hand, the production of potable water
requires energy for treatment and distribution [1]. Therefore, the scarcity of one of these
resources affects the second, increasing the problems to be confronted.

The relationship between water and energy is evident and has been studied in various
other sectors. An examination of the interaction between water and energy in agriculture,
with a specific focus on the utilization of groundwater pumping for irrigation purposes,
was carried out by [2], where the study’s findings unveiled a potential annual gain of USD
1.1 billion, indicating a significant contribution to the enhancement of food security in
Nepal. Moreover, initiatives in mining often lead to an increase in energy consumption,
and [3] highlighted that tools for understanding the synergy between water and energy
are essential elements in promoting the development of sustainable practices in this sector.
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Furthermore, within the oil and gas industry, the water–energy nexus, as highlighted
by [4], requires more attention regarding the practice of water injection for oil and gas
recovery, as well as the potential harm caused by the transport of contaminants into the
environment due to well integrity issues and/or abandoned wells. Another example of
the relationship between water and energy is investigated by [5] through a thermal model
aiming to understand the interaction between energy and water in three buildings in
London. The results indicate that the energy–water relationship is influenced by both the
type of building infrastructure and the environmental conditions of the location. These
findings highlight the significance of sustainable construction as an integrated approach to
managing energy and water.

A noteworthy point of view is the relationship between water, energy, and food (WEF).
However, as highlighted by [6], there are still few successful instances of its operational-
ization. To delve deeper into this matter, the authors assess the sustainability impact
assessment (SIA) protocols in the interdisciplinary operation of the WEF nexus in five case
studies in Central Asia. The observed results emphasize that challenges among various
stakeholders persist, wherein the role of water governance is critical in managing the WEF
nexus, and land management is pivotal in minimizing local-level trade-offs. Furthermore,
it is important to underscore the challenges stemming from the COVID-19 pandemic and
its impacts on the supply of water, energy, and food, as discussed by [7]. This study high-
lights the necessity of anticipating impacts and developing strategies to address adverse
situations. The findings presented by [7] also underscore the existing gaps in discussions
concerning the WEF nexus, as mentioned by [6], particularly those related to risk man-
agement. Additionally, they reinforce the advantages of sustainable (green) solutions and
stress the importance of adapting production chains to tackle critical situations, including
contingency planning, storage, diversification, and self-sufficiency.

Another notable example of the water–energy nexus is observed in water distribution
systems (WDSs), considering both energy production and water supply. This connection
was observed in Brazil in 2014 and described by [8]. A severe drought affected the southeast
region. Water resources became scarce, and the supply in several cities suffered, with
many cases of intermittency or complete interruption in the supply. As the majority of
electricity production is made by hydropower, energy production also suffered, with more
thermometric plants operating, which led to an increase in energy costs and, later, the
creation of three tariff levels according to the reservoir levels. In 2021, another severe
drought occurred, and a fourth level had to be created, but it was already disabled after
the peak of the drought was surpassed [9]. Ref. [10] highlights that the planning and
management of multiple-use reservoirs in Brazil requires great advances to avoid conflicts
like this. The use of optimization algorithms can be helpful in these cases [11–13].

When confronted with water and energy scarcity, consumers and industries search for
more efficient uses of resources, such as rainfall reuse, the substitution of equipment for
new ones with lower energy and water consumption, and modifying habits and operations
that cause inefficient use of resources [14–16]. As an industry that intensively uses both
resources in water supply systems (WSSs), the improvement in the use of one of them is
reflected in the second one. Leakages are commonly a major problem for WSSs and also a
great example of the water–energy nexus: the increase in leakage obviously increases the
water consumed, and indirectly, it requires a higher power in pumping stations to attend
to this additional flow [17]. Thus, focusing on leakage control has a great economic and
environmental impact, as shown by [18].

The water–energy nexus is also a challenge due to the emission of greenhouse gases
into the atmosphere, which has been associated with the acceleration of climate change. In
general, conflicts between users tend to increase when water availability decreases [19]. To
provide information for prospecting and investigating climate change scenarios, the Inter-
governmental Panel on Climate Change (IPCC) provides periodic reports with information
associated with different greenhouse gas emission projections in Global Circulation Models
(GCMs). The scenarios most covered in the literature are Representative Concentration
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Pathway (RCP) 4.5 and 8.5. The RCP 4.5 scenario assumes that emissions begin to decrease
in the coming decades and stabilize, while the RCP 8.5 scenario assumes that the release
of greenhouse gases continues to increase throughout the century [20,21]. However, the
projections developed from GCMs have limitations, mainly in terms of their spatial and
temporal resolution. Thus, downscaling techniques may be applied in regional studies [22].

Considering the Brazil case, with the major electric energy produced by hydropower,
this paper evaluates the water–energy nexus of leakages in WSSs. First, an overview of the
energy consumption and leakage rates in WSSs is presented for the entire country. Then, a
specific case study is evaluated, where a reservoir has multiple uses: generating energy
and supplying water. For this case study, different leakage rates are evaluated to quantify
the net energy provided by the system since the water supply is made through a pumping
station. Finally, the reservoir operation is evaluated from the perspective of climate change
for the following years. The results showed that 0.64% of the total energy produced in
Brazil is wasted through leakages (1.12% of hydropower). However, the case study showed
that this value can be higher, as not only do leakages increase the pumping power, but
they can also impair the hydropower operation due to the reduction in reservoir level
and create a deficit in the net energy of the system with the increased power required by
pumping stations.

2. General Overview of Leakage Water-Nexus in Brazil
2.1. Multiple Uses of Water: Hydroelectric x Water Supply

Hydropower plants have reservoirs that can serve multiple purposes that are essential
for water security [23]. They can be classified as non-consumptive, where there is no water
withdrawn from the reservoir, such as navigation and recreation, or consumptive, where a
certain flow is withdrawn to attend to a certain demand, as in irrigation and water supply
systems. The volume of water withdrawn directly affects the reservoir level, which can
reduce the energy production of the hydropower plant due to the reduced head available
for the turbines. In addition, if the reservoir level reaches the minimum operational value,
the turbines must stop, and the energy production is completely interrupted.

Obviously, as the water supply is mandatory for public health, maintaining the con-
ditions to allow its flow to be withdrawn from the reservoir is the priority. However, this
flow encompasses not only the water used by the consumers but also the water lost in
leakages present in the entire distribution system. Thus, part of the reservoir level could
be preserved if leakages are well controlled. In addition to this direct impact, leakages
also impact the energy required in pumping stations, as higher flows increase the power
necessary. If more energy is required, part of the flow passing through the hydropower
plant could be avoided, also assisting the maintenance of the reservoir level.

Figure 1 shows a basic example of a reservoir used both for energy production and
water supply. Considering a theoretical inflow of 100 units and the maintenance of the
reservoir level, cases (a) and (b) exemplify how the leakage reduction could improve the
hydropower operation, both by reducing the water volume lost and the energy consumed
in the pumping station.

For a single case, the leakage impact hardly has significant relevance and could be
easily surpassed using different energy resources, even if it is not an efficient solution.
However, looking at the Brazilian scenario, almost 57% of the electricity is produced
by hydropower plants [24]. Thus, the combination of several small losses can lead to
a significant amount of resources, both environmentally and economically, saved. The
following Sections 2.2 and 2.3 provide a general overview of the potential savings that
could be achieved in the Brazilian case.
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Figure 1. Theoretical example of the water–energy nexus in a reservoir: (a) high leakage; (b) low
leakage.

2.2. Estimation of Energy Wasted by Leakages

To estimate the direct energy lost due to leakages in water distribution systems,
the database provided by the Sanitation Information System (SNIS) was used [25]. Two
indicators were collected for the years 2007–2021: (i) leakage rate by connection (Equation
(1)) and (ii) specific energy consumption (Equation (2)). Figure 2 shows an overview
of these two indicators for 2021. In general, the worst results for the leakage rate are
observed in states with higher demographic concentration, especially in the south and
southeast regions. The same is observed for the specific energy consumption, which can
be explained by the increased demand and topography of these regions, requiring more
pumping stations to attend to the consumers. However, it is also important to highlight
that the data obtained from SNIS are provided by the water companies and, therefore, are
subject to high uncertainty. In addition to these indicators, the value of the total connections
was also collected. Thus, the total volume of water lost through leakages is calculated by
Equation (3), and the corresponding energy wasted is calculated by Equation (4).

IL =
VP + VI − VC − VS

Nconn

106

365
(1)

IE =
Etotal

VP + VI
(2)

Vleak = ILNconn (3)

Eleak = VLeak IE (4)

in which

IL [L/conn.day]—leakage rate by connection indicator;
VP [Mm3]—the total volume of water produced in a year;
VI [Mm3]—the total volume of water imported in a year;
VC [Mm3]—the total volume of water consumed in a year;
VS [Mm3]—the total volume of water used for internal services in a year;
Nconn [conn]—the total number of connections;
IE [kWh/m3]—the specific energy consumption indicator;
Etotal [GWh]—the total energy consumed in the water supply in a year;
Vleak [m3]—the total volume of water lost through leakages in a year;
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Eleak [kWh]—the total energy wasted due to leakages in a year.
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Figure 2. Overview of the performance indicators in water supply in Brazil: (a) leakage rate;
(b) specific energy consumption.

2.3. Results and Discussion

Figure 3 shows the historical data for Brazil for both indicators collected (leakage rate
and specific energy consumption) and the energy wasted due to the presence of leakages
in water distribution. It can be inferred that the leakage rate has a decreasing trend, with
an increase in the last three years. On the other hand, the specific energy consumption
increased during this period. This shows that, despite the efforts to reduce leakages, the
distribution system is more energy-intensive, which can be the result of population growth
and verticalization, with no reinforcement of the distribution network, requiring additional
power from pumping stations to surpass the elevated head losses. Finally, it is important
to highlight that the leakage rate is still far from benchmarking values [26] and also far
from the goals established by the Brazilian government [27]. For 2021, the energy wasted
due to leakages represents 0.64% of the total electricity produced in Brazil or 1.12% of the
electricity produced by hydropower plants.
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Figure 4 shows the water and energy loss distribution in Brazil. It can be seen that the
south and southeast regions have high losses, which is very harmful to its environmental
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and economic sustainability since it is a region with high energy demand suffering from
water stress. The northeast region also presents high losses and is a region constantly
suffering from prolonged droughts. Thus, the regions with the greatest need for operational
efficiency are the ones with the highest waste of resources, showing an important value in
leakage control in these regions.
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3. Case Study

The case study has the same layout as presented in the theoretical example of Figure 1.
Originally, this case was studied by [28] to evaluate the impact of water withdrawal
on the hydropower operation. The authors showed a reduction of 20% in the average
power of the plant due to the multiple use of the reservoir. However, the leakage impact
was not quantified. This case study is a micro example of the water–energy relation of
leakages, where the water withdrawal from the reservoir directly affects energy production.
Thus, it is easy to evaluate the real impact that leakages can have on energy production.
However, on a large scale, other energy sources, such as thermal or gas, could provide the
additional energy to attend leakages. In this scenario, the impact on energy production
would be smaller, as the reduction in energy offer is diminished. Thus, the real impact of
leakages should be carefully evaluated according to the energy matrix, with locales with
a predominance of hydropower plants potentially having bigger losses. In addition, the
perspective for the reservoir operation in the following years was also not evaluated by [28],
where climate changes can have a significant impact. Thus, in this paper, both leakages and
climate change were evaluated to quantify the impacts they have on the water and energy
production of the reservoir.

3.1. Hydraulic Modelling

The hydropower plant has two Francis turbines, with a total capacity of 28 MW. The
efficiency of the generating group (turbine and generator) is 79%, and the minimum flow
of them is 7.5 m3/s. Figure 5a shows the characteristic curve of the turbines. The water
level of the reservoir can vary from a minimum of 610 m to a maximum of 642 m. These
values can be translated to the volume stored using the curve presented in Figure 5b.
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The pumping station withdrawing water from the reservoir for the WDS is composed
of five pumps, operating with only four in normal conditions. The total flow capacity of
the pumping station is 6 m3/s, operating 20 h per day, with a head of 360 m, resulting in an
average required power of 24.6 MW in a day. The average flow comprises both the water
demand and the water lost by leakages. Considering the region being supplied, the leakage
rate is 32%. Thus, from the 6 m3/s, only 4.1 m3/s is effectively consumed.

Considering that the water supply is the priority for the reservoir operation and that
the pumping station requires a minimum level of 630 m, the net energy production and
the net volume of the reservoir can be calculated daily during a year of operation. The
flowchart presented in Figure 6 summarizes the system modeling with the operational
restrictions described.
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3.2. Hydrologic Modelling

The long-term natural inflow of the reservoir from 1959 to 2011 [28] is shown in
Figure 7. The term “natural flow” refers to the hypothetical flow observed in a section if
there were no human interventions upstream [29]. In order to represent the seasonality
better, the data were separated by month. For each monthly dataset, the fit of probability
distributions Weibull, log-normal, and Gamma were compared, as suggested by [30],
for modeling flows. To analyze the quality of the probabilistic models, the Bayesian
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Information Criterion was estimated, as shown in Table 1. It may be inferred that the
log-normal distribution is best fitted to the data.
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Table 1. Bayesian Information Criterion for each monthly dataset.
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Gamma 280.1 208.8 248.4 231.9 172.1 150.5 68.5 147.1 212.3 203.0 260.4 241.2

Log-Normal 276.5 198.5 241.4 227.7 168.0 149.3 67.6 144.9 203.6 202.3 255.6 238.2

For the estimation of scenarios associated with climate change, the parameters of
probability distributions were modified. In this context, based on discharge projections
presented by [22], the mean variations were applied to the position parameter of the log-
normal distribution, creating three different scenarios: (i) a conservative scenario associated
with the actual emission scenario; (ii) an optimistic scenario associated with the RCP 4.5
emission scenario; and (iii) a pessimistic scenario related to the RCP 8.5 scenario. Based
on the adjusted distributions for the three scenarios, a set of 100 time series, with daily
projections for the following five years, was created. These series were used as input data
for the operating model.

3.3. Results and Discussion
3.3.1. Leakage Impact

As a first analysis, only the leakage impact was evaluated in the reservoir operation.
Thus, the leakage index varied between 0 and 52%, simulating both an improvement or
deterioration of the water distribution efficiency. Figure 8a shows the reduction in the
energy produced by the hydropower plant, simply by the impact on the reservoir water
level. As the leakage rate increases, the water level reduces more rapidly, and consequently,
the hydropower has to stop its operation more frequently to maintain the minimum water
level required for the pumping station of the water supply. The availability of hydropower
drops from 53.6% when no leakage is observed and drops to 48.1% when the leakage is
maximum, which represents a reduction of 11.6% in the energy produced. However, in
addition to the reduction in energy produced, there is an increase in the energy consumed
in the pumping station as the leakage rate increases, and a higher flow is required for
the supply. Figure 8b compares the net energy of the system for three different leakage
rates during a year. In all cases, especially during the dry season, there is a requirement
for additional energy sources, as the hydropower plant is not capable of supplying the
demand. Comparing the ideal scenario of no leakages with the worst scenario with a
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leakage rate of 52%, the net energy deficit increases by 330%. Comparing the current
situation, where the leakage rate is 32%, with the worst scenario, the increase in the net
energy deficit is 110%. On the other hand, with the improvement in water supply achieving
a leakage rate of 20%, the net energy deficit drops 35%. This shows how important leakage
management is, not only from an environmental perspective but also from an economic
view, impacting the electrical grid directly (reservoir water level) and indirectly (pumping
energy consumption).
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3.3.2. Climate Change Impact

Using the forecasted natural flow of the river for five years of operation, Figure 9
shows the monthly net energy of the system for three different climate change scenarios.
It can be observed that during the dry season, the net energy has a lower variation, as
the natural flow is more constant due to the lack of rain. Consequently, the net energy is
severely affected, requiring an additional 500 MWh per month from external power plants
to attend to the energy consumption of the pumping station, as the energy produced by
the existing hydropower plant of the system is not sufficient. During the rainy season, the
river flow variability is higher, and therefore, the net energy is also more variable. Despite
the increase in available power, energy production can be limited by the turbine’s capacity
and the reservoir storage capacity. For the case study, these problems were not significant
for the net energy of the system, i.e., the spilled flow is low. However, comparing the three
scenarios during the rainy season, it is clear that in a pessimistic scenario of climate change,
in addition to the water resources scarcity, the energy available is also severely affected.
Finally, comparing the climate change impact with the leakage impact, it is clear that the
lack of water resources is potentially more harmful to the system, as it drastically reduces
the hydropower plant availability.
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4. Conclusions

This paper presented the water–energy nexus in the context of water supply systems,
highlighting the impacts that leakage can have on energy production. Firstly, an overview
of the Brazilian case was presented, showing that the energy losses due to leakages are
0.64% of the total energy produced. Considering only the hydropower energy, these losses
represent 1.12%, which in the Brazilian case is significant, as the major electrical energy
source is hydropower. Secondly, a more detailed study was made in a system where a
reservoir is used both for energy production and water supply. The results showed that
leakages not only affect the energy consumption in pumping stations but also reduce the
water stored in the reservoir. Consequently, the energy produced by the hydropower
drops, which, during dry periods, can lead to a negative net energy in the system, i.e.,
there is a necessity to import energy from other power plants to maintain the water supply.
Finally, the climate change impact was evaluated for three different scenarios. The results
showed that in a pessimistic scenario, the lack of water resources can be more harmful to
the net energy of the system than leakages. The variations during the dry season were not
high, as the river flow was more constant. However, during the rainy season, comparing
the optimistic and pessimistic scenarios, the net energy goes from positive or close to
zero to a negative value. For the case study, the spilled flow is relatively low and does
not significantly affect energy production. However, in a climate change scenario where
extreme conditions are more severe and common, the reservoir storage capacity or the
turbine power could be redesigned to avoid significant energy losses during rainy periods.
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